Search results for: plant regeneration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3827

Search results for: plant regeneration

3827 Recovering Taraxacum Taraxacum kok-saghyz Rodin via Seed and Callus Culture

Authors: K. Uteulin, S. Mukhambetzhanov, I. Rakhimbaiev

Abstract:

This experiment was performed to optimize the medium for tissue culture of Taraxacum kok-saghyz Rodin. Different tissue culture approaches such as shoot regeneration from seed, callus formation from leaf explants and plant regeneration from callus were investigated in this study. All the explants were cultured on MS basal medium supplemented with 20 g/l sucrose, 7 g/l agar and different plant growth regulators. Seeds of Taraxacum kok-saghyz were cultured on media containing different levels of BA and 2,4-D (0,5 and 1,0 and 3,0 mg/L) to direct shoot regeneration study. Leaf explants were cultured in different combination of BA (at three levels: 0.5, 1.0 and 3.0 mg/L) and zeatin (at two levels: 0.5 and 1.0 mg/L) to examine callus formation. After the callus formation the formed calli were cultured on different combinations of BA and NAA for shoot regeneration. BA at three levels (0.5 and 1.0 and 3.0 mg/L) and NAA at two levels (0.5 and 1.0 mg/L) in all possible combinations were used for shoot regeneration from callus. The results showed that the treatment containing 1.0 mg/L 2,4-D in combination with 1.0 mg/L BA was found to be the best one for shoot regeneration from seeds. The treatment with 1.0 mg/L BA in combination with 1.0 mg/L zeatin were found to be suitable treatments for callus production from leaf explants, as well. Moreover, 0.5 mg/L BA alone or in combination with 1.0 mg/L NAA were found to be the best treatments for shoot regeneration from callus.

Keywords: Taraxacum kok-saghyz Rodin, shoot regeneration, callus, plant

Procedia PDF Downloads 207
3826 Efficient Callus Induction and Plant Regeneration from Mature Embryo Culture of Barley (Hordeum vulgare L.) Genotypes

Authors: Münüre Tanur Erkoyuncu, Mustafa Yorgancılar

Abstract:

Crop improvement through genetic engineering depends on effective and reproducible plant regeneration systems. Immature embryos are the most widely used explant source for in vitro regeneration in barley (Hordeum vulgare L.). However, immature embryos require the continuous growth of donor plants and the suitable stage for their culture is also certainly limited. On the other hand, mature embryos can be procured and stored easily; they can be studied throughout the year. In this study, an effective callus induction and plant regeneration were aimed to develop from mature embryos of different barley genotypes. The effect of medium (MS1 and MS2), auxin type (2,4-D, dicamba, picloram and 2,4,5-T) and concentrations (2, 4, 6 mg/l) on callus formation and effect of cytokinin type (TDZ, BAP) and concentrations (0.2, 0.5, 1.0 mg/l) on green plant regeneration were evaluated in mature embryo culture of barley. Callus and shoot formation was successful for all genotypes. By depending on genotype, MS1 is the best medium, 4 mg/l dicamba is the best growth regulator in the callus induction and MS1 is the best medium, 1 mg/l BAP is the best growth regulator in the shoot formation were determined.

Keywords: barley, callus, embryo culture, mature embryo

Procedia PDF Downloads 294
3825 Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant

Authors: A. B. A. Ahmed, D. I. Amar, R. M. Taha

Abstract:

This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.

Keywords: callus induction, indirect plant regeneration, double staining, somatic embryogenesis, Crassula ovata

Procedia PDF Downloads 358
3824 Callus Induction, In-Vitro Plant Regeneration and Acclimatization of Lycium barbarum L. (Goji)

Authors: Rosna Mat Taha, Sakinah Abdullah, Sadegh Mohajer, Asmah Awal

Abstract:

Lycium barbarum L. (Goji) belongs to Solanaceae family and native to some areas of China. Ethnobotanical studies have shown that this plant has been consumed by the Chinese since ancient times. It has been used as medicine in providing excellent effects on cardiovascular system and cholesterol level, besides contains high antioxidant and antidiabetic properties. In the present study, some tissue culture work has been carried out to induce callus, in vitro regeneration from various explants of Goji and also some acclimatization protocols were followed to transfer the regenerated plants to soil. The main aims being to establish high efficient regeneration system for mass production and commercialization for future uses, since the growth of this species is very limited in Malaysia. The optimum hormonal regime and the most suitable and responsive explants were identified. It was found that leaves and stems gave good responses. Murashige and Skoog’s (MS) medium supplemented with 2.0 mg/L NAA and 0.5 mg/L BAP was the best for callus induction and MS media fortified with 1.0 mg/L NAA and 1.0 mg/L BAP was optimum for in vitro regeneration. The survival rates of plantlets after acclimatization was 63±1.5 % on black soil and 50±1.3 % on mixed soil (combination of black and red soil at a ratio of 2 to 1), respectively.

Keywords: callus, acclimatization, in vitro culture, regeneration

Procedia PDF Downloads 421
3823 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant

Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi

Abstract:

Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.

Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation

Procedia PDF Downloads 398
3822 In vitro Plant Regeneration of Gonystylus Bancanus (Miq) Kurz. Through Direct Organogenesis

Authors: Grippin Akeng, Suresh Kumar Muniandy, Nor Aini Ab Shukor

Abstract:

Plant regeneration was achieved from shoot tip and nodal segment of Gonystylus bancanus (Miq) Kurz. cultured in Murashige and Skoog’s medium supplemented with various concentrations of 6-benzylaminopurine (BAP). The most optimum concentration of BAP for shoot initiation is 10.0 mgl⁻¹ with approximately 10% of shoot tip and 15% of nodal segment produced single shoot after 28 and 15 days of culture incubation respectively. Rooting was achieved when shoots were transferred into MS medium supplemented with 5.0 mgl⁻¹ Naphthalene acetic acid (NAA). Synthesizing results developed through this research can be a starting point for the upscalling and optimization process in future.

Keywords: gonystylus bancanus, organogenesis, shoot initiation, shoot tip

Procedia PDF Downloads 213
3821 Examining the Change of Power Transmission Line in Urban Regeneration with Geographical Information System

Authors: C. Yagci, F. Iscan

Abstract:

In this study, spatial differences of Power Transmission Line (PTL) and effects of the situation before and after the urban regeneration are studied by using Geographical Information System (GIS). In addition, a questionable and analyzable structure is acquired by developed system. In the study area many parcels on the PTL were analyzed. The amount of the parcels, which are affected by the negativity of PTL is clearly seen with the aid of generated maps. Some kind of changes are exhibited in the system, which are created by GIS, for instance before urban regeneration PTL was very close to people’s private properties and huge parts of PTL were among the buildings, however; after urban regeneration electricity lines were changed their locations to the underground. According to the results, GIS can be used as a device in planning and managing of PTL in urban regeneration projects and can be used for analyses. By the help of GIS technology, necessary investigations should be carried out in urban regeneration applications for creating sustainable cities.

Keywords: GIS, power transmission line, technology, urban regeneration

Procedia PDF Downloads 733
3820 Comparison of Urban Regeneration Strategies in Asia and the Development of Neighbourhood Regeneration in Malaysia

Authors: Wan Jiun Tin

Abstract:

Neighborhood regeneration has gained its popularity despite market-led urban redevelopment is still the main strategy in most of the countries in Asia. Area-based approach of neighborhood regeneration with the focus on people, place and system which covers the main sustainable aspects shall be studied as part of the solution. Project implementation in small scale without fully depending on the financial support from the government and main stakeholders is the advantage of neighborhood regeneration. This enables the improving and upgrading of living conditions to be ongoing even during the economy downturn. In addition to that, there will be no specific selection on the development areas as the entire nation share the similar opportunity to upgrade and to improve their neighborhood. This is important to narrow the income disparities in urban. The objective of this paper is to review and to summarize the urban regeneration in developed countries with the focus on Korea, Singapore and Hong Kong. The aim is to determine the direction of sustainable urban regeneration in Malaysia for post-Vision 2020 through the introduction of neighborhood regeneration. This paper is conducted via literature review and observations in those selected countries. In conclusion, neighborhood regeneration shall be one of the approach of sustainable urban regeneration in Malaysia. A few criteria have been identified and to be recommended for the adaptation in Malaysia.

Keywords: area-based regeneration, public participation, sustainable urban regeneration, urban redevelopment

Procedia PDF Downloads 241
3819 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 456
3818 Evaluating the Logistic Performance Capability of Regeneration Processes

Authors: Thorben Kuprat, Julian Becker, Jonas Mayer, Peter Nyhuis

Abstract:

For years now, it has been recognized that logistic performance capability contributes enormously to a production enterprise’s competitiveness and as such is a critical control lever. In doing so, the orientation on customer wishes (e.g. delivery dates) represents a key parameter not only in the value-adding production but also in product regeneration. Since production and regeneration processes have different characteristics, production planning and control measures cannot be directly transferred to regeneration processes. As part of a special research project, the Institute of Production Systems and Logistics Hannover is focused on increasing the logistic performance capability of regeneration processes for complex capital goods. The aim is to ensure logistic targets are met by implementing a model specifically designed to align the capacities and load in regeneration processes.

Keywords: capacity planning, complex capital goods, logistic performance, regeneration process

Procedia PDF Downloads 456
3817 Callus Induction of Segmented Corm Explant of Gladiolus cv. White Prosperity and Regeneration in vitro Condition

Authors: M. Sepahvand, M. Khorushy

Abstract:

Gladiolus, being a cormous plant, it is principally propagated by the natural multiplication of new corms and cormels. In order to obtain callus from segmented corm which was obtained from in vitro culture, callus formation media were MS media supplemented with 4 levels of hormones such as 1.0 mg l-1 NAA + 0.5 mg l-1 BAP, 0.5 mg l-1 NAA + 0.25 mg l-1 BAP, 1.0 mg l-1 2, 4-D + 0.5 mg l-1 BAP, and 0.5 mg l-1 2, 4-D + 0.25 mg l-1 BAP. The results showed that the most weight of callus (2.28 g) was produced in MS callus formation media which were supplemented with 1.0 mg l-1 NAA + 0.5 mg l-1 BAP. This experiment was carried out in randomized completely design with 3 replications and each treatment with six jars. In second experiment for regeneration of callus, a factorial experiment in the form of randomized complete design with 12 treatments and 3 replications and each replication with six jars was carried out. The treatments consisted of callus culture media in 4 levels and regeneration culture media in 3 levels [control (no PGRs), MS with 0.2 mg l-1 BAP + 0.1 mg l-1 Kin + 0.01 mg l-1 NAA, and MS with 0.2 mg l-1 BAP + 0.05 mg l-1 Kin + 0.01 mg l-1 NAA]. The results showed that the best regeneration media were MS media which were supplemented with 0.2 mg l-1 BAP + 0.1 mg l-1 Kin. + 0.01 mg l-1 NAA that had the highest number of shoots (7/83 N), and shoot length (7/3 cm).

Keywords: regeneration, Segmented corm explant, callus, in vitro, gladiolus cv. white prosperity

Procedia PDF Downloads 414
3816 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 143
3815 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device

Authors: Won Jun Jo, Man Young Kim

Abstract:

To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.

Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics

Procedia PDF Downloads 259
3814 Regeneration of Plantlets via Direct Somatic Embryogenesis from Different Explants of Murraya koenigii

Authors: Nisha Khatik, Ramesh Joshi

Abstract:

An in vitro plant regeneration system was developed via direct somatic embryogenesis from different seedling explants of an important medicinal plant Murraya koenigii (L) Spreng. Cotyledons (COT), Hypocotyle (HYP)(10 to 15 mm) and Root (RT) segments (10 to 20 mm) were excised from 60 days old seedlings as explants. The somatic embryos induction was achieved on MS basal medium augmented with different concentrations of BAP 1.33 to 8.40 µM and TDZ 1.08 to 9.82 µM. The globular embryos originated from cut ends and entire surface of the root, hypocotyle explants and margins of cotyledons within 30-40days. The percentage of somatic embryos induction per explant was significantly higher in HYP explants (94.21±5.77%) in the MS basal medium supplemented with 6.20 µM BAP and 8.64 µM TDZ. The highest rate of conversion of torpedo, heart and cotyledonary stages from globular stage was obtained in MS medium supplemented with 8.64 µM TDZ. The matured somatic embryos were transferred to the MS basal medium without PGRs. Highest 88% of the matured embryos were germinated on transfer to the PGR free medium where they grew for a further 3-4 weeks. Out of seventy six hardened plants seventy (92%) plantlets were found healthy under field conditions.

Keywords: Murraya koenigii, somatic embryogenesis, thidiazuron, regeneration, rutaceae

Procedia PDF Downloads 395
3813 Electrochemical Regeneration of GIC Adsorbent in a Continuous Electrochemical Reactor

Authors: S. N. Hussain, H. M. A. Asghar, H. Sattar, E. P. L. Roberts

Abstract:

Arvia™ introduced a novel technology consisting of adsorption followed by electrochemical regeneration with a graphite intercalation compound adsorbent that takes place in a single unit. The adsorbed species may lead to the formation of intermediate by-products products due to incomplete mineralization during electrochemical regeneration. Therefore, the investigation of breakdown products due to incomplete oxidation is of great concern regarding the commercial applications of this process. In the present paper, the formation of the chlorinated breakdown products during continuous process of adsorption and electrochemical regeneration based on a graphite intercalation compound adsorbent has been investigated.

Keywords: GIC, adsorption, electrochemical regeneration, chlorphenols

Procedia PDF Downloads 270
3812 Intelligent CRISPR Design for Bone Regeneration

Authors: Yu-Chen Hu

Abstract:

Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed.

Keywords: gene therapy, bone regeneration, stem cell, CRISPR, gene regulation

Procedia PDF Downloads 50
3811 All-Optical Function Based on Self-Similar Spectral Broadening for 2R Regeneration in High-Bit-Rate Optical Transmission Systems

Authors: Leila Graini

Abstract:

In this paper, we demonstrate basic all-optical functions for 2R regeneration (Re-amplification and Re-shaping) based on self-similar spectral broadening in low normal dispersion and highly nonlinear fiber (ND-HNLF) to regenerate the signal through optical filtering including the transfer function characteristics, and output extinction ratio. Our approach of all-optical 2R regeneration is based on those of Mamyshev. The numerical study reveals the self-similar spectral broadening very effective for 2R all-optical regeneration; the proposed design presents high stability compared to a conventional regenerator using SPM broadening with reduction of the intensity fluctuations and improvement of the extinction ratio.

Keywords: all-optical function, 2R optical regeneration, self-similar broadening, Mamyshev regenerator

Procedia PDF Downloads 158
3810 Comparison of β-Cell Regenerative Potentials of Selected Sri Lankan Medicinal Plant Extracts in Alloxan-Induced Diabetic Rats

Authors: A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa, C. Pathirana

Abstract:

Triggering of β-cell regeneration is a recognized therapeutic strategy for the treatment of type 1 diabetes mellitus. One such approach to foster restoration and regeneration of β-cells is from exogenous natural extracts. The aim of the present study was to investigate and compare the β-cell regenerative potentials of the extracts of Spondias pinnata (Linn. f.) Kurz, Coccinia grandis (L.) Voigt and Gmelina arborea Roxb. in alloxan induced diabetic rats. Wistar rats were divided in to six groups (n=6); healthy untreated rats, alloxan induced diabetic untreated rats (150 mg/kg, ip), diabetic rats receiving the extracts of S. pinnata (1.0 g/kg), C. grandis (0.75 g/kg), G. arobrea (1.00 g/kg) and diabetic rats receiving glibenclamide (0.5 mg/kg) for 30 days. The assessment of selected biochemical parameters, histopathology and immunohistochemistry in the pancreatic tissue were done on the 30th day. The reduction in the percentage of HbA1C was in the decreasing order of C. grandis (35%), G. arborea (31%) and S. pinnata (29%) in alloxan induced diabetic rats (p< 0.05). The concentration of serum fructosamine, insulin and C-peptide were decreased significantly in a decreasing order of C. grandis (30%, 72%, 51%), G. arborea (25%, 44%, 44%) and S. pinnata (27%, 34%, 24%) in alloxan induced diabetic rats (p < 0.05). The extent of β-cell regeneration was in the decreasing order of C. grandis, G. arborea, S. pinnata reflected through the increased percentage of insulin secreting β-cells in alloxan induced diabetic rats. The extract of C. grandis produced the highest degree of β-cell regeneration demonstrated through an increase in the number of islets and percentage of the insulin secreting β-cells (75%) in the pancreas of diabetic rats (p < 0.05). Further the C. grandis extract produced a significant increase in mean profile diameter in small (118%), average (10%), and large (13%) islets as compared with diabetic control rats respectively. However, statistically significant increase in the islet profile diameter was shown only in average (2%) and large (5%) islets in the G. arborea extract treated rats and large islets (5%) in S. pinnata extract treated diabetic rats (p < 0.05). The β-cell regeneration potency was in the decreasing order of C. grandis (0.75 g/kg), G. arborea (1.00 g/kg) and S. pinnata (1.00 g/kg) in alloxan induced diabetic rats. The three plant extracts may be useful as natural agents of triggering the β-cell regeneration in the management of type 1 diabetes mellitus.

Keywords: alloxan-induced diabetic rats, β-cell regeneration, histopathology, immunohistochemistry

Procedia PDF Downloads 211
3809 Somatic Embryogenesis of Lachenalia viridiflora, a Critically Endangered Ornamental Geophyte with High Floricultural Potential

Authors: Vijay Kumar, Mack Moyo, Johannes Van Staden

Abstract:

Lachenalia viridiflora is a critically endangered bulbous plant with high potential on the international floriculture market. In the present study, an efficient protocol for in vitro plantlet regeneration through somatic embryogenesis was developed. Embryogenic callus was established on Murashige and Skoog (MS) basal medium supplemented with various concentrations and combinations of picloram and thidiazuron (TDZ). A high number of SEs (28.5 ± 1.49) with at different developmental stages of somatic embryos (SEs: globular embryos, torpedo and cotyledon embryo with bipolar characteristics) was obtained on Murashige and Skoog (MS) (Murashige and Skoog 1962) medium with 2.5 μM picloram, and 1.0 μM TDZ. Histological and scanning electron microscopic (SEM) analysis confirmed the presence of somatic embryos. Mature somatic embryos germinated and developed into plantlets after 6 weeks on half/full strength MS medium. High plant regeneration frequency (91.11 %) was achieved on full-strength MS medium supplemented with 5 μM phloroglucinol (PG). Well-developed healthy plantlets were successfully acclimatized in the greenhouse with a survival rate of 80%. The result of this study is beneficial in the mass propagation of high-quality Lachenalia viridiflora clonal plants for the commercial horticultural market and also provides a platform for future genetic transformation studies on the plant.

Keywords: horticultural plant, Lachenalia viridiflora, phloroglucinol, somatic embryogenesis, thidiazuron

Procedia PDF Downloads 590
3808 Multiple Shoot Induction and Plant Regeneration of Kepuh (Sterculia foetida L.) Tissue Culture

Authors: Titin Handayani, Endang Yuniastuti

Abstract:

Kepuh (Sterculia foetida L.) is a potential plant contain mainly oil seeds that can be used as a source of alternative bioenergy and medicine. The main problem of kepuh cultivation is the limited supply of seed plants. Seeds development were very easy, but to produce fruit have to wait for approximately 5 years. The objective of this research was to obtain kepuh plants through direct in vitro regeneration. Hypocotyls and shoot tips explants were excised from sterile germinated seedlings and placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of plant growth regulators. The results showed that shoots induction from the apical and axillary buds on MS medium + 1.5 and 2 mg/L BAP and 0.5 and 1 mg/L IAA was growth very slowly. Increasing of BAP concentrations was increased shoot formation. The first subcultures were increased the rate of shoots growth on MS medium supplemented with 2 mg/L BAP and 0.5 mg/L IAA. The second of shoots subculture on MS medium + 1.5 to 2 mg/L BAP + 0.5 mg/L IAA was increased the number of shoots up to 4.8 in average. The best medium of shoots elongation were MS + 1 mgL-1 kinetin + 5 mg/L GA3. The highest percentage of roots (65%) occurred on MS medium with 5 mg/L IBA which average number of roots was 3.1. High percentages of survival and plants of normal appearance were obtained after five weeks of acclimatization.

Keywords: Kepuh, Sterculia foetida L, shoot multiplication, rooting, acclimatization, bioenergy, medicine

Procedia PDF Downloads 254
3807 Integrated Management System of Plant Genetic Resources: Collection, Conservation, Regeneration and Characterization of Cucurbitaceae and Solanaceae of DOA Genebank, Thailand

Authors: Kunyaporn Pipithsangchan, Alongkorn Korntong, Assanee Songserm, Phatchara Piriyavinit, Saowanee Dechakampoo

Abstract:

The Kingdom of Thailand is one of the South East Asian countries. From its area of 514,000 square kilometers (51 million ha), at least 18,000 plant species (8% of the world total) have been estimated to be found in the country. As a result, the conservation of plant genetic diversity, particularly food crops, is becoming important and is an assurance for the national food security. Department of Agriculture Genebank or DOA Genebank, Thailand is responsible for the conservation of plant germplasm by participating and accomplishing several collaborative projects both at national and international levels. Integrated Management System of Plant Genetic Resources or IMPGR is one of the most outstandingly successful cooperation. It is a multilateral project under the Asian Food and Agriculture Cooperation Initiative (AFACI) supported by the Rural Development Administration (RDA) of South Korea. The member countries under the project consist of 11 nations namely Bangladesh, Cambodia, Indonesia, Laos PDR, Mongolia, Nepal, Philippines, Sri Lanka, Thailand, Vietnam and South Korea. The project enabled the members to jointly address the global issues in plant genetic resource (PGR) conservation and strengthen their network in this aspect. The 1st phase of IMPGR project, entitled 'Collection, Conservation, Regeneration and Characterization of Cucurbitaceae and Solanaceae 2012-2014', comprises three main objectives that are: 1) To improve management in storage facilities, collection, and regeneration, 2) To improve linkage between Genebank and material sources (for regeneration), and 3) To improve linkage between Genebank and other field crop or/and horticultural research centers. The project was done for three years from 2012 to 2014. The activities of the project can be described as following details: In the 1st year, there were 9 target provinces for completing plant genetic resource survey and collection. 108 accessions of PGR were collected. In the 2nd year, PGR were continuously surveyed and collected from 9 provinces. The total number of collection was 140 accessions. In addition, the process of regeneration of 237 accessions collected from 1st and 2nd year was started at several sites namely Biotechnology Research and Development Office, Sukothai Horticultural Research Center, Tak Research, and Development Center and Nakhon Ratchasima Research and Development Center. In the 3rd year, besides survey and collection of 115 accessions from 9 target provinces, PGR characterization and evaluation were done for 206 accessions. Moreover, safety duplication of 253 PGR at the World Seed Vault, RDA, was also done according to Standard Agreement on Germplasm Safety Duplication between Department of Agriculture, Ministry of Agriculture and Cooperatives, the Kingdom of Thailand and the National Agrobiodiversity Center, Rural Development Administration of the Republic of Korea. The success of the 1st phase project led to the second phase which entitled 'Collection and Characterization for Effective Conservation of Local Capsicum spp., Solanum spp. and Lycopersicon spp. in Thailand 2015-2017'.

Keywords: characterization, conservation, DOA genebank, plant genetic resources

Procedia PDF Downloads 146
3806 Cultural Event and Urban Regeneration: Lessons from Liverpool as the 2008 European Capital of Culture

Authors: Yi-De Liu

Abstract:

For many European cities, a key motivation in developing event strategies is to use event as a catalyst for urban regeneration. One type of event that is particularly used as a means of urban development is the European Capital of Culture (ECOC) initiative. Based on a case study of the 2008 ECOC Liverpool, this paper aims at conceptualising the significance of major event for a city’s economic, cultural and social regenerations. In terms of economic regeneration, the role of the ECOC is central in creating Liverpool’s visitor economy and reshaping city image. Liverpool planned different themes for eight consecutive years as a way to ensure economic sustainability. As far as cultural regeneration is concerned, the ECOC contributed to the cultural regeneration of Liverpool by stimulating cultural participation and interest from the demand side, as well as improving cultural provision and collaboration within the cultural sector from the supply side. So as to social regeneration, Liverpool treated access development as a policy guideline and considered the ECOC as an opportunity to enhance the sense of place. The most significant lesson learned from Liverpool is its long-term planning and efforts made to integrate the ECOC into the overall urban development strategy. As a result, a more balanced and long-term effect on urban regeneration could be achieved.

Keywords: cultural event, urban regeneration, european capital of culture, Liverpool

Procedia PDF Downloads 234
3805 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 350
3804 Recent Advances of Isolated Microspore Culture Response in Durum Wheat

Authors: Zelikha Labbani

Abstract:

Many biotechnology methods have been used in plant breeding programs. The in vitro isolated microspore culture is the one of these methods. For durum wheat, the use of this technology has been limited for a long time due to the low number of embryos produced and also most regeneration plants are albina. The objective of this paper is to show that using isolated microspores culture on durum wheat is possible due to the development of the new methods using the new pretreatment of the microspores before their isolation and cultivation.

Keywords: isolated microspore culture, pretreatments, in vitro embryogenesis, plant breeding program

Procedia PDF Downloads 497
3803 A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.

Authors: Gayatri Nahak, Satyajit Kanungo, Rajani Kanta Sahu

Abstract:

Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes.

Keywords: Holarrhena antidysenterica, in vitro, in vivo, antioxidant activity

Procedia PDF Downloads 472
3802 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 125
3801 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant

Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman

Abstract:

Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.

Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita

Procedia PDF Downloads 86
3800 The Study on the Platform Strategy of Taipei City Urban Regeneration Station

Authors: Chao Jen-Chih, Kuo-Wei Hsu

Abstract:

Many venues and spaces in cities gradually become old and decayed as time goes by and develops. Urban regeneration is the critical strategy to promote local development, but the method of spatial reconstruction which is emphasized in the issue of urban regeneration is questioned for bringing cultural, social and economic impacts on old city areas. The idea of “Urban Regeneration Station (URS)” is proposed for Taipei City Government to introduce the entry and disturbance of communities and related groups with the concept of creative city. This study explored how an URS promotes local development again through the strength of communities and the energy of local residence community, and it established the Platform Strategy for URS. The research results are as follows: URS through the promotion of government agencies, experts, scholars and the third sector, to the selection of different types of units stationed in business, through exhibitions, seminars, and other activities to explore local development issues, vetting each stationed execution efficiency units, and different units stationed by URS establish URS overall network platform strategy.

Keywords: urban regeneration, platform strategy, creative city, Taipei city

Procedia PDF Downloads 427
3799 Study on Conservation and Regeneration of the Industrial Buildings

Authors: Rungpansa Noichan, Bart Julian Dewancker

Abstract:

The conservation and regeneration of historical industrial building is one of the most important issues to be solved in today’s urban development in the world. There are growing numbers of industrial building in which promoting heritage conservation maybe a helpful tool for a sustainable city in social, urban restructuring, environmental and economic component. This paper identifies the key attributes of conservation and regeneration industrial building from the literature, were discussed by reviewing its development at home and abroad. The authors have investigated 93 industrial buildings, which were used as industrial building before and reused into buildings with another function afterward. The data to be discussed below were mainly collected from various publications but also from available internet sources. This study focuses on green transformation, historical culture heritage, transformation techniques, and urban regeneration based on the empirical researches on the historical industrial building and site. Moreover, we focus on social, urban environment and sustainable development. The implications of the study provide suggestions for future improvements in the conservation and regeneration of historical industrial building, and inspire new ways of use, so the building becomes flexible and can consequently be adaptable to changes in order to survive time. Therefore, the building does not take into account only its future impact in the environment and society. Instead, it focuses on its entire life cycle.

Keywords: industrial building, heritage conservation, green transformation, regeneration, sustainable development

Procedia PDF Downloads 336
3798 Role of Tyrosine-Phosphorylated STAT3 in Liver Regeneration: Survival, DNA Synthesis, Inflammatory Reaction and Liver Mass Recovery

Authors: JiYoung Park, SueGoo Rhee, HyunAe Woo

Abstract:

In liver regeneration, quiescent hepatocytes need to be primed to fully respond to growth factors such as hepatocyte growth factor. To understand the priming process, it is necessary to analyze patterns of gene expression that occur during liver regeneration after partial hepatectomy (PHx). Recently, tyrosine phosphorylation of signal transducer and activator of transcription 3 (pYSTAT3) has been shown to play an important role in initiating liver regeneration. In order to evaluate the role of pYSTAT3 on liver regeneration after PHx, we used an intrabody which can selectively inhibit pYSTAT3. In our previous studies, an intrabody had been shown that it bound specifically to the pYSTAT3. Adenovirus-mediated expression of the intrabody in HepG2 cells, as well as mouse liver, blocked both accumulation of pYSTAT3 in the nucleus and downstream target of pYSTAT3. In this study, PHx was performed on intrabody-expressing mice and the expression levels of liver regeneration-related genes were analyzed. We also measured liver/body weight ratios and the related cellular signaling pathways were analyzed. Acute phase response genes were reduced in an intrabody-expressing mice during liver regeneration than in control virus-injected mice. However, the time course of liver mass restoration in intrabody-expressing mice was similar to that observed in control virus-injected mice. We also observed that the expression levels of anti-apoptotic genes, such as Bcl2 and Bcl-xL were decreased in intrabody-expressing mice whereas the expression of cell cycle-related genes such as cyclin D1, and c-myc was increased. Liver regeneration after PHx was partially impaired by the selective inhibition of pYSTAT3 with a phosphorylation site-specific intrabody and these results indicated that pYSTAT3 might have limited role in liver mass recovery.

Keywords: STAT3, pYSTAT3, liver regeneration, intrabody

Procedia PDF Downloads 279