Search results for: voting techniques
440 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity
Authors: Yuri Laevsky, Tatyana Nosova
Abstract:
The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation
Procedia PDF Downloads 299439 Screening Tools and Its Accuracy for Common Soccer Injuries: A Systematic Review
Authors: R. Christopher, C. Brandt, N. Damons
Abstract:
Background: The sequence of prevention model states that by constant assessment of injury, injury mechanisms and risk factors are identified, highlighting that collecting and recording of data is a core approach for preventing injuries. Several screening tools are available for use in the clinical setting. These screening techniques only recently received research attention, hence there is a dearth of inconsistent and controversial data regarding their applicability, validity, and reliability. Several systematic reviews related to common soccer injuries have been conducted; however, none of them addressed the screening tools for common soccer injuries. Objectives: The purpose of this study was to conduct a review of screening tools and their accuracy for common injuries in soccer. Methods: A systematic scoping review was performed based on the Joanna Briggs Institute procedure for conducting systematic reviews. Databases such as SPORT Discus, Cinahl, Medline, Science Direct, PubMed, and grey literature were used to access suitable studies. Some of the key search terms included: injury screening, screening, screening tool accuracy, injury prevalence, injury prediction, accuracy, validity, specificity, reliability, sensitivity. All types of English studies dating back to the year 2000 were included. Two blind independent reviewers selected and appraised articles on a 9-point scale for inclusion as well as for the risk of bias with the ACROBAT-NRSI tool. Data were extracted and summarized in tables. Plot data analysis was done, and sensitivity and specificity were analyzed with their respective 95% confidence intervals. I² statistic was used to determine the proportion of variation across studies. Results: The initial search yielded 95 studies, of which 21 were duplicates, and 54 excluded. A total of 10 observational studies were included for the analysis: 3 studies were analysed quantitatively while the remaining 7 were analysed qualitatively. Seven studies were graded low and three studies high risk of bias. Only high methodological studies (score > 9) were included for analysis. The pooled studies investigated tools such as the Functional Movement Screening (FMS™), the Landing Error Scoring System (LESS), the Tuck Jump Assessment, the Soccer Injury Movement Screening (SIMS), and the conventional hamstrings to quadriceps ratio. The accuracy of screening tools was of high reliability, sensitivity and specificity (calculated as ICC 0.68, 95% CI: 52-0.84; and 0.64, 95% CI: 0.61-0.66 respectively; I² = 13.2%, P=0.316). Conclusion: Based on the pooled results from the included studies, the FMS™ has a good inter-rater and intra-rater reliability. FMS™ is a screening tool capable of screening for common soccer injuries, and individual FMS™ scores are a better determinant of performance in comparison with the overall FMS™ score. Although meta-analysis could not be done for all the included screening tools, qualitative analysis also indicated good sensitivity and specificity of the individual tools. Higher levels of evidence are, however, needed for implication in evidence-based practice.Keywords: accuracy, screening tools, sensitivity, soccer injuries, specificity
Procedia PDF Downloads 178438 Enhancing Emotional Regulation in Autistic Students with Intellectual Disabilities through Visual Dialogue: An Action Research Study
Authors: Tahmina Huq
Abstract:
This paper presents the findings of an action research study that aimed to investigate the efficacy of a visual dialogue strategy in assisting autistic students with intellectual disabilities in managing their immediate emotions and improving their academic achievements. The research sought to explore the effectiveness of teaching self-regulation techniques as an alternative to traditional approaches involving segregation. The study identified visual dialogue as a valuable tool for promoting self-regulation in this specific student population. Action research was chosen as the methodology due to its suitability for immediate implementation of the findings in the classroom. Autistic students with intellectual disabilities often face challenges in controlling their emotions, which can disrupt their learning and academic progress. Conventional methods of intervention, such as isolation and psychologist-assisted approaches, may result in missed classes and hindered academic development. This study introduces the utilization of visual dialogue between students and teachers as an effective self-regulation strategy, addressing the limitations of traditional approaches. Action research was employed as the methodology for this study, allowing for the direct application of the findings in the classroom. The study observed two 15-year-old autistic students with intellectual disabilities who exhibited difficulties in emotional regulation and displayed aggressive behaviors. The research question focused on the effectiveness of visual dialogue in managing the emotions of these students and its impact on their learning outcomes. Data collection methods included personal observations, log sheets, personal reflections, and visual documentation. The study revealed that the implementation of visual dialogue as a self-regulation strategy enabled the students to regulate their emotions within a short timeframe (10 to 30 minutes). Through visual dialogue, they were able to express their feelings and needs in socially appropriate ways. This finding underscores the significance of visual dialogue as a tool for promoting emotional regulation and facilitating active participation in classroom activities. As a result, the students' learning outcomes and social interactions were positively impacted. The findings of this study hold significant implications for educators working with autistic students with intellectual disabilities. The use of visual dialogue as a self-regulation strategy can enhance emotional regulation skills and improve overall academic progress. The action research approach outlined in this paper provides practical guidance for educators in effectively implementing self-regulation strategies within classroom settings. In conclusion, the study demonstrates that visual dialogue is an effective strategy for enhancing emotional regulation in autistic students with intellectual disabilities. By employing visual communication, students can successfully regulate their emotions and actively engage in classroom activities, leading to improved learning outcomes and social interactions. This paper underscores the importance of implementing self-regulation strategies in educational settings to cater to the unique needs of autistic students.Keywords: action research, self-regulation, autism, visual communication
Procedia PDF Downloads 62437 Analyzing the Effects of Bio-fibers on the Stiffness and Strength of Adhesively Bonded Thermoplastic Bio-fiber Reinforced Composites by a Mixed Experimental-Numerical Approach
Authors: Sofie Verstraete, Stijn Debruyne, Frederik Desplentere
Abstract:
Considering environmental issues, the interest to apply sustainable materials in industry increases. Specifically for composites, there is an emerging need for suitable materials and bonding techniques. As an alternative to traditional composites, short bio-fiber (cellulose-based flax) reinforced Polylactic Acid (PLA) is gaining popularity. However, these thermoplastic based composites show issues in adhesive bonding. This research focusses on analyzing the effects of the fibers near the bonding interphase. The research applies injection molded plate structures. A first important parameter concerns the fiber volume fraction, which directly affects adhesion characteristics of the surface. This parameter is varied between 0 (pure PLA) and 30%. Next to fiber volume fraction, the orientation of fibers near the bonding surface governs the adhesion characteristics of the injection molded parts. This parameter is not directly controlled in this work, but its effects are analyzed. Surface roughness also greatly determines surface wettability, thus adhesion. Therefore, this research work considers three different roughness conditions. Different mechanical treatments yield values up to 0.5 mm. In this preliminary research, only one adhesive type is considered. This is a two-part epoxy which is cured at 23 °C for 48 hours. In order to assure a dedicated parametric study, simple and reproduceable adhesive bonds are manufactured. Both single lap (substrate width 25 mm, thickness 3 mm, overlap length 10 mm) and double lap tests are considered since these are well documented and quite straightforward to conduct. These tests are conducted for the different substrate and surface conditions. Dog bone tensile testing is applied to retrieve the stiffness and strength characteristics of the substrates (with different fiber volume fractions). Numerical modelling (non-linear FEA) relates the effects of the considered parameters on the stiffness and strength of the different joints, obtained through the abovementioned tests. Ongoing work deals with developing dedicated numerical models, incorporating the different considered adhesion parameters. Although this work is the start of an extensive research project on the bonding characteristics of thermoplastic bio-fiber reinforced composites, some interesting results are already prominent. Firstly, a clear correlation between the surface roughness and the wettability of the substrates is observed. Given the adhesive type (and viscosity), it is noticed that an increase in surface energy is proportional to the surface roughness, to some extent. This becomes more pronounced when fiber volume fraction increases. Secondly, ultimate bond strength (single lap) also increases with increasing fiber volume fraction. On a macroscopic level, this confirms the positive effect of fibers near the adhesive bond line.Keywords: adhesive bonding, bio-fiber reinforced composite, flax fibers, lap joint
Procedia PDF Downloads 127436 Stochastic Approach for Technical-Economic Viability Analysis of Electricity Generation Projects with Natural Gas Pressure Reduction Turbines
Authors: Roberto M. G. Velásquez, Jonas R. Gazoli, Nelson Ponce Jr, Valério L. Borges, Alessandro Sete, Fernanda M. C. Tomé, Julian D. Hunt, Heitor C. Lira, Cristiano L. de Souza, Fabio T. Bindemann, Wilmar Wounnsoscky
Abstract:
Nowadays, society is working toward reducing energy losses and greenhouse gas emissions, as well as seeking clean energy sources, as a result of the constant increase in energy demand and emissions. Energy loss occurs in the gas pressure reduction stations at the delivery points in natural gas distribution systems (city gates). Installing pressure reduction turbines (PRT) parallel to the static reduction valves at the city gates enhances the energy efficiency of the system by recovering the enthalpy of the pressurized natural gas, obtaining in the pressure-lowering process shaft work and generating electrical power. Currently, the Brazilian natural gas transportation network has 9,409 km in extension, while the system has 16 national and 3 international natural gas processing plants, including more than 143 delivery points to final consumers. Thus, the potential of installing PRT in Brazil is 66 MW of power, which could yearly avoid the emission of 235,800 tons of CO2 and generate 333 GWh/year of electricity. On the other hand, an economic viability analysis of these energy efficiency projects is commonly carried out based on estimates of the project's cash flow obtained from several variables forecast. Usually, the cash flow analysis is performed using representative values of these variables, obtaining a deterministic set of financial indicators associated with the project. However, in most cases, these variables cannot be predicted with sufficient accuracy, resulting in the need to consider, to a greater or lesser degree, the risk associated with the calculated financial return. This paper presents an approach applied to the technical-economic viability analysis of PRTs projects that explicitly considers the uncertainties associated with the input parameters for the financial model, such as gas pressure at the delivery point, amount of energy generated by TRP, the future price of energy, among others, using sensitivity analysis techniques, scenario analysis, and Monte Carlo methods. In the latter case, estimates of several financial risk indicators, as well as their empirical probability distributions, can be obtained. This is a methodology for the financial risk analysis of PRT projects. The results of this paper allow a more accurate assessment of the potential PRT project's financial feasibility in Brazil. This methodology will be tested at the Cuiabá thermoelectric plant, located in the state of Mato Grosso, Brazil, and can be applied to study the potential in other countries.Keywords: pressure reduction turbine, natural gas pressure drop station, energy efficiency, electricity generation, monte carlo methods
Procedia PDF Downloads 113435 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements
Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang
Abstract:
Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure
Procedia PDF Downloads 112434 Monitoring of Indoor Air Quality in Museums
Authors: Olympia Nisiforou
Abstract:
The cultural heritage of each country represents a unique and irreplaceable witness of the past. Nevertheless, on many occasions, such heritage is extremely vulnerable to natural disasters and reckless behaviors. Even if such exhibits are now located in Museums, they still receive insufficient protection due to improper environmental conditions. These external changes can negatively affect the conditions of the exhibits and contribute to inefficient maintenance in time. Hence, it is imperative to develop an innovative, low-cost system, to monitor indoor air quality systematically, since conventional methods are quite expensive and time-consuming. The present study gives an insight into the indoor air quality of the National Byzantine Museum of Cyprus. In particular, systematic measurements of particulate matter, bio-aerosols, the concentration of targeted chemical pollutants (including Volatile organic compounds (VOCs), temperature, relative humidity, and lighting conditions as well as microbial counts have been performed using conventional techniques. Measurements showed that most of the monitored physiochemical parameters did not vary significantly within the various sampling locations. Seasonal fluctuations of ammonia were observed, showing higher concentrations in the summer and lower in winter. It was found that the outdoor environment does not significantly affect indoor air quality in terms of VOC and Nitrogen oxides (NOX). A cutting-edge portable Gas Chromatography-Mass Spectrometry (GC-MS) system (TORION T-9) was used to identify and measure the concentrations of specific Volatile and Semi-volatile Organic Compounds. A large number of different VOCs and SVOCs found such as Benzene, Toluene, Xylene, Ethanol, Hexadecane, and Acetic acid, as well as some more complex compounds such as 3-ethyl-2,4-dimethyl-Isopropyl alcohol, 4,4'-biphenylene-bis-(3-aminobenzoate) and trifluoro-2,2-dimethylpropyl ester. Apart from the permanent indoor/outdoor sources (i.e., wooden frames, painted exhibits, carpets, ventilation system and outdoor air) of the above organic compounds, the concentration of some of them within the areas of the museum were found to increase when large groups of visitors were simultaneously present at a specific place within the museum. The high presence of Particulate Matter (PM), fungi and bacteria were found in the museum’s areas where carpets were present but low colonial counts were found in rooms where artworks are exhibited. Measurements mentioned above were used to validate an innovative low-cost air-quality monitoring system that has been developed within the present work. The developed system is able to monitor the average concentrations (on a bidaily basis) of several pollutants and presents several innovative features, including the prompt alerting in case of increased average concentrations of monitored pollutants, i.e., exceeding the limit values defined by the user.Keywords: exibitions, indoor air quality , VOCs, pollution
Procedia PDF Downloads 123433 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy
Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny
Abstract:
Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy
Procedia PDF Downloads 87432 Sentiment Analysis on University Students’ Evaluation of Teaching and Their Emotional Engagement
Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís
Abstract:
Teaching practices have been widely studied in relation to students' outcomes, positioning themselves as one of their strongest catalysts and influencing students' emotional experiences. In the higher education context, teachers become even more crucial as many students ground their decisions on which courses to enroll in based on opinions and ratings of teachers from other students. Unfortunately, sometimes universities do not provide the personal, social, and academic stimulation students demand to be actively engaged. To evaluate their teachers, universities often rely on students' evaluations of teaching (SET) collected via Likert scale surveys. Despite its usefulness, such a method has been questioned in terms of validity and reliability. Alternatively, researchers can rely on qualitative answers to open-ended questions. However, the unstructured nature of the answers and a large amount of information obtained requires an overwhelming amount of work. The present work presents an alternative approach to analyse such data: sentiment analysis. To the best of our knowledge, no research before has included results from SA into an explanatory model to test how students' sentiments affect their emotional engagement in class. The sample of the present study included a total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) from the Educational Sciences faculty of a public university in Spain. Data collection took place during the academic year 2021-2022. Students accessed an online questionnaire using a QR code. They were asked to answer the following open-ended question: "If you had to explain to a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?". Sentiment analysis was performed using Microsoft's pre-trained model. The reliability of the measure was estimated between the tool and one of the researchers who coded all answers independently. The Cohen's kappa and the average pairwise percent agreement were estimated with ReCal2. Cohen's kappa was .68, and the agreement reached was 90.8%, both considered satisfactory. To test the hypothesis relations among SA and students' emotional engagement, a structural equation model (SEM) was estimated. Results demonstrated a good fit of the data: RMSEA = .04, SRMR = .03, TLI = .99, CFI = .99. Specifically, the results showed that student’s sentiment regarding their teachers’ teaching positively predicted their emotional engagement (β == .16 [.02, -.30]). In other words, when students' opinion toward their instructors' teaching practices is positive, it is more likely for students to engage emotionally in the subject. Altogether, the results show a promising future for sentiment analysis techniques in the field of education. They suggest the usefulness of this tool when evaluating relations among teaching practices and student outcomes.Keywords: sentiment analysis, students' evaluation of teaching, structural-equation modelling, emotional engagement
Procedia PDF Downloads 83431 Improving Working Memory in School Children through Chess Training
Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy
Abstract:
Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.Keywords: chess training, cognitive development, executive functions, school children, working memory
Procedia PDF Downloads 263430 Regularizing Software for Aerosol Particles
Authors: Christine Böckmann, Julia Rosemann
Abstract:
We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization
Procedia PDF Downloads 343429 Recycling the Lanthanides from Permanent Magnets by Electrochemistry in Ionic Liquid
Authors: Celine Bonnaud, Isabelle Billard, Nicolas Papaiconomou, Eric Chainet
Abstract:
Thanks to their high magnetization and low mass, permanent magnets (NdFeB and SmCo) have quickly became essential for new energies (wind turbines, electrical vehicles…). They contain large quantities of neodymium, samarium and dysprosium, that have been recently classified as critical elements and that therefore need to be recycled. Electrochemical processes including electrodissolution followed by electrodeposition are an elegant and environmentally friendly solution for the recycling of such lanthanides contained in permanent magnets. However, electrochemistry of the lanthanides is a real challenge as their standard potentials are highly negative (around -2.5V vs ENH). Consequently, non-aqueous solvents are required. Ionic liquids (IL) are novel electrolytes exhibiting physico-chemical properties that fulfill many requirements of the sustainable chemistry principles, such as extremely low volatility and non-flammability. Furthermore, their chemical and electrochemical properties (solvation of metallic ions, large electrochemical windows, etc.) render them very attractive media to implement alternative and sustainable processes in view of integrated processes. All experiments that will be presented were carried out using butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Linear sweep, cyclic voltammetry and potentiostatic electrochemical techniques were used. The reliability of electrochemical experiments, performed without glove box, for the classic three electrodes cell used in this study has been assessed. Deposits were obtained by chronoamperometry and were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The IL cathodic behavior under different constraints (argon, nitrogen, oxygen atmosphere or water content) and using several electrode materials (Pt, Au, GC) shows that with argon gas flow and gold as a working electrode, the cathodic potential can reach the maximum value of -3V vs Fc+/Fc; thus allowing a possible reduction of lanthanides. On a gold working electrode, the reduction potential of samarium and neodymium was found to be -1.8V vs Fc+/Fc while that of dysprosium was -2.1V vs Fc+/Fc. The individual deposits obtained were found to be porous and presented some significant amounts of C, N, F, S and O atoms. Selective deposition of neodymium in presence of dysprosium was also studied and will be discussed. Next, metallic Sm, Nd and Dy electrodes were used in replacement of Au, which induced changes in the reduction potential values and the deposit structures of lanthanides. The individual corrosion potentials were also measured in order to determine the parameters influencing the electrodissolution of these metals. Finally, a full recycling process was investigated. Electrodissolution of a real permanent magnet sample was monitored kinetically. Then, the sequential electrodeposition of all lanthanides contained in the IL was investigated. Yields, quality of the deposits and consumption of chemicals will be discussed in depth, in view of the industrial feasibility of this process for real permanent magnets recycling.Keywords: electrodeposition, electrodissolution, ionic liquids, lanthanides, rcycling
Procedia PDF Downloads 274428 Sexual and Reproductive Rights After the Signing of the Peace Process: A Territorial Commitment
Authors: Rocio Murad, Juan Carlos Rivillas, Nury Alejandra Rodriguez, Daniela Roldán
Abstract:
In Colombia, around 5 million women have suffered forced displacement and all forms of gender-based violence, mostly adolescents and young women, single mothers, or widows with children affected by the war. After the signing of the peace agreements, the department of Antioquia has been one of the most affected by the armed conflict, from a territorial and gender perspective in the period. The objective of the research was to analyze the situation of sexual and reproductive rights in the department of Antioquia from a territorial and gender perspective in the period after the signing of the Peace Agreement. A mixed methodology was developed. The quantitative component conducted a cross-sectional descriptive study of barriers to access to contraceptive methods, safe abortion and gender-based violence based on microdata from the 2015 National Demographic and Health Survey. In the qualitative component, a case study was developed in Dabeiba, a municipality of Antioquia prioritized in order to deepen the experiences before, during and after the armed conflict in sexual and reproductive rights; using three research techniques: Focused observation, Semi-structured interviews, and Documentary review. The results showed that there is a gradient of greater vulnerability to greater effects of the conflict and that the subregion of Urabá Antioqueño, to which Dabeiba belongs, has the highest levels of vulnerability in relation to departmental data. In this subregion, the percentage of women with an unmet need for contraceptive methods (9%), women with unintended pregnancies (31%), of women between 15 and 19 years of age who are already mothers or are pregnant with their first child (32%) and the percentage of women victims of physical violence (42%) and sexual violence (13%) by their partners are significantly higher. Women, particularly rural and indigenous women, were doubly affected due to the existence of violence that is specifically directed at them or that has a greater impact on their life projects. There was evidence of insufficient, fragmented and disjointed social and institutional action in relation to women's rights and the existence of androcentric and patriarchal social imaginaries through which women and the feminine are undervalued. These results provide evidence of violations of sexual and reproductive rights in contexts of armed conflict and make it possible to identify mechanisms to guarantee the re-establishment of the rights of the victims, particularly women and girls. Among the mechanisms evidenced are: working for the elimination of gender stereotypes; supporting the formation and strengthening of women's social organizations; working for the concerted definition and articulated implementation of actions necessary to respond to sexual and reproductive health needs; and working for the recognition of reproductive violence as specific and different from sexual violence in the context of armed conflict. Also, it was evidenced that it is necessary to implement prevention, attention and reparation actions.Keywords: sexual and reproductive rights, Colombia, armed conflict, violence against women
Procedia PDF Downloads 91427 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety
Authors: Neeti Nayak, Khalid Duri
Abstract:
Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design
Procedia PDF Downloads 109426 The History and Pattern of Migration from Punjab to West: Colonial to Global Punjab
Authors: Malkit Singh
Abstract:
This paper presents an in-depth analysis of the problem of migration from Punjab to the West while analyzing the history and patterns of generations of migration of Punjabis to the West. A special emphasis is given to link the present socio-economic and political crisis with the historical pattern of Punjabis’ migration to the West from colonial India to Independent Bharat, along with the stories of the success and failures of Western aspirants’ youth from Punjab. The roots of the migration from Punjab to the West have been traced from the invasion of the British in Punjab, resulting in the socio-economic and political dismantling of the Punjabi society, which resulted in the migration of the Punjabis to the other colonies of the British Empire. The grim position at home despite of all the efforts and hard work by the majority of the Punjabis, particularly from the farmer community and the shining lifestyle of some families of the village or vicinity who have some relatives in the West have encouraged the large number of Punjabis to change their fortune by working in West. However, the Visa and Work Permit regime has closed the doors of the West for those who are unskilled, semi-skilled and not qualified for the visa and work permit norms, but their inspiration to change their fortune by working abroad at any cost has resulted into the development of big business fraud of immigration agent and firms in Punjab that resulted into the loss of the thousands lives, imprisonment in the foreign and selling of the properties of the Punjabis. The greed for the greener pastures in the West and, the plight of the deserted wives of NRIs and the illegal routes adopted by the Punjabi youth due to the non-availability of visas and work permits are dealt in a comprehensive method. The rise and fall of Punjab as a land of the breadbasket of Bharat and the marginalization of the farmers with middle and small holdings due to the capital-intensive techniques are linked with the forced migration of the Punjabis. The failure of the government to address and respond to the rampant corruption, agriculture failure and the resulting problems of law and order before and after the troubled period of militancy in Punjab and the resulting migration to the West are comprehensively covered. The new trend of the Student Visa and Study abroad, particularly in Canada, Australia, and New Zealand, despite of the availability of quality education at very low cost in India. The early success of some students in getting study visas from Australia, Canada, New Zealand etc. and getting permanent immigration to these countries have encouraged the majority of Punjabi youth to leave their motherland for better opportunities in the prosperous lands, that is, again, failed as these countries are flooded with the Punjabi students. Moreover, the total failure of the political leadership of Punjab to address the basic needs of society, like law and order and stop the drug menace issues in the post-militancy Punjab is also done to understand the problem.Keywords: Punjab, migration, West, agriculture
Procedia PDF Downloads 64425 Altmetrics of South African Journals: Implications for Scholarly Impact of South African Research on Social Media
Authors: Omwoyo Bosire Onyancha
Abstract:
The Journal Citation Reports (JCR) of the Thomson Reuters has, for decades, provided the data for bibliometrically assessing the impact of journals. In their criticism of the journal impact factor (JIF), a number of scholars such as Priem, Taraborelli, Groth and Neylon (2010) observe that the “JIF is often incorrectly used to assess the impact of individual articles. It is troubling that the exact details of the JIF are a trade secret, and that significant gaming is relatively easy”. The emergence of alternative metrics (Altmetrics) has introduced another dimension of re-assessing how the impact of journals (and other units such as articles and even individual researchers) can be measured. Altmetrics is premised upon the fact that research is increasingly being disseminated through social network sites such as ResearchGate, Mendeley, Twitter, Facebook, LinkedIn, and ImpactStory, among others. This paper adopts informetrics (including altmetrics) techniques to report on the findings of a study conducted to investigate and compare the social media impact of 274 South Africa Post Secondary Education (SAPSE)-accredited journals, which are recognized and accredited by the Department of Higher Education and Training (DHET) of South Africa (SA). We used multiple sources to extract data for the study, namely Altmetric.com and the Thomson Reuters’ Journal Citation Reports. Data was analyzed in order to determine South African journals’ presence and impact on social media as well as contrast the social media impact with Thomson Reuters’ citation impact. The Spearman correlation test was performed to compare the journals’ social media impact and JCR citation impact. Preliminary findings reveal that a total of 6360 articles published in 96 South African journals have received some attention in social media; the most commonly used social media platform was Twitter, followed by Mendeley, Facebook, News outlets, and CiteULike; there were 29 SA journals covered in the JCR in 2008 and this number has grown to 53 journals in 2014; the journals indexed in the Thomson Reuters performed much better, in terms of their altmetrics, than those journals that are not indexed in Thomson Reuters databases; nevertheless, there was high correlation among journals that featured in both datasets; the journals with the highest scores in Altmetric.com included the South African Medical Journal, African Journal of Marine Science, and Transactions of the Royal Society of South Africa while the journals with high impact factors in JCR were South African Medical Journal, Onderstepoort: Journal of Veterinary Research, and Sahara: Journal of Social Aspects of HIV-AIDS; and that Twitter has emerged as a strong avenue of sharing and communicating research published in the South African journals. Implications of the results of the study for the dissemination of research conducted in South Africa are offered. Discussions based on the research findings as well as conclusions and recommendations are offered in the full text paper.Keywords: altmetrics, citation impact, journal citation reports, journal impact factor, journals, research, scholarly publishing, social media impact, South Africa
Procedia PDF Downloads 204424 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes
Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís
Abstract:
Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.Keywords: sentiment analysis, boredom, motivation, agentic engagement
Procedia PDF Downloads 97423 Liquid Illumination: Fabricating Images of Fashion and Architecture
Authors: Sue Hershberger Yoder, Jon Yoder
Abstract:
“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.Keywords: fashion, print design, architecture, projection mapping, image, fabrication
Procedia PDF Downloads 88422 Changing from Crude (Rudimentary) to Modern Method of Cassava Processing in the Ngwo Village of Njikwa Sub Division of North West Region of Cameroon
Authors: Loveline Ambo Angwah
Abstract:
The processing of cassava from tubers or roots into food using crude and rudimentary method (hand peeling, grating, frying and to sun drying) is a very cumbersome and difficult process. The crude methods are time consuming and labour intensive. While on the other hand, modern processing method, that is using machines to perform the various processes as washing, peeling, grinding, oven drying, fermentation and frying is easier, less time consuming, and less labour intensive. Rudimentarily, cassava roots are processed into numerous products and utilized in various ways according to local customs and preferences. For the people of Ngwo village, cassava is transformed locally into flour or powder form called ‘cumcum’. It is also sucked into water to give a kind of food call ‘water fufu’ and fried to give ‘garri’. The leaves are consumed as vegetables. Added to these, its relative high yields; ability to stay underground after maturity for long periods give cassava considerable advantage as a commodity that is being used by poor rural folks in the community, to fight poverty. It plays a major role in efforts to alleviate the food crisis because of its efficient production of food energy, year-round availability, tolerance to extreme stress conditions, and suitability to present farming and food systems in Africa. Improvement of cassava processing and utilization techniques would greatly increase labor efficiency, incomes, and living standards of cassava farmers and the rural poor, as well as enhance the-shelf life of products, facilitate their transportation, increase marketing opportunities, and help improve human and livestock nutrition. This paper presents a general overview of crude ways in cassava processing and utilization methods now used by subsistence and small-scale farmers in Ngwo village of the North West region in Cameroon, and examine the opportunities of improving processing technologies. Cassava needs processing because the roots cannot be stored for long because they rot within 3-4 days of harvest. They are bulky with about 70% moisture content, and therefore transportation of the tubers to markets is difficult and expensive. The roots and leaves contain varying amounts of cyanide which is toxic to humans and animals, while the raw cassava roots and uncooked leaves are not palatable. Therefore, cassava must be processed into various forms in order to increase the shelf life of the products, facilitate transportation and marketing, reduce cyanide content and improve palatability.Keywords: cassava roots, crude ways, food system, poverty
Procedia PDF Downloads 166421 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations
Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis
Abstract:
Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling
Procedia PDF Downloads 262420 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks
Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska
Abstract:
Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell
Procedia PDF Downloads 162419 Biophysical Analysis of the Interaction of Polymeric Nanoparticles with Biomimetic Models of the Lung Surfactant
Authors: Weiam Daear, Patrick Lai, Elmar Prenner
Abstract:
The human body offers many avenues that could be used for drug delivery. The pulmonary route, which is delivered through the lungs, presents many advantages that have sparked interested in the field. These advantages include; 1) direct access to the lungs and the large surface area it provides, and 2) close proximity to the blood circulation. The air-blood barrier of the alveoli is about 500 nm thick. The air-blood barrier consist of a monolayer of lipids and few proteins called the lung surfactant and cells. This monolayer consists of ~90% lipids and ~10% proteins that are produced by the alveolar epithelial cells. The two major lipid classes constitutes of various saturation and chain length of phosphatidylcholine (PC) and phosphatidylglycerol (PG) representing 80% of total lipid component. The major role of the lung surfactant monolayer is to reduce surface tension experienced during breathing cycles in order to prevent lung collapse. In terms of the pulmonary drug delivery route, drugs pass through various parts of the respiratory system before reaching the alveoli. It is at this location that the lung surfactant functions as the air-blood barrier for drugs. As the field of nanomedicine advances, the use of nanoparticles (NPs) as drug delivery vehicles is becoming very important. This is due to the advantages NPs provide with their large surface area and potential specific targeting. Therefore, studying the interaction of NPs with lung surfactant and whether they affect its stability becomes very essential. The aim of this research is to develop a biomimetic model of the human lung surfactant followed by a biophysical analysis of the interaction of polymeric NPs. This biomimetic model will function as a fast initial mode of testing for whether NPs affect the stability of the human lung surfactant. The model developed thus far is an 8-component lipid system that contains major PC and PG lipids. Recently, a custom made 16:0/16:1 PC and PG lipids were added to the model system. In the human lung surfactant, these lipids constitute 16% of the total lipid component. According to the author’s knowledge, there is not much monolayer data on the biophysical analysis of the 16:0/16:1 lipids, therefore more analysis will be discussed here. Biophysical techniques such as the Langmuir Trough is used for stability measurements which monitors changes to a monolayer's surface pressure upon NP interaction. Furthermore, Brewster Angle Microscopy (BAM) employed to visualize changes to the lateral domain organization. Results show preferential interactions of NPs with different lipid groups that is also dependent on the monolayer fluidity. Furthermore, results show that the film stability upon compression is unaffected, but there are significant changes in the lateral domain organization of the lung surfactant upon NP addition. This research is significant in the field of pulmonary drug delivery. It is shown that NPs within a certain size range are safe for the pulmonary route, but little is known about the mode of interaction of those polymeric NPs. Moreover, this work will provide additional information about the nanotoxicology of NPs tested.Keywords: Brewster angle microscopy, lipids, lung surfactant, nanoparticles
Procedia PDF Downloads 178418 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis
Procedia PDF Downloads 214417 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion
Authors: Hantian Wu, Bo Huang, Yuan Zeng
Abstract:
Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management
Procedia PDF Downloads 125416 Developing Motorized Spectroscopy System for Tissue Scanning
Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken
Abstract:
The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning
Procedia PDF Downloads 191415 Improved Signal-To-Noise Ratio by the 3D-Functionalization of Fully Zwitterionic Surface Coatings
Authors: Esther Van Andel, Stefanie C. Lange, Maarten M. J. Smulders, Han Zuilhof
Abstract:
False outcomes of diagnostic tests are a major concern in medical health care. To improve the reliability of surface-based diagnostic tests, it is of crucial importance to diminish background signals that arise from the non-specific binding of biomolecules, a process called fouling. The aim is to create surfaces that repel all biomolecules except the molecule of interest. This can be achieved by incorporating antifouling protein repellent coatings in between the sensor surface and it’s recognition elements (e.g. antibodies, sugars, aptamers). Zwitterionic polymer brushes are considered excellent antifouling materials, however, to be able to bind the molecule of interest, the polymer brushes have to be functionalized and so far this was only achieved at the expense of either antifouling or binding capacity. To overcome this limitation, we combined both features into one single monomer: a zwitterionic sulfobetaine, ensuring antifouling capabilities, equipped with a clickable azide moiety which allows for further functionalization. By copolymerizing this monomer together with a standard sulfobetaine, the number of azides (and with that the number of recognition elements) can be tuned depending on the application. First, the clickable azido-monomer was synthesized and characterized, followed by copolymerizing this monomer to yield functionalizable antifouling brushes. The brushes were fully characterized using surface characterization techniques like XPS, contact angle measurements, G-ATR-FTIR and XRR. As a proof of principle, the brushes were subsequently functionalized with biotin via strain-promoted alkyne azide click reactions, which yielded a fully zwitterionic biotin-containing 3D-functionalized coating. The sensing capacity was evaluated by reflectometry using avidin and fibrinogen containing protein solutions. The surfaces showed excellent antifouling properties as illustrated by the complete absence of non-specific fibrinogen binding, while at the same time clear responses were seen for the specific binding of avidin. A great increase in signal-to-noise ratio was observed, even when the amount of functional groups was lowered to 1%, compared to traditional modification of sulfobetaine brushes that rely on a 2D-approach in which only the top-layer can be functionalized. This study was performed on stoichiometric silicon nitride surfaces for future microring resonator based assays, however, this methodology can be transferred to other biosensor platforms which are currently being investigated. The approach presented herein enables a highly efficient strategy for selective binding with retained antifouling properties for improved signal-to-noise ratios in binding assays. The number of recognition units can be adjusted to a specific need, e.g. depending on the size of the analyte to be bound, widening the scope of these functionalizable surface coatings.Keywords: antifouling, signal-to-noise ratio, surface functionalization, zwitterionic polymer brushes
Procedia PDF Downloads 306414 An Assessment of the Trend and Pattern of Vital Registration System in Shiroro Local Government Area of Niger State, Nigeria
Authors: Aliyu Bello Mohammed
Abstract:
Vital registration or registration of vital events is one of the three major sources of demographic data in Nigeria. The other two are the population census and sample survey. The former is judged to be an indispensable source of demographic data because, it provide information on vital statistics and population trends between two census periods. Various literacy works however depict the vital registration in Nigeria as incapable of providing accurate data for the country. The study has both theoretical and practical significances. The trends and pattern of vital registration has not received adequate research interest in Sub-Saharan Africa in general and Nigeria in particular. This has created a gap in understanding the extent and consequence of the scourge in Africa sub-region. Practically, the study also captures the policy interventions of government and Non-Governmental Organizations (NGOs) that would help enlighten the public on the importance of vital registration in Nigeria. Furthermore, feasible policy strategies that will enhance trends and pattern vital registration in the society would emanate from the study. The study adopted a cross sectional survey design and applied multi stage sampling techniques to sample 230 respondents from the general public in the study area. The first stage involved the splitting of the local government into wards. The second stage involves selecting streets, while the third stage was the households. In all, 6 wards were sampled for the study. The study utilized both primary and secondary sources of data. The primary sources of data used were the questionnaire, focus group discussion (FGD) and in-depth interview (IDI) guides while the secondary sources of data were journals and books, newspapers and magazines. Twelve FGD sessions with 96 study participants and five IDI sessions with the heads of vital registration facilities were conducted. The quantitative data were analyzed using Statistical Package for Social Sciences (SPSS). Descriptive statistics like tables, frequencies and percentages were employed in presenting and interpreting the data. Information from the qualitative data was transcribed and ordered in themes to ensure that outstanding points of the responses are noted. The following conclusions were drawn from the study: the available vital registration facilities are not adequate and were not evenly distributed in the study area; lack of awareness and knowledge of the existence and the importance of vital registration by majority of the people in the local government; distance to vital registration centres from their residents; most births in the area were not registered, and even among the few births that were registered, majority of them were registered after the limited period for registration. And the study reveals that socio-economic index, educational level and distance of facilities to residents are determinants of access to vital registration facility. The study concludes by discussing the need for a reliable and accurate vital registration system if Nigeria’s vision of becoming one of the top 20 economies in the world in 2020 would be realized.Keywords: trends, patterns, vital, registration and assessment
Procedia PDF Downloads 253413 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide
Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu
Abstract:
This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide
Procedia PDF Downloads 237412 The Women’s Empowerment and Children’s Bell-Being in Italy: An Empirical Research Starting From the Capability Approach
Authors: Alba Francesca Canta
Abstract:
The present is one of those times when what normally seems to constitute a reason for living vanishes, particularly in times of crisis, during which certainties of all times crumble, and critical issues emerge, especially in already problematic areas such as the role of women and children. This paper aims to explore the issue of gender and highlight the importance of education for people’s development and well-being. The study is part of the broader framework of the capability approach, a multidimensional approach based on the need to consider a person’s wealth by virtue of their opportunity and freedom to live a ‘life of worth. The results of empirical research conducted in 2020 will be presented, the main objective of which was to measure, through qualitative (project techniques, focus groups, interviews with key informants) and quantitative (questionnaire) methods, the level of empowerment of women in two Italian territories and the consequent well-being of their children. By means of the relationship study, the present research results show that a higher level of women’s empowerment corresponds to a higher level of children’s well-being in a positive virtuous process. The opportunity structure and education are the main driving guide both to women’s empowerment and children’s well-being, emphasizing the importance of education to gender culture as a key factor for the development of the whole society. Among all the traumatic events that broke the harmony of the world and caused an abrupt turn in all areas of society, the crisis of democracy and education are some of the harshest. Nevertheless, education continues to be a fundamental pillar of Global Development Agendas, and above all, democratic education is the main factor in the development of a generative society, capable of forming people who know how to live in society. In this context, recovering democratic and inclusive education can be the key to a breakthrough. In the capability approach Sen, and other Scholars, point out education from two different perspectives: a. education as a fundamental right capable of influencing other real fields of people’s life (i.e., being educated to prevent illness, to vote, etc.) and b. spread communitarian education, tolerance, inclusive, democratic, and respectful, capable of forming human beings. This kind of educational system can directly lead to a general process of gender education that presupposes respect for essential principles: equality, uniqueness, and the participation of all in the processes of defining a democratic society. Many practices of women and children’s exclusions essentially derive from social factors (norms, values, quality of institutions, relations of power, educational and cultural practices) that can build strong barriers. Respect for these principles and education for gender culture could foster the renewal of society and the acquisition of fundamental skills for a generative and inclusive society, such as critical skills, cosmopolitan skills, and narrative imagination.Keywords: capability approach, children’s well-being, education, women’s empowerment
Procedia PDF Downloads 66411 Preliminary Studies on Poloxamer-Based Hydrogels with Oregano Essential Oil as Potential Topical Treatment of Cutaneous Papillomas
Authors: Ana Maria Muț, Georgeta Coneac, Ioana Olariu, Ștefana Avram, Ioana Zinuca Pavel, Ionela Daliana Minda, Lavinia Vlaia, Cristina Adriana Dehelean, Corina Danciu
Abstract:
Oregano essential oil is obtained from different parts of the plant Origanum vulgare (fam. Lamiaceae) and carvacrol and thymol are primary components, widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Poloxamers are triblock copolymers (Pluronic®), formed of three non-ionic blocks with a hydrophobic polyoxypropylene central chain flanked by two polyoxyethylene hydrophilic chains. They are known for their biocompatibility, sensitivity to temperature changes (sol-to-gel transition of aqueous solution with temperature increase), but also for their amphiphilic and surface active nature determining the formation of micelles, useful for solubilization of different hydrophobic compounds such as the terpenes and terpenoids contained in essential oils. Thus, these polymers, listed in European and US Pharmacopoeia and approved by FDA, are widely used as solubilizers and gelling agents for various pharmaceutical preparations, including topical hydrogels. The aim of this study was to investigate the posibility of solubilizing oregano essential oil (OEO) in polymeric micelles using polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers to obtain semisolid systems suitable for topical application. A formulation screening was performed, using Pluronic® F-127 in concentration of 20%, Pluronic® L-31, Pluronic® L-61 and Pluronic® L-62 in concentration of 0.5%, 0.8% respectively 1% to obtain the polymeric micelles-based systems. Then, to each selected system, with or without 10% absolute ethanol, 5% or 8% OEO was added. The obtained transparent poloxamer-based hydrogels containing solubilized OEO were further evaluated for pH, rheological characteristics (flow behaviour, viscosity, consistency and spreadability), using consacrated techniques like potentiometric titration, stationary shear flow test, penetrometric method and parallel plate method. Also, in vitro release and permeation of carvacrol from the hydrogels was carried out, using vertical diffusion cells and synthetic hydrophilic membrane and porcine skin respectively. The pH values and rheological features of all tested formulations were in accordance with official requirements for semisolid cutaneous preparations. But, the formulation containing 0.8% Pluronic® L-31, 10% absolute ethanol, 8% OEO and water and the formulation with 1% Pluronic® L-31, 5% OEO and water, produced the highest cumulative amounts of carvacrol released/permeated through the membrane. The present study demonstrated that oregano essential oil can be successfully solubilized in the investigated poloxamer-based hydrogels. These systems can be further investigated as potential topical therapy for cutaneous papillomas. Funding: This research was funded by Project PN-III-P1-1.1-TE2019-0130, Contract number TE47, Romania.Keywords: oregano essential oil, carvacrol, poloxamer, topical hydrogels
Procedia PDF Downloads 113