Search results for: modeling strategy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7595

Search results for: modeling strategy

1265 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase

Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos

Abstract:

Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.

Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling

Procedia PDF Downloads 360
1264 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 434
1263 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 173
1262 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 95
1261 Development of an Intervention Program for Moral Education of Undergraduate Students of Sport Sciences and Physical Education

Authors: Najia Zulfiqar

Abstract:

Imparting moral education is the need of time, considering the obvious moral decline in society. Recent research shows the downfall of moral competence among university students. The main objective of the present study was to develop moral development intervention strategies for undergraduate students of Sports and Physical Education. Using an interpretative phenomenological approach, insight into field-specific moral issues was gained through interviews with 7 subject experts and a focus-group discussion session with 8 students. Two research assistants who were trained in qualitative interviewing collected, transcribed and analyzed data into the MAXQDA software using content and discourse analyses. The identified moral issues in Sports and Physical Education were sports gambling and betting, pay-for-play, doping, coach misconduct, tampering, cultural bias, gender equity/nepotism, bullying/discrimination, and harassment. Next, intervention modules were developed for each moral issue based on hypothetical situations, and followed by guided reflection and dilemma discussion questions. The third moral development strategy was community services that included posture screening, diet plan for different age groups, open fitness ground training, exercise camps for physical fitness, balanced diet awareness camp, gymnastic camp, shoe assessment as per health standards, and volunteering for public awareness at the playground, gymnasium, stadium, park, etc. The intervention modules were given to four subject specialists for expert validation who were from different backgrounds within Sport Sciences. Upon refinement and finalization, four students were presented with these intervention modules and questioned about accuracy, relevance, comprehension, and content organization. Iterative changes were made in the content of the intervention modules to tailor them to the moral development needs of undergraduate students. This intervention will strengthen positive moral values and foster mature decision-making about right and wrong acts. As this intervention is easy to apply as a remedial tool, academicians and policymakers can use this to promote students’ moral development.

Keywords: community service, dilemma discussion, morality, physical education, university students.

Procedia PDF Downloads 78
1260 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator

Procedia PDF Downloads 196
1259 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 90
1258 Using Biofunctool® Index to Assess Soil Quality after Eight Years of Conservation Agriculture in New Caledonia

Authors: Remy Kulagowski, Tobias Sturm, Audrey Leopold, Aurelie Metay, Josephine Peigne, Alexis Thoumazeau, Alain Brauman, Bruno Fogliani, Florent Tivet

Abstract:

A major challenge for agriculture is to enhance productivity while limiting the impact on the environment. Conservation agriculture (CA) is one strategy whereby both sustainability and productivity can be achieved by preserving and improving the soil quality. Soils provide and regulate a large number of ecosystem services (ES) such as agricultural productivity and climate change adaptation and mitigation. The aim of this study is to assess the impacts of contrasted CA crop management on soil functions for maize (Zea mays L.) cultivation in an eight years field experiment (2010-2018). The study included two CA practices: direct seeding in dead mulch (DM) and living mulch (LM), and conventional plough-based tillage (CT) practices on a fluvisol in New Caledonia (French Archipelago in the South Pacific). In 2018, soil quality of the cropping systems were evaluated with the Biofunctool® set of indicators, that consists in twelve integrative, in-field, and low-tech indicators assessing the biological, physical and chemical properties of soils. Main soil functions were evaluated including (i) carbon transformation, (ii) structure maintenance, and (iii) nutrient cycling in the ten first soil centimeters. The results showed significant higher score for soil structure maintenance (e.g., aggregate stability, water infiltration) and carbon transformation function (e.g., soil respiration, labile carbon) under CA in DM and LM when compared with CT. Score of carbon transformation index was higher in DM compared with LM. However, no significant effect of cropping systems was observed on nutrient cycling (i.e., nitrogen and phosphorus). In conclusion, the aggregated synthetic scores of soil multi-functions evaluated with Biofunctool® demonstrate that CA cropping systems lead to a better soil functioning. Further analysis of the results with agronomic performance of the soil-crop systems would allow to better understand the links between soil functioning and production ES of CA.

Keywords: conservation agriculture, cropping systems, ecosystem services, soil functions

Procedia PDF Downloads 160
1257 Comparison of β-Cell Regenerative Potentials of Selected Sri Lankan Medicinal Plant Extracts in Alloxan-Induced Diabetic Rats

Authors: A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa, C. Pathirana

Abstract:

Triggering of β-cell regeneration is a recognized therapeutic strategy for the treatment of type 1 diabetes mellitus. One such approach to foster restoration and regeneration of β-cells is from exogenous natural extracts. The aim of the present study was to investigate and compare the β-cell regenerative potentials of the extracts of Spondias pinnata (Linn. f.) Kurz, Coccinia grandis (L.) Voigt and Gmelina arborea Roxb. in alloxan induced diabetic rats. Wistar rats were divided in to six groups (n=6); healthy untreated rats, alloxan induced diabetic untreated rats (150 mg/kg, ip), diabetic rats receiving the extracts of S. pinnata (1.0 g/kg), C. grandis (0.75 g/kg), G. arobrea (1.00 g/kg) and diabetic rats receiving glibenclamide (0.5 mg/kg) for 30 days. The assessment of selected biochemical parameters, histopathology and immunohistochemistry in the pancreatic tissue were done on the 30th day. The reduction in the percentage of HbA1C was in the decreasing order of C. grandis (35%), G. arborea (31%) and S. pinnata (29%) in alloxan induced diabetic rats (p< 0.05). The concentration of serum fructosamine, insulin and C-peptide were decreased significantly in a decreasing order of C. grandis (30%, 72%, 51%), G. arborea (25%, 44%, 44%) and S. pinnata (27%, 34%, 24%) in alloxan induced diabetic rats (p < 0.05). The extent of β-cell regeneration was in the decreasing order of C. grandis, G. arborea, S. pinnata reflected through the increased percentage of insulin secreting β-cells in alloxan induced diabetic rats. The extract of C. grandis produced the highest degree of β-cell regeneration demonstrated through an increase in the number of islets and percentage of the insulin secreting β-cells (75%) in the pancreas of diabetic rats (p < 0.05). Further the C. grandis extract produced a significant increase in mean profile diameter in small (118%), average (10%), and large (13%) islets as compared with diabetic control rats respectively. However, statistically significant increase in the islet profile diameter was shown only in average (2%) and large (5%) islets in the G. arborea extract treated rats and large islets (5%) in S. pinnata extract treated diabetic rats (p < 0.05). The β-cell regeneration potency was in the decreasing order of C. grandis (0.75 g/kg), G. arborea (1.00 g/kg) and S. pinnata (1.00 g/kg) in alloxan induced diabetic rats. The three plant extracts may be useful as natural agents of triggering the β-cell regeneration in the management of type 1 diabetes mellitus.

Keywords: alloxan-induced diabetic rats, β-cell regeneration, histopathology, immunohistochemistry

Procedia PDF Downloads 246
1256 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 193
1255 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 159
1254 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 92
1253 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 20
1252 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 124
1251 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 413
1250 Preliminary Evaluation of Decommissioning Wastes for the First Commercial Nuclear Power Reactor in South Korea

Authors: Kyomin Lee, Joohee Kim, Sangho Kang

Abstract:

The commercial nuclear power reactor in South Korea, Kori Unit 1, which was a 587 MWe pressurized water reactor that started operation since 1978, was permanently shut down in June 2017 without an additional operating license extension. The Kori 1 Unit is scheduled to become the nuclear power unit to enter the decommissioning phase. In this study, the preliminary evaluation of the decommissioning wastes for the Kori Unit 1 was performed based on the following series of process: firstly, the plant inventory is investigated based on various documents (i.e., equipment/ component list, construction records, general arrangement drawings). Secondly, the radiological conditions of systems, structures and components (SSCs) are established to estimate the amount of radioactive waste by waste classification. Third, the waste management strategies for Kori Unit 1 including waste packaging are established. Forth, selection of the proper decontamination and dismantling (D&D) technologies is made considering the various factors. Finally, the amount of decommissioning waste by classification for Kori 1 is estimated using the DeCAT program, which was developed by KEPCO-E&C for a decommissioning cost estimation. The preliminary evaluation results have shown that the expected amounts of decommissioning wastes were less than about 2% and 8% of the total wastes generated (i.e., sum of clean wastes and radwastes) before/after waste processing, respectively, and it was found that the majority of contaminated material was carbon or alloy steel and stainless steel. In addition, within the range of availability of information, the results of the evaluation were compared with the results from the various decommissioning experiences data or international/national decommissioning study. The comparison results have shown that the radioactive waste amount from Kori Unit 1 decommissioning were much less than those from the plants decommissioned in U.S. and were comparable to those from the plants in Europe. This result comes from the difference of disposal cost and clearance criteria (i.e., free release level) between U.S. and non-U.S. The preliminary evaluation performed using the methodology established in this study will be useful as a important information in establishing the decommissioning planning for the decommissioning schedule and waste management strategy establishment including the transportation, packaging, handling, and disposal of radioactive wastes.

Keywords: characterization, classification, decommissioning, decontamination and dismantling, Kori 1, radioactive waste

Procedia PDF Downloads 211
1249 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 62
1248 The Mediating Role of Social Connectivity in the Effect of Positive Personality and Alexithymia on Life Satisfaction: Analysis Based on Structural Equation Model

Authors: Yulin Zhang, Kaixi Dong, Guozhen Zhao

Abstract:

Background: Different levels of life satisfaction are associated with some individual differences. Understanding the mechanism between them will help to enhance an individual’s well-being. On the one hand, traditional personality such as extraversion has been considered as the most stable and effective factor in predicting life satisfaction to the author’s best knowledge. On the other, individual emotional difference, such as alexithymia (difficulties identifying and describing one’s own feelings), is also closely related to life satisfaction. With the development of positive psychology, positive personalities such as virtues attract wide attention. And according to the broaden-and-build theory, social connectivity may mediate between emotion and life satisfaction. Therefore, the current study aims to explore the mediating role of social connectivity in the effect of positive personality and alexithymia on life satisfaction. Method: This study was conducted with 318 healthy Chinese college students whose age range from 18 to 30. Positive personality (including interpersonal, vitality, and cautiousness) was measured by the Chinese version of Values in Action Inventory of Strengths (VIA-IS). Alexithymia was measured by the Toronto Alexithymia Scale (TAS), and life satisfaction was measured by Satisfaction With Life Scale (SWLS). And social connectivity was measured by six items which have been used in previous studies. Each scale showed high reliability and validity. The mediating model was examined in Mplus 7.2 within a structural equation modeling (SEM) framework. Findings: The model fitted well and results revealed that both positive personality (95% confidence interval of indirect effect was [0.023, 0.097]) and alexithymia (95% confidence interval of indirect effect was [-0.270, -0.089]) predicted life satisfaction level significantly through social connectivity. Also, only positive personality significantly and directly predicted life satisfaction compared to alexithymia (95% confidence interval of direct effect was [0.109, 0.260]). Conclusion: Alexithymia predicts life satisfaction only through social connectivity, which emphasizes the importance of social bonding in enhancing the well-being of Chinese college students with alexithymia. And the positive personality can predict life satisfaction directly or through social connectivity, which provides implications for enhancing the well-being of Chinese college students by cultivating their virtue and positive psychological quality.

Keywords: alexithymia, life satisfaction, positive personality, social connectivity

Procedia PDF Downloads 169
1247 Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding

Authors: Ehsan Alishahi, Chuang Deng

Abstract:

Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon.

Keywords: ARB, crystalline-amorphous composites, mechanical alloying, nanoindentation hardness

Procedia PDF Downloads 552
1246 The Risk and Prevention of Peer-To-Peer Network Lending in China

Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang

Abstract:

How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.

Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision

Procedia PDF Downloads 168
1245 Kuwait Environmental Remediation Program: Waste Management Data Analytics for Planning and Optimization of Waste Collection

Authors: Aisha Al-Baroud

Abstract:

The United Nations Compensation Commission (UNCC), Kuwait National Focal Point (KNFP) and Kuwait Oil Company (KOC) cooperated in a joint project to undertake comprehensive and collaborative efforts to remediate 26 million m3 of crude oil contaminated soil that had resulted from the Gulf War in 1990/1991. These efforts are referred to as the Kuwait Environmental Remediation Program (KERP). KOC has developed a Total Remediation Solution (TRS) for KERP, which will guide the Remediation projects, comprises of alternative remedial solutions with treatment techniques inclusive of limited landfills for non-treatable soil materials disposal, and relies on treating certain ranges of Total Petroleum Hydrocarbon (TPH) contamination with the most appropriate remediation techniques. The KERP Remediation projects will be implemented within the KOC’s oilfields in North and South East Kuwait. The objectives of this remediation project is to clear land for field development and treat all the oil contaminated features (dry oil lakes, wet oil lakes, and oil contaminated piles) through TRS plan to optimize the treatment processes and minimize the volume of contaminated materials to be placed into landfills. The treatment strategy will comprise of Excavation and Transportation (E&T) of oil contaminated soils from contaminated land to remote treatment areas and to use appropriate remediation technologies or a combination of treatment technologies to achieve remediation target criteria (RTC). KOC has awarded five mega projects to achieve the same and is currently in the execution phase. As a part of the company’s commitment to environment and for the fulfillment of the mandatory HSSEMS procedures, all the Remediation contractors needs to report waste generation data from the various project activities on a monthly basis. Data on waste generation is collected in order to implement cost-efficient and sustainable waste management operations. Data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information for planning and optimization of waste collection and recycling.

Keywords: waste, tencnolgies, KERP, data, soil

Procedia PDF Downloads 117
1244 Utilization Of Guar Gum As Functional Fat Replacer In Goshtaba, A Traditional Indian Meat Product

Authors: Sajad A. Rather, F. A. Masoodi, Rehana Akhter, S. M. Wani, Adil Gani

Abstract:

Modern trend towards convenience foods has resulted in increased production and consumption of restructured meat products and are of great importance to the meat industry. In meat products fat plays an important role in cooking properties, texture & sensory scores, however, high fat contents in particular animal fats provide high amounts of saturated fatty acids and cholesterol and are associated with several types of non communicable diseases such as obesity, hypertension and coronary heart diseases. Thus, fat reduction has generally been seen as an important strategy to produce healthier meat products. This study examined the effects of reducing fat level from 20% to 10% and substituting mutton back fat with guar gum (0.5%, 1% & 1.5%) on cooking properties, proximate composition, lipid and protein oxidation, texture, microstructure and sensory characteristics of goshtaba- a traditional meat product of J & K, India were investigated and compared with high fat counterparts. Reduced- fat goshtaba samples containing guar gum had significantly (p ≤ 0.05) higher yield, less shrinkage, more moisture retention and more protein content than the control sample. TBARs and protein oxidation (carbonyl content) values of the control was significantly (p ≤ 0.05) higher than reduced fat goshtaba samples and showed a positive correlation between lipid and protein oxidation. Hardness, gumminess & chewiness of the control (20%) were significantly higher than reduced fat goshtaba samples. Microstructural differences were significant (p ≤ 0.05) between control and treated samples due to an increased moisture content in the reduced fat samples. Sensory evaluation showed significant (p ≤ 0.05) reduction in texture, flavour and overall acceptability scores of treatment products; however the scores for 0.5% and 1% treated samples were in the range of acceptability. Guar gum may also be used as a source of soluble dietary fibre in food products and a number of clinical studies have shown a reduction in postprandial glycemia and insulinemia on consumption of guar gum, with the mechanism being attributed to an increased transit time in the stomach and small intestine, which may have been due to the viscosity of the meal hindering the access of glucose to the epithelium.

Keywords: goshtaba, guar gum, traditional, fat reduction, acceptability

Procedia PDF Downloads 283
1243 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 210
1242 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 220
1241 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 59
1240 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue

Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov

Abstract:

The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.

Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport

Procedia PDF Downloads 117
1239 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 139
1238 Hydrogen Production By Photoreforming Of n-Butanol And Structural Isomers Over Pt Doped Titanate Catalyst

Authors: Hristina Šalipur, Jasmina Dostanić, Davor Lončarević, Matej Huš

Abstract:

Photocatalytic water splitting/alcohol photoreforming has been used for the conversion of sunlight energy in the process of hydrogen production due to its sustainability, environmental safety, effectiveness and simplicity. Titanate nanotubes are frequently studied materials since they combine the properties of photo-active semiconductors with the properties of layered titanates, such as the ion-exchange ability. Platinum (Pt) doping into titanate structure has been considered an effective strategy in better separation efficiency of electron-hole pairs and lowering the overpotential for hydrogen production, which results in higher photocatalytic activity. In our work, Pt doped titanate catalysts were synthesized via simple alkaline hydrothermal treatment, incipient wetness impregnation method and temperature-programmed reduction. The structural, morphological and optical properties of the prepared catalysts were investigated using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, and diffuse reflectance spectroscopy (DRS). The activities of the prepared Pt-doped titanate photocatalysts were tested for hydrogen production via photocatalytic water splitting/alcohol photoreforming process under simulated solar light irradiation. Characterization of synthesized Pt doped titanate catalysts showed crystalline anatase phase, preserved nanotubular structure and high specific surface area. The result showed enhancement of activity in photocatalytic water splitting/alcohol photoreforming in the following order 2-butanol>1-butanol>tert-butanol, with obtained maximal hydrogen production rate of 7.5, 5.3 and 2 mmol g-1 h-1, respectively. Different possible factors influencing the hole scavenging ability, such as hole scavenger redox potential and diffusivity, adsorption and desorption rate of the hole scavenger on the surface and stability of the alcohol radical species generated via hole scavenging, were investigated. The theoretical evaluation using density functional theory (DFT) further elucidated the reaction kinetics and detailed mechanism of photocatalytic water splitting/alcohol photoreforming.

Keywords: hydrogen production, platinum, semiconductor, water splitting, density functional theory

Procedia PDF Downloads 115
1237 The Effects of Globalization on Health: A Case of Kenyatta National Hospital Healthcare Services

Authors: S. Ithai, A. Oloo

Abstract:

The emergence of globalization has cultivated an international consensus that without economic development; it is very unlikely that a country may realize social or political development. It is equally important to note that the economic effect on social development automatically influence the country healthcare services as healthcare systems are improved and adopted. For decades and before 1980's, the colonial and the Governments of Kenya had pursued a goal to provide free healthcare services to its citizen with minimal success; but as population increased, this endeavor became almost a mirage. The challenge called for a change of strategy with introduction of cost sharing which also could not guarantee sustainability of healthcare services in the country due to increased number of poor people and poverty. An involvement of multisectral approach to provision of health individual, collaboration and adoption of all dimensions through globalization provides a ray of hope to not only economic, political and social development but also guaranteed equitable and reliable healthcare systems in Kenya and specifically referral healthcare services at KNH. With the advent of globalization, KNH has made positive strides that have guaranteed patients with reliable healthcare services. These include increased donor funding, collaboration levels, training and research as well as enhanced the hospital relations with international partners. During this period, the hospital has increased number of local doctors and nurses, enhanced transfer of skills, innovations and technologies which are driving forces to quality and efficient healthcare services. The period has also brought in challenges for the hospital which include increased competition, attraction of qualified nurses and doctors to international are some the issues that have made the hospital to spend more resources in research and development in order to stay afloat. This paper reveals the link between globalization and healthcare and its influence on institution policy choice. However, the process is not expected to take place automatically without institutional initiatives if KNH is to reap the benefits of globalization. KNH need to make use of the existing infrastructure, human resources and donor confidence, the opportunities that are indeed important in propelling KNH toward Vision 2030 and achieving the desired Millennium Development Goals (MDGs).

Keywords: globalization, Kenyatta National Hospital, native, healthcare

Procedia PDF Downloads 339
1236 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 92