Search results for: agricultural simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6738

Search results for: agricultural simulation

318 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton

Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla

Abstract:

An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.

Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton

Procedia PDF Downloads 118
317 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 295
316 Effects of Temperature and Mechanical Abrasion on Microplastics

Authors: N. Singh, G. K. Darbha

Abstract:

Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.

Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering

Procedia PDF Downloads 137
315 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 123
314 Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project

Authors: David L. Knott, Robert Kingsland, Alistair Hitchon

Abstract:

The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past.

Keywords: downhole investigation techniques, drilling, mine subsidence, yard seam

Procedia PDF Downloads 289
313 Integration of Technology into Nursing Education: A Collaboration between College of Nursing and University Research Center

Authors: Lori Lioce, Gary Maddux, Norven Goddard, Ishella Fogle, Bernard Schroer

Abstract:

This paper presents the integration of technologies into nursing education. The collaborative effort includes the College of Nursing (CoN) at the University of Alabama in Huntsville (UAH) and the UAH Systems Management and Production Center (SMAP). The faculty at the CoN conducts needs assessments to identify education and training requirements. A team of CoN faculty and SMAP engineers then prioritize these requirements and establish improvement/development teams. The development teams consist of nurses to evaluate the models and to provide feedback and of undergraduate engineering students and their senior staff mentors from SMAP. The SMAP engineering staff develops and creates the physical models using 3D printing, silicone molds and specialized molding mixtures and techniques. The collaboration has focused on developing teaching and training, or clinical, simulators. In addition, the onset of the Covid-19 pandemic has intensified this relationship, as 3D modeling shifted to supplied personal protection equipment (PPE) to local health care providers. A secondary collaboration has been introducing students to clinical benchmarking through the UAH Center for Management and Economic Research. As a result of these successful collaborations the Model Exchange & Development of Nursing & Engineering Technology (MEDNET) has been established. MEDNET seeks to extend and expand the linkage between engineering and nursing to K-12 schools, technical schools and medical facilities in the region to the resources available from the CoN and SMAP. As an example, stereolithography (STL) files of the 3D printed models, along with the specifications to fabricate models, are available on the MEDNET website. Ten 3D printed models have been developed and are currently in use by the CoN. The following additional training simulators are currently under development:1) suture pads, 2) gelatin wound models and 3) printed wound tattoos. Specification sheets have been written for these simulations that describe the use, fabrication procedures and parts list. These specifications are available for viewing and download on MEDNET. Included in this paper are 1) descriptions of CoN, SMAP and MEDNET, 2) collaborative process used in product improvement/development, 3) 3D printed models of training and teaching simulators, 4) training simulators under development with specification sheets, 5) family care practice benchmarking, 6) integrating the simulators into the nursing curriculum, 7) utilizing MEDNET as a pandemic response, and 8) conclusions and lessons learned.

Keywords: 3D printing, nursing education, simulation, trainers

Procedia PDF Downloads 103
312 Envisioning The Future of Language Learning: Virtual Reality, Mobile Learning and Computer-Assisted Language Learning

Authors: Jasmin Cowin, Amany Alkhayat

Abstract:

This paper will concentrate on a comparative analysis of both the advantages and limitations of using digital learning resources (DLRs). DLRs covered will be Virtual Reality (VR), Mobile Learning (M-learning) and Computer-Assisted Language Learning (CALL) together with their subset, Mobile Assisted Language Learning (MALL) in language education. In addition, best practices for language teaching and the application of established language teaching methodologies such as Communicative Language Teaching (CLT), the audio-lingual method, or community language learning will be explored. Education has changed dramatically since the eruption of the pandemic. Traditional face-to-face education was disrupted on a global scale. The rise of distance learning brought new digital tools to the forefront, especially web conferencing tools, digital storytelling apps, test authoring tools, and VR platforms. Language educators raced to vet, learn, and implement multiple technology resources suited for language acquisition. Yet, questions remain on how to harness new technologies, digital tools, and their ubiquitous availability while using established methods and methodologies in language learning paired with best teaching practices. In M-learning language, learners employ portable computing devices such as smartphones or tablets. CALL is a language teaching approach using computers and other technologies through presenting, reinforcing, and assessing language materials to be learned or to create environments where teachers and learners can meaningfully interact. In VR, a computer-generated simulation enables learner interaction with a 3D environment via screen, smartphone, or a head mounted display. Research supports that VR for language learning is effective in terms of exploration, communication, engagement, and motivation. Students are able to relate through role play activities, interact with 3D objects and activities such as field trips. VR lends itself to group language exercises in the classroom with target language practice in an immersive, virtual environment. Students, teachers, schools, language institutes, and institutions benefit from specialized support to help them acquire second language proficiency and content knowledge that builds on their cultural and linguistic assets. Through the purposeful application of different language methodologies and teaching approaches, language learners can not only make cultural and linguistic connections in DLRs but also practice grammar drills, play memory games or flourish in authentic settings.

Keywords: language teaching methodologies, computer-assisted language learning, mobile learning, virtual reality

Procedia PDF Downloads 213
311 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 190
310 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 74
309 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 274
308 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 118
307 Sustainable Urbanism: Model for Social Equity through Sustainable Development

Authors: Ruchira Das

Abstract:

The major Metropolises of India are resultant of Colonial manifestation of Production, Consumption and Sustenance. These cities grew, survived, and sustained on the basic whims of Colonial Power and Administrative Agendas. They were symbols of power, authority and administration. Within them some Colonial Towns remained as small towns within the close vicinity of the major metropolises and functioned as self–sufficient units until peripheral development due to tremendous pressure occurred in the metropolises. After independence huge expansion in Judiciary and Administration system resulted City Oriented Employment. A large number of people started residing within the city or within commutable distance of the city and it accelerated expansion of the cities. Since then Budgetary and Planning expenditure brought a new pace in Economic Activities. Investment in Industry and Agriculture sector generated opportunity of employment which further led towards urbanization. After two decades of Budgetary and Planning economic activities in India, a new era started in metropolitan expansion. Four major metropolises started further expansion rapidly towards its suburbs. A concept of large Metropolitan Area developed. Cities became nucleus of suburbs and rural areas. In most of the cases such expansion was not favorable to the relationship between City and its hinterland due to absence of visualization of Compact Sustainable Development. The search for solutions needs to weigh the choices between Rural and Urban based development initiatives. Policymakers need to focus on areas which will give the greatest impact. The impact of development initiatives will spread the significant benefit to all. There is an assumption that development integrates Economic, Social and Environmental considerations with equal weighing. The traditional narrower and almost exclusive focus on economic criteria as the determinant of the level of development is thus re–described and expanded. The Social and Environmental aspects are equally important as Economic aspect to achieve Sustainable Development. The arrangement of opportunities for Public, Semi – Public facilities for its citizen is very much relevant to development. It is responsibility of the administration to provide opportunities for the basic requirement of its inhabitants. Development should be in terms of both Industrial and Agricultural to maintain a balance between city and its hinterland. Thus, policy is to formulate shifting the emphasis away from Economic growth towards Sustainable Human Development. The goal of Policymaker should aim at creating environments in which people’s capabilities can be enhanced by the effective dynamic and adaptable policy. The poverty could not be eradicated simply by increasing income. The improvement of the condition of the people would have to lead to an expansion of basic human capabilities. In this scenario the suburbs/rural areas are considered as environmental burden to the metropolises. A new living has to be encouraged in the suburban or rural. We tend to segregate agriculture from the city and city life, this leads to over consumption, but this urbanism model attempts both these to co–exists and hence create an interesting overlapping of production and consumption network towards sustainable Rurbanism.

Keywords: socio–economic progress, sustainability, social equity, urbanism

Procedia PDF Downloads 281
306 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 62
305 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT

Procedia PDF Downloads 247
304 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 130
303 Transforming Challenges of Urban and Peri-Urban Agriculture into Opportunities for Urban Food Security in India

Authors: G. Kiran Kumar, K. Padmaja

Abstract:

The rise of urban and peri-urban agriculture (UPA) is an important urban phenomenon that needs to be well understood before we pronounce a verdict whether it is beneficial or not. The challenge of supply of safe and nutritious food is faced by urban inhabitants. The definition of urban and peri-urban varies from city to city depending on the local policies framed with a view to bring regulated urban habitations as part of governance. Expansion of cities and the blurring of boundaries between urban and rural areas make it difficult to define peri-urban agriculture. The problem is further exacerbated by the fact that definition adopted in one region may not fit in the other. On the other hand the proportion of urban population is on the rise vis-à-vis rural. The rise of UPA does not promise that the food requirements of cities can be entirely met from this practice, since availability of enormous amounts of spaces on rooftops and vacant plots is impossible for raising crops. However, UPA reduces impact of price volatility, particularly for vegetables, which relatively have a longer shelf life. UPA improves access to fresh, nutritious and safe food for the urban poor. UPA provides employment to food handlers and traders in the supply chain. UPA can pose environmental and health risks from inappropriate agricultural practices; increased competition for land, water and energy; alter the ecological landscape and make it vulnerable to increased pollution. The present work is based on case studies in peri-urban agriculture in Hyderabad, India and relies on secondary data. This paper tries to analyze the need for more intensive production technologies without affecting the environment. An optimal solution in terms of urban-rural linkages has to be devised. There is a need to develop a spatial vision and integrate UPA in urban planning in a harmonious manner. Zoning of peri-urban areas for agriculture, milk and poultry production is an essential step to preserve the traditional nurturing character of these areas. Urban local bodies in conjunction with Departments of Agriculture and Horticulture can provide uplift to existing UPA models, without which the UPA can develop into a haphazard phenomenon and add to the increasing list of urban challenges. Land to be diverted for peri-urban agriculture may render the concept of urban and peri-urban forestry ineffective. This paper suggests that UPA may be practiced for high value vegetables which can be cultivated under protected conditions and are better resilient to climate change. UPA can provide models for climate resilient agriculture in urban areas which can be replicated in rural areas. Production of organic farm produce is another option for promote UPA owing to the proximity to informed consumers and access to markets within close range. Waste lands in peri-urban areas can be allotted to unemployed rural youth with the support of Urban Local Bodies (ULBs) and used for UPA. This can serve the purposes of putting wastelands to food production, enhancing employment opportunities and enhancing access to fresh produce for urban consumers.

Keywords: environment, food security, urban and peri-urban agriculture, zoning

Procedia PDF Downloads 295
302 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 168
301 Establishments of an Efficient Platform for Genome Editing in Grapevine

Authors: S. Najafi, E. Bertini, M. Pezzotti, G.B. Tornielli, S. Zenoni

Abstract:

Grapevine is an important agricultural fruit crop plant consumed worldwide and with a key role in the global economy. Grapevine is strongly affected by both biotic and abiotic stresses, which impact grape growth at different stages, such as during plant and berry development and pre- and post-harvest, consequently causing significant economic losses. Recently global warming has propelled the anticipation of the onset of berry ripening, determining the reduction of a grape color and increased volatilization of aroma compounds. Climate change could negatively alter the physiological characteristics of the grape and affect the berry and wine quality. Modern plant breeding can provide tools such as genome editing for improving grape resilience traits while maintaining intact the viticultural and oenological quality characteristics of the genotype. This study aims at developing a platform for genome editing application in grapevine plants with the final goal to improve berry quality, biotic, and abiotic resilience traits. We chose to directly deliver ribonucleoproteins (RNP, preassembled Cas protein and guide RNA) into plant protoplasts, and, from these cell structures, regenerate grapevine plants edited in specific selected genes controlling traits of interest. Edited plants regenerated by somatic embryogenesis from protoplasts will then be sequenced and molecularly characterized. Embryogenic calli of Sultana and Shiraz cultivars were initiated from unopened leaves of in-vitro shoot tip cultures and from stamens, respectively. Leaves were placed on NB2 medium while stamens on callus initiation medium (PIV) medium and incubated in the dark at 28 °C for three months. Viable protoplasts, tested by FDA staining, isolated from embryogenic calli were cultured by disc method at 1*105 protoplasts/ml. Mature well-shaped somatic embryos developed directly in the protoplast culture medium two months later and were transferred in the light into to shooting medium for further growth. Regenerated plants were then transferred to the greenhouse; no phenotypic alterations were observed when compared to non in-vitro cultured plants. The performed experiments allowed to established an efficient protocol of embryogenic calli production, protoplast isolation, and regeneration of the whole plant through somatic embryogenesis in both Sultana and Shiraz. Regenerated plants, through direct somatic embryogenesis deriving from a single cell, avoid the risk of chimerism during the regeneration process, therefore improving the genome editing process. As pre-requisite of genome editing, an efficient method for transfection of protoplast by yellow fluorescent protein (YFP) marker genes was also established and experiments of direct delivery of CRISPR–Cas9 ribonucleoproteins (RNPs) in protoplasts to achieve efficient DNA-free targeted mutations are in progress.

Keywords: CRISPR-cas9, plant regeneration, protoplast isolation, Vitis vinifera

Procedia PDF Downloads 122
300 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 374
299 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 298
298 Prevalence of Occupational Asthma Diagnosed by Specific Challenge Test in 5 Different Working Environments in Thailand

Authors: Sawang Saenghirunvattana, Chao Saenghirunvattana, Maria Christina Gonzales, Wilai Srimuk, Chitchamai Siangpro, Kritsana Sutthisri

Abstract:

Introduction: Thailand is one of the fastest growing countries in Asia. It has emerged from agricultural to industrialized economy. Work places have shifted from farms to factories, offices and streets were employees are exposed to certain chemicals and pollutants causing occupational diseases particularly asthma. Work-related diseases are major concern and many studies have been published to demonstrate certain professions and their exposures that elevate the risk of asthma. Workers who exhibit coughing, wheezing and difficulty of breathing are brought to a health care setting where Pulmonary Function Test (PFT) is performed and based from results, they are then diagnosed of asthma. These patients, known to have occupational asthma eventually get well when removed from the exposure of the environment. Our study, focused on performing PFT or specific challenge test in diagnosing workers of occupational asthma with them executing the test within their workplace, maintaining the environment and their daily exposure to certain levels of chemicals and pollutants. This has provided us with an understanding and reliable diagnosis of occupational asthma. Objective: To identify the prevalence of Thai workers who develop asthma caused by exposure to pollutants and chemicals from their working environment by conducting interview and performing PFT or specific challenge test in their work places. Materials and Methods: This study was performed from January-March 2015 in Bangkok, Thailand. The percentage of abnormal symptoms of 940 workers in 5 different areas (factories of plastic, fertilizer, animal food, office and streets) were collected through a questionnaire. The demographic information, occupational history, and the state of health were determined using a questionnaire and checklists. PFT was executed in their work places and results were measured and evaluated. Results: Pulmonary Function test was performed by 940 participants. The specific challenge test was done in factories of plastic, fertilizer, animal food, office environment and on the streets of Thailand. Of the 100 participants working in the plastic industry, 65% complained of having respiratory symptoms. None of them had an abnormal PFT. From the participants who worked with fertilizers and are exposed to sulfur dioxide, out of 200 participants, 20% complained of having symptoms and 8% had abnormal PFT. The 300 subjects working with animal food reported that 45% complained of respiratory symptoms and 15% had abnormal PFT results. From the office environment where there is indoor pollution, Out of 140 subjects, 7% had symptoms and 4% had abnormal PFT. The 200 workers exposed to traffic pollution, 24% reported respiratory symptoms and 12% had abnormal PFT. Conclusion: We were able to identify and diagnose participants of occupational asthma through their abnormal lung function test done at their work places. The chemical agents and exposures were determined therefore effective management of workers with occupational asthma were advised to avoid further exposure for better chances of recovery. Further studies identifying the risk factors and causative agents of asthma in workplaces should be developed to encourage interventional strategies and programs that will prevent occupation related diseases particularly asthma.

Keywords: occupational asthma, pulmonary function test, specific challenge test, Thailand

Procedia PDF Downloads 283
297 Strategies of Drug Discovery in Insects

Authors: Alaaeddeen M. Seufi

Abstract:

Many have been published on therapeutic derivatives from living organisms including insects. In addition to traditional maggot therapy, more than 900 therapeutic products were isolated from insects. Most people look at insects as enemies and others believe that insects are friends. Many beneficial insects rather than Honey Bees, Silk Worms and Shellac insect could insure human-insect friendship. In addition, insects could be MicroFactories, Biosensors or Bioreactors. InsectFarm is an amazing example of the applied research that transfers insects from laboratory to market by Prof Mircea Ciuhrii and co-workers. They worked for 18 years to derive therapeutics from insects. Their research resulted in production of more than 30 commercial medications derived from insects (e.g. Imunomax, Noblesse, etc.). Two general approaches were followed to discover drugs from living organisms. Some laboratories preferred biochemical approach to purify components of the innate immune system of insects and insect metabolites as well. Then the purified components could be tested for many therapeutic trials. Other researchers preferred molecular approach based on proteomic studies. Components of the innate immune system of insects were then tested for their medical activities. Our Laboratory team preferred to induce insect immune system (using oral, topical and injection routes of administration), then a transcriptomic study was done to discover the induced genes and to identify specific biomarkers that can help in drug discovery. Biomarkers play an important role in medicine and in drug discovery and development as well. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application. This team uses several techniques such as pharmacoepidemiology, pharmacogenomics, and functional proteomics; bioanalytical development and validation; modeling and simulation to improve and refine drug development. Our Achievements included the discovery of four components of the innate immune system of Spodoptera littoralis and Musca domestica. These components were designated as SpliDef (defesin), SpliLec (lectin), SpliCec (cecropin) and MdAtt (attacin). SpliDef, SpliLec and MdAtt were confirmed as antimicrobial peptides, while SpliCec was additionally confirmed as anticancer peptide. Our current research is going on to achieve something in antioxidants and anticoagulants from insects. Our perspective is to achieve something in the mass production of prototypes of our products and to reach it to the commercial level. These achievements are the integrated contributions of everybody in our team staff.

Keywords: AMPs, insect, innate immunitty, therappeutics

Procedia PDF Downloads 346
296 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 214
295 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 86
294 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria

Authors: K. Bencherif, M. Bellifa

Abstract:

The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.

Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen

Procedia PDF Downloads 370
293 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh

Authors: Mohsina Aktar, Bishawjit Mallick

Abstract:

Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.

Keywords: wetland community, hydroponics, climate change adaptation, livelihood

Procedia PDF Downloads 249
292 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation

Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin

Abstract:

CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.

Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model

Procedia PDF Downloads 282
291 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 134
290 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 125
289 Local Governance Systems for Value Chains' Promotion: A Chance for Rural Development in Tunisia

Authors: Neil Fourati

Abstract:

Collaboration between public and private stakeholders for agricultural development are today lacking in Tunisia. The last dictatorship witnessed by the country has deteriorated the necessary trust between the state and small farmers for the realization of development projects, in particular in the interior, disadvantaged regions of the country. These regions, where the youth unemployment rate is above 30%, have been the heart of the uprising that preceded the revolution. The transitional period that the country is going through since 2011 is an opportunity for the emergence of new governance systems in the context of the decentralization. The latter is recognized in the 2nd Tunisian Republic constitution as the basis of regional management. Civil society participation to the decision-making process is considered as a mean to identify measures that are more coherent with local populations’ needs. The development of agriculture and food value chains in rural areas is relevant within the framework of the implementation of new decisions systems that require public-private collaborations. These new systems can lead to actions in favor of improving living conditions of rural populations. The diverisification of activities around agriculture can be a solution for job creation and local value creation. The project for the promotion of sustainable agriculture and rural development in Tunisia has designed and implemented a multi-stakeholder dialogue process for the development of local value chains platforms in disadvantaged areas of the country. The platforms gather public and private organizations ; as well civil society organizations ; that intervene in a locality in relation to the production transformation or product’s commercialization. The role of these platforms is to formulate realize and evaluate collaborative actions or projects for the promotion of the concerned product and territory. The dialogue process steps allow to create the necessary collaboration conditions in order to promote viable collectivities, dynamic economies and healthy environments. Effectively, the dialogue process steps allow to identify the local leaders. These leaders recognize the development constraints and opportunities. They deal with key and gathering subjects around the collaborative projects or actions. They take common decisions in order to create effective coalitions for the implementation of common actions. The plateforms realize quick success so as to build trust. The project has supported the formulation of 22 collaborative projects. Seven priority collaborative projects have been realized. Each collaborative project includes 3 parts : the signature of the collaboration conventions between public and private organizations, investment in the relevant material in order to increase productivity and the quality of local and products and finally management and technical training in favour of producers’ organizations for the promotion of local products. The implementation of this process has enabled to enhance the capacities of collaboration between local actors : producers, traders, processors and support structures from public sector and civil society. It also allowed to improve the efficiency and relevance of actions and measures for agriculture and rural development programs. Thus, the process for the development of local value chain platform is a basis for sustainable development of agriculture.

Keywords: governance, public private collaboration, rural development, value chains

Procedia PDF Downloads 252