Search results for: elderly care service model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22321

Search results for: elderly care service model

15901 Use of Thrombolytics for Acute Myocardial Infarctions in Resource-Limited Settings, Globally: A Systematic Literature Review

Authors: Sara Zelman, Courtney Meyer, Hiren Patel, Lisa Philpotts, Sue Lahey, Thomas Burke

Abstract:

Background: As the global burden of disease shifts from infectious diseases to noncommunicable diseases, there is growing urgency to provide treatment for time-sensitive illnesses, such as ST-Elevation Myocardial Infarctions (STEMIs). The standard of care for STEMIs in developed countries is Percutaneous Coronary Intervention (PCI). However, this is inaccessible in resource-limited settings. Before the discovery of PCI, Streptokinase (STK) and other thrombolytic drugs were first-line treatments for STEMIs. STK has been recognized as a cost-effective and safe treatment for STEMIs; however, in settings which lack access to PCI, it has not become the established second-line therapy. A systematic literature review was conducted to geographically map the use of STK for STEMIs in resource-limited settings. Methods: Our literature review group searched the databases Cinhal, Embase, Ovid, Pubmed, Web of Science, and WHO’s Index Medicus. The search terms included ‘thrombolytics’ AND ‘myocardial infarction’ AND ‘resource-limited’ and were restricted to human studies and papers written in English. A considerable number of studies came from Latin America; however, these studies were not written in English and were excluded. The initial search yielded 3,487 articles, which was reduced to 3,196 papers after titles were screened. Three medical professionals then screened abstracts, from which 291 articles were selected for full-text review and 94 papers were chosen for final inclusion. These articles were then analyzed and mapped geographically. Results: This systematic literature review revealed that STK has been used for the treatment of STEMIs in 33 resource-limited countries, with 18 of 94 studies taking place in India. Furthermore, 13 studies occurred in Pakistan, followed by Iran (6), Sri Lanka (5), Brazil (4), China (4), and South Africa (4). Conclusion: Our systematic review revealed that STK has been used for the treatment of STEMIs in 33 resource-limited countries, with the highest utilization occurring in India. This demonstrates that even though STK has high utility for STEMI treatment in resource-limited settings, it still has not become the standard of care. Future research should investigate the barriers preventing the establishment of STK use as second-line treatment after PCI.

Keywords: cardiovascular disease, global health, resource-limited setting, ST-Elevation Myocardial Infarction, Streptokinase

Procedia PDF Downloads 129
15900 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States

Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh

Abstract:

The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.

Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation

Procedia PDF Downloads 221
15899 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada

Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman

Abstract:

Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.

Keywords: HAND, DTM, rapid floodplain, simplified conceptual models

Procedia PDF Downloads 135
15898 Designing Financing Schemes to Make Forest Management Units Work in Aceh Province, Indonesia

Authors: Riko Wahyudi, Rezky Lasekti Wicaksono, Ayu Satya Damayanti, Ridhasepta Multi Kenrosa

Abstract:

Implementing Forest Management Unit (FMU) is considered as the best solution for forest management in developing countries. However, when FMU has been formed, many parties then blame the FMU and assume it is not working on. Currently, there are two main issues that make FMU not be functional i.e. institutional and financial issues. This paper is addressing financial issues to make FMUs in Aceh Province can be functional. A mixed financing scheme is proposed here, both direct and indirect financing. The direct financing scheme derived from two components i.e. public funds and businesses. Non-tax instruments of intergovernmental fiscal transfer (IFT) system and FMU’s businesses are assessed. Meanwhile, indirect financing scheme is conducted by assessing public funds within villages around forest estate as about 50% of total villages in Aceh Province are located surrounding forest estate. Potential instruments under IFT system are forest and mining utilization royalties. In order to make these instruments become direct financing for FMU, interventions on allocation and distribution aspects of them are conducted. In the allocation aspect, alteration in proportion of allocation is required as the authority to manage forest has shifted from district to province. In the distribution aspect, Government of Aceh can earmark usage of the funds for FMUs. International funds for climate change also encouraged to be domesticated and then channeled through these instruments or new instrument under public finance system in Indonesia. Based on FMU’s businesses both from forest products and forest services, FMU can impose non-tax fees for each forest product and service utilization. However, for doing business, the FMU need to be a Public Service Agency (PSA). With this status, FMU can directly utilize the non-tax fees without transferring them to the state treasury. FMU only need to report the fees to Ministry of Finance. Meanwhile, indirect financing scheme is conducted by empowering villages around forest estate as villages in Aceh Province is receiving average village fund of IDR 800 million per village in 2017 and the funds will continue to increase in subsequent years. These schemes should be encouraged in parallel to establish a mixed financing scheme in order to ensure sustainable financing for FMU in Aceh Province, Indonesia.

Keywords: forest management, public funds, mixed financing, village

Procedia PDF Downloads 177
15897 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion

Authors: J. H. Park, R. H. Hwang, K. B. Yi

Abstract:

Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.

Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method

Procedia PDF Downloads 196
15896 A Collaborative Teaching and Learning Model between Academy and Industry for Multidisciplinary Engineering Education

Authors: Moon-Soo Kim

Abstract:

In order to cope with the increasing demand for multidisciplinary learning between academy and industry, a collaborative teaching and learning model and related operational tools enabling applications to engineering education are essential. This study proposes a web-based collaborative framework for interactive teaching and learning between academy and industry as an initial step for the development of a web- and mobile-based integrated system for both engineering students and industrial practitioners. The proposed web-based collaborative teaching and learning framework defines several entities such as learner, solver and supporter or sponsor for industrial problems, and also has a systematic architecture to build information system including diverse functions enabling effective interaction among the defined entities regardless of time and places. Furthermore, the framework, which includes knowledge and information self-reinforcing mechanism, focuses on the previous problem-solving records as well as subsequent learners’ creative reusing in solving process of new problems.

Keywords: collaborative teaching and learning model, academy and industry, web-based collaborative framework, self-reinforcing mechanism

Procedia PDF Downloads 312
15895 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study

Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem

Abstract:

A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.

Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement

Procedia PDF Downloads 334
15894 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 136
15893 Fuzzy Logic-Based Approach to Predict Fault in Transformer Oil Based on Health Index Using Dissolved Gas Analysis

Authors: Kharisma Utomo Mulyodinoto, Suwarno, Ahmed Abu-Siada

Abstract:

Transformer insulating oil is a key component that can be utilized to detect incipient faults within operating transformers without taking them out of service. Dissolved gas-in-oil analysis has been widely accepted as a powerful technique to detect such incipient faults. While the measurement of dissolved gases within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straightforward as it depends on personnel expertise more than mathematical formulas. In analyzing such data, the generation rate of each dissolved gas is of more concern than the absolute value of the gas. As such, history of dissolved gases within a particular transformer should be archived for future comparison. Lack of such history may lead to misinterpretation of the obtained results. IEEE C57.104-2008 standards have classified the health condition of the transformer based on the absolute value of individual dissolved gases along with the total dissolved combustible gas (TDCG) within transformer oil into 4 conditions. While the technique is easy to implement, it is considered as a very conservative technique and is not widely accepted as a reliable interpretation tool. Moreover, measured gases for the same oil sample can be within various conditions limits and hence, misinterpretation of the data is expected. To overcome this limitation, this paper introduces a fuzzy logic approach to predict the health condition of the transformer oil based on IEEE C57.104-2008 standards along with Roger ratio and IEC ratio-based methods. DGA results of 31 chosen oil samples from 469 transformer oil samples of normal transformers and pre-known fault-type transformers that were collected from Indonesia Electrical Utility Company, PT. PLN (Persero), from different voltage rating: 500/150 kV, 150/20 kV, and 70/20 kV; different capacity: 500 MVA, 60 MVA, 50 MVA, 30 MVA, 20 MVA, 15 MVA, and 10 MVA; and different lifespan, are used to test and establish the fuzzy logic model. Results show that the proposed approach is of good accuracy and can be considered as a platform toward the standardization of the dissolved gas interpretation process.

Keywords: dissolved gas analysis, fuzzy logic, health index, IEEE C57.104-2008, IEC ratio method, Roger ratio method

Procedia PDF Downloads 146
15892 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method

Authors: Defne Uz

Abstract:

Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.

Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration

Procedia PDF Downloads 135
15891 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 159
15890 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition

Authors: Yasser Mahmoudi, Nader Karimi

Abstract:

The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.

Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)

Procedia PDF Downloads 313
15889 Rasch Analysis in the Development of 'Kohesif-Ques': An Instrument to Measure Social Cohesion

Authors: Paramita Sekar Ayu, Sunjaya Deni Kurniadi, Yamazaki Chiho, Hilfi Lukman, Koyama Hiroshi

Abstract:

Social cohesion, or closeness among members of society, is an important determinant of population health. A cohesive society is a crucial societal condition for a positive life evaluation and subjective wellbeing, and people living in a cohesive society are happier and more satisfied with life and achieve better health status. The objective of this study was to compose and validate a questionnaire for measuring social cohesion with Rasch analysis. We develop a set of 13 questions to measure 4 dimensions of social cohesion. Random samples of 166 Bandung citizens’ were selected to answer the questionnaire. To evaluate the questionnaire’s validity and reliability, Rasch analysis (a psychometric model for analyzing categorical data on questionnaire responses) was carried out using Winsteps version 3.75.0. Rasch analysis was performed on the response given to 13 items included in the questionnaire. The reliability coefficient, Cronbach’s alpha was 0.70, model RMSE 0.08, SD 0.54, separation 7.14, and reliability of 0.98. ‘Kohesif-Ques’ is a useful instrument to assess social cohesion.

Keywords: rasch analysis, rasch model, social cohesion, quesionnaire

Procedia PDF Downloads 158
15888 Forecasting Regional Data Using Spatial Vars

Authors: Taisiia Gorshkova

Abstract:

Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regions

Keywords: forecasting, regional data, spatial econometrics, vector autoregression

Procedia PDF Downloads 129
15887 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 501
15886 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.

Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange

Procedia PDF Downloads 92
15885 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 333
15884 Revisiting Hospital Ward Design Basics for Sustainable Family Integration

Authors: Ibrahim Abubakar Alkali, Abubakar Sarkile Kawuwa, Ibrahim Sani Khalil

Abstract:

The concept of space and function forms the bedrock for spatial configuration in architectural design. Thus, the effectiveness and functionality of an architectural product depends their cordial relationship. This applies to all buildings especially to a hospital ward setting designed to accommodate various complex and diverse functions. Health care facilities design, especially an inpatient setting, is governed by many regulations and technical requirements. It is also affected by many less defined needs, particularly, response to culture and the need to provide for patient families’ presence and participation. The spatial configuration of the hospital ward setting in developing countries has no consideration for the patient’s families despite the significant role they play in promoting recovery. Attempts to integrate facilities for patients’ families have always been challenging, especially in developing countries like Nigeria, where accommodation for inpatients is predominantly in an open ward system. In addition, the situation is compounded by culture, which significantly dictates healthcare practices in Africa. Therefore, achieving such a hospital ward setting that is patient and family-centered requires careful assessment of family care actions and transaction spaces so as to arrive at an evidence based solution. Therefore, the aim of this study is to identify how hospital ward spaces can be reconfigured to provide for sustainable family integration. In achieving this aim, a qualitative approach using the principles of behavioral mapping was employed in male and female medical wards of the Federal Teaching Hospital (FTH) Gombe, Nigeria. The data obtained was analysed using classical and comparative content analysis. Patients’ families have been found to be a critical component of hospital ward design that cannot be undermined. Accordingly, bedsides, open yards, corridors and foyers have been identified as patient families’ transaction spaces that require design attention. Arriving at sustainable family integration can be achieved by revisiting the design requirements of the family transaction spaces based on the findings in order to avoid the rowdiness of the wards and uncoordinated sprawl.

Keywords: caregiving, design basics, family integration, hospital ward, sustainability

Procedia PDF Downloads 289
15883 Forming for Confirmation of Predicted Epoxy Forming Composition Range in Cr-Zn System

Authors: Foad Saadi

Abstract:

Aim of this work was to determine the approximate Epoxy forming composition range of Cr-Zn system for the composites produced by forming compositing. It was predicted by MI edema semi-empirical model that the composition had to be in the range of 30-60 wt. % tin, while Cr-32Zn had the most susceptibility to produce amorphous composite. In the next stage, some different compositions of Cr-Zn were foamingly composited, where one of them had the proper predicted composition. Products were characterized by SDM analysis. There was a good agreement between calculation and experiments, in which Cr-32Zn composite had the most amorphization degree.

Keywords: Cr-Zn system, forming compositing, amorphous composite, MI edema model

Procedia PDF Downloads 285
15882 In Search for the 'Bilingual Advantage' in Immersion Education

Authors: M. E. Joret, F. Germeys, P. Van de Craen

Abstract:

Background: Previous studies have shown that ‘full’ bilingualism seems to enhance the executive functions in children, young adults and elderly people. Executive functions refer to a complex cognitive system responsible for self-controlled and planned behavior and seem to predict academic achievement. The present study aimed at investigating whether similar effects could be found in children learning their second language at school in immersion education programs. Methods: In this study, 44 children involved in immersion education for 4 to 5 years were compared to 48 children in traditional schools. All children were between 9 and 11 years old. To assess executive functions, the Simon task was used, a neuropsychological measure assessing executive functions with reaction times and accuracy on congruent and incongruent trials. To control for background measures, all children underwent the Raven’s coloured progressive matrices, to measure non-verbal intelligence and the Echelle de Vocabulaire en Images Peabody (EVIP), assessing verbal intelligence. In addition, a questionnaire was given to the parents to control for other confounding variables, such as socio-economic status (SES), home language, developmental disorders, etc. Results: There were no differences between groups concerning non-verbal intelligence and verbal intelligence. Furthermore, the immersion learners showed overall faster reaction times on both congruent and incongruent trials compared to the traditional learners, but only after 5 years of training, not before. Conclusion: These results show that the cognitive benefits found in ‘full’ bilinguals also appear in children involved in immersion education, but only after a sufficient exposure to the second language. Our results suggest that the amount of second language training needs to be sufficient before these cognitive effects may emerge.

Keywords: bilingualism, executive functions, immersion education, Simon task

Procedia PDF Downloads 426
15881 Robust State feedback Controller for an Active Suspension System

Authors: Hussein Altartouri

Abstract:

The purpose of this paper is to present a modeling and control of the active suspension system using robust state feedback controller implemented for a half car model. This system represents a mechatronic system which contains all the essential components to be considered a complete mechatronic system. This system must adapt different conditions which are difficult to compromise, such as disturbances, slippage, and motion on rough road (that contains rocks, stones, and other miscellanies). Some current automobile suspension systems use passive components only by utilizing spring and damping coefficient with fixed rates. Vehicle suspensions systems are used to provide good road handling and improve passenger comfort. Passive suspensions only offer compromise between these two conflicting criteria. Active suspension poses the ability to reduce the traditional design as a compromise between handling and comfort by directly controlling the suspensions force actuators. In this study, the robust state feedback controller implemented to the active suspensions system for half car model.

Keywords: half-car model, active suspension system, state feedback, road profile

Procedia PDF Downloads 380
15880 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 205
15879 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme

Authors: Arun Kumar Yadav, Badam Singh Kushvah

Abstract:

In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.

Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control

Procedia PDF Downloads 177
15878 Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant

Authors: Ting Kai Chia, Ruifeng Yan, Feifei Bai, Tapan Saha

Abstract:

This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks.

Keywords: PV, oscillation, modelling, wind

Procedia PDF Downloads 18
15877 Increasing Cervical Screening Uptake during the Covid-19 Pandemic at Lakeside Healthcare, Corby, UK

Authors: Devyani Shete, Sudeep Rai

Abstract:

Background: The COVID-19 pandemic has caused one of the highest disruptions to the NHS (National Health Service), especially to the fundamental cervical cancer screening service. To prioritize screening response effectively, it is vital to understand the underlying disease risks amongst groups of women who are less likely to resume their screening/follow up at General Practices. The current government target is to have>=80% of women have an adequate test within the previous 3.5 years (ages 25-49) or 5.5 years (ages 50-64). Aims/Objectives: To increase the number of eligible people aged 25-49 attending cervical screening by 5% at Lakeside Healthcare (a General Practice in Corby). Methods: An online survey was posted on the Lakeside Healthcare website to find out what the barriers towards cervical screening were. It was apparent that patients needed more information catered to their responses. 6 informational videos and a “Cervical Screening Guide” were created for Lakeside patients about cervical screening, which were posted on the Healthcare website. Lakeside also started sending reminder texts to those eligible, with a link to a booking form. Results: On 18th January 2022, 69.7% of patients aged 25-49 years (7207) had an adequate cervical screening test in the last 3.5 years. There were 80 total responders to the online survey. In response to “which of the following are reasons why you have not attended screening”, 30% ticked “I kept putting it off/did not get around to it,” and 13% ticked “I was worried it would be painful or daunting.” In response to “which of the following would make you more likely to book an appointment”, 23% ticked “More detailed explanations of what the risks are if I don’t have screening,” and 20% ticked “I would like more information about the test and what the smear entails.” 10% of responders had previous trauma, whilst 28% of responders said the pandemic had impacted them getting a smear. Survey results were used to carry out interventions to increase smear uptake. On 23rdMarch 2022 (after a 2-month period), 75%of patients aged 25-49 (7119) attended the screening, which was a 5.3% increase from January. Discussion/Conclusion: The survey was vital in carrying out the exact interventions that were required for patients to increase screening uptake, as it is important to know what the populations’ needs are in order to create personalized invitations. This helps to optimise response during a pandemic. A HPV self-sample kit at home could be a popular method of dealing with further outbreaks.

Keywords: gynaecology, cervical screening, public health, COVID-19

Procedia PDF Downloads 137
15876 Proposal for a Model of Economic Integration for the Development of Industry in Cabinda, Angola

Authors: T. H. Bitebe, T. M. Lima, F. Charrua-Santos, C. J. Matias Oliveira

Abstract:

This study aims to present a proposal for an economic integration model for the development of the manufacturing industry in Cabinda, Angola. It seeks to analyze the degree of economic integration of Cabinda and the dynamics of the manufacturing industry. Therefore, in the same way, to gather information to support the decision-making for public financing programs that will aim at the disengagement of the manufacturing industry in Angola and Cabinda in particular. The Cabinda Province is the 18th of Angola, the enclave is located in a privileged area of the African and arable land.

Keywords: economic integration, industrial development, Cabinda industry, Angola

Procedia PDF Downloads 212
15875 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems

Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain

Abstract:

This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.

Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order

Procedia PDF Downloads 548
15874 Observational Learning in Ecotourism: An Investigation into Ecotourists' Environmentally Responsible Behavioral Intentions in South Korea

Authors: Benjamin Morse, Michaela Zint, Jennifer Carman

Abstract:

This study proposes a behavioral model in which ecotourists’ level of observational learning shapes their subsequent environmentally responsible behavioral intentions through ecotourism participation. Unlike past studies that have focused on individual attributes such as attitudes, locus of control, personal responsibility, knowledge, skills or effect, this present study explores select social attributes as potential antecedents to environmentally responsible behaviors. A total of 207 completed questionnaires were obtained from ecotourists in Korea and path analyses were conducted to explore the degree in which the hypothesized model directly and indirectly explained ecotourists’ environmentally responsible behavioral intentions. Results suggest that observational learning and its associated predictors (i.e., engagement, observation, reproduction and reinforcement) are key determinants of ecotourists environmentally responsible behavioral intentions. The application of observational learning proved to be informative, and has a number of implications for improving ecotourism programs. Our model also lays out a theoretical framework for future research.

Keywords: ecotourism, observational learning, environmentally responsible behavior, social learning theory

Procedia PDF Downloads 313
15873 Cars Redistribution Optimization Problem in the Free-Float Car-Sharing

Authors: Amine Ait-Ouahmed, Didier Josselin, Fen Zhou

Abstract:

Free-Float car-sharing is an one-way car-sharing service where cars are available anytime and anywhere in the streets such that no dedicated stations are needed. This means that after driving a car you can park it anywhere. This car-sharing system creates an imbalance car distribution in the cites which can be regulated by staff agents through the redistribution of cars. In this paper, we aim to solve the car-reservation and agents traveling problem so that the number of successful cars’ reservations could be maximized. Beside, we also tend to minimize the distance traveled by agents for cars redistribution. To this end, we present a mixed integer linear programming formulation for the car-sharing problem.

Keywords: one-way car-sharing, vehicle redistribution, car reservation, linear programming

Procedia PDF Downloads 333
15872 Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer's Disease

Authors: J. DeBoard, R. Dietrich, J. Hughes, K. Yurko, G. Harms

Abstract:

Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible.

Keywords: Alzheimer's disease, blood biomarker, neurodegeneration, neuromuscular control, olfaction, traumatic brain injury

Procedia PDF Downloads 134