Search results for: highly linear LNA
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7622

Search results for: highly linear LNA

1292 Impact of Land Ownership on Rangeland Condition in the Gauteng Province, South Africa

Authors: N. L. Letsoalo, H. T. Pule, J. T. Tjelele, N. R. Mkhize, K. R. Mbatha

Abstract:

Rangelands are major feed resource for livestock farming in South Africa, despite being subjected to different forms of degradation. These forms of degradation are as a result of inappropriate veld and livestock management practices such as excessive stocking rates. While information on judicious veld management is available, adoption of appropriate practices is still unsatisfactory and seems to depend partly on the type of land ownership of farmers. The objectives of this study were to; (I) compare rangeland condition (species richness, basal cover, veld condition score, and herbaceous biomass) among three land ownership types (leased land, communal land and private land), and (II) determine the relationships between veld condition score (%) and herbaceous biomass (kg DM/ha) production. Vegetation was assessed at fifty farms under different land use types using nearest plant technique. Grass species composition and forage value were estimated using PROC FREQ procedure of SAS 9.3. A one-way ANOVA was used to determine significant differences (P < 0.05) in species richness, basal cover, veld condition (%) large stock units, grazing capacity and herbaceous biomass production among the three grazing systems. A total of 28 grass species were identified, of which 95% and 5% were perennials and annuals, respectively. The most commonly distributed and highly palatable grass species, Digitaria eriantha had significantly higher frequency under private owned lands (32.3 %) compared to communal owned lands (12.3%). There were no significant difference on grass species richness and basal cover among land ownership types (P > 0.05). There were significant differences on veld condition score and biomass production (P < 0.05). Private lands had significantly higher (69.63%) veld condition score than leased (56.07%) and communal lands (52.55%). Biomass production was significantly higher (± S.E.) 2990.30 ± 214 kg DM/ha on private owned lands, compared to leased lands 2069.85 ± 196 kg DM/ha and communal lands 1331.04 ± 102 kg DM/ha. Biomass production was positively correlated with rangeland condition (r = 0.895; P < 0.005). These results suggest that rangeland conditions on communal and leased lands are in poor condition than those on private lands. More research efforts are needed to improve management of rangelands in communal and leased land in Gauteng province.

Keywords: grazing, herbaceous biomass, management practices, species richness

Procedia PDF Downloads 166
1291 ¹⁸F-FDG PET/CT Impact on Staging of Pancreatic Cancer

Authors: Jiri Kysucan, Dusan Klos, Katherine Vomackova, Pavel Koranda, Martin Lovecek, Cestmir Neoral, Roman Havlik

Abstract:

Aim: The prognosis of patients with pancreatic cancer is poor. The median of survival after establishing diagnosis is 3-11 months without surgical treatment, 13-20 months with surgical treatment depending on the disease stage, 5-year survival is less than 5%. Radical surgical resection remains the only hope of curing the disease. Early diagnosis with valid establishment of tumor resectability is, therefore, the most important aim for patients with pancreatic cancer. The aim of the work is to evaluate the contribution and define the role of 18F-FDG PET/CT in preoperative staging. Material and Methods: In 195 patients (103 males, 92 females, median age 66,7 years, 32-88 years) with a suspect pancreatic lesion, as part of the standard preoperative staging, in addition to standard examination methods (ultrasonography, contrast spiral CT, endoscopic ultrasonography, endoscopic ultrasonographic biopsy), a hybrid 18F-FDG PET/CT was performed. All PET/CT findings were subsequently compared with standard staging (CT, EUS, EUS FNA), with peroperative findings and definitive histology in the operated patients as reference standards. Interpretation defined the extent of the tumor according to TNM classification. Limitations of resectability were local advancement (T4) and presence of distant metastases (M1). Results: PET/CT was performed in a total of 195 patients with a suspect pancreatic lesion. In 153 patients, pancreatic carcinoma was confirmed and of these patients, 72 were not indicated for radical surgical procedure due to local inoperability or generalization of the disease. The sensitivity of PET/CT in detecting the primary lesion was 92.2%, specificity was 90.5%. A false negative finding in 12 patients, a false positive finding was seen in 4 cases, positive predictive value (PPV) 97.2%, negative predictive value (NPV) 76,0%. In evaluating regional lymph nodes, sensitivity was 51.9%, specificity 58.3%, PPV 58,3%, NPV 51.9%. In detecting distant metastases, PET/CT reached a sensitivity of 82.8%, specificity was 97.8%, PPV 96.9%, NPV 87.0%. PET/CT found distant metastases in 12 patients, which were not detected by standard methods. In 15 patients (15.6%) with potentially radically resectable findings, the procedure was contraindicated based on PET/CT findings and the treatment strategy was changed. Conclusion: PET/CT is a highly sensitive and specific method useful in preoperative staging of pancreatic cancer. It improves the selection of patients for radical surgical procedures, who can benefit from it and decreases the number of incorrectly indicated operations.

Keywords: cancer, PET/CT, staging, surgery

Procedia PDF Downloads 246
1290 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia

Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta

Abstract:

‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.

Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components

Procedia PDF Downloads 188
1289 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes

Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma

Abstract:

Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.

Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry

Procedia PDF Downloads 65
1288 Triazenes: Unearthing Their Hidden Arsenal Against Malaria and Microbial Menace

Authors: Frans J. Smit, Wisdom A. Munzeiwa, Hermanus C. M. Vosloo, Lyn-Marie Birkholtz, Richard K. Haynes

Abstract:

Malaria and antimicrobial infections remain significant global health concerns, necessitating the continuous search for novel therapeutic approaches. This abstract presents an overview of the potential use of triazenes as effective agents against malaria and various antimicrobial pathogens. Triazenes are a class of compounds characterized by a linear arrangement of three nitrogen atoms, rendering them structurally distinct from their cyclic counterparts. This study investigates the efficacy of triazenes against malaria and explores their antimicrobial activity. Preliminary results revealed significant antimalarial activity of the triazenes, as evidenced by in vitro screening against P. falciparum, the causative agent of malaria. Furthermore, the compounds exhibited broad-spectrum antimicrobial activity, indicating their potential as effective antimicrobial agents. These compounds have shown inhibitory effects on various essential enzymes and processes involved in parasite survival, replication, and transmission. The mechanism of action of triazenes against malaria involves interactions with critical molecular targets, such as enzymes involved in the parasite's metabolic pathways and proteins responsible for host cell invasion. The antimicrobial activity of the triazenes against bacteria and fungi was investigated through disc diffusion screening. The antimicrobial efficacy of triazenes has been observed against both Gram-positive and Gram-negative bacteria, as well as multidrug-resistant strains, making them potential candidates for combating drug-resistant infections. Furthermore, triazenes possess favourable physicochemical properties, such as good stability, solubility, and low toxicity, which are essential for drug development. The structural versatility of triazenes allows for the modification of their chemical composition to enhance their potency, selectivity, and pharmacokinetic properties. These modifications can be tailored to target specific pathogens, increasing the potential for personalized treatment strategies. In conclusion, this study highlights the potential of triazenes as promising candidates for the development of novel antimalarial and antimicrobial therapeutics. Further investigations are necessary to determine the structure-activity relationships and optimize the pharmacological properties of these compounds. The results warrant additional research, including MIC studies, to further explore the antimicrobial activity of the triazenes. Ultimately, these findings contribute to the development of more effective strategies for combating malaria and microbial infections.

Keywords: malaria, anti-microbials, triazene, resistance

Procedia PDF Downloads 100
1287 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter

Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales

Abstract:

The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.

Keywords: human language technologies, language modelling, offensive language detection, violent online content

Procedia PDF Downloads 131
1286 Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities

Authors: Sayantan Saha, Sambit Supriya Dash, Vinayak Malhotra

Abstract:

Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application.

Keywords: combustion instability, fire safety, improved performance, liquid rocket engines, thermoacoustics

Procedia PDF Downloads 141
1285 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management

Authors: Hasan Ustun Basaran

Abstract:

Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.

Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency

Procedia PDF Downloads 175
1284 Human Resource Management Functions; Employee Performance; Professional Health Workers In Public District Hospitals

Authors: Benjamin Mugisha Bugingo

Abstract:

Healthcare staffhas been considered as asignificant pillar to the health care system. However, the contest of human resources for health in terms of the turnover of health workers in Uganda has been more distinct in the latest years. The objective of the paper, therefore, were to investigate the influence Role Human resource management functions in on employeeperformance of professional health workers in public district hospitals in Kampala. The study objectives were: to establish the effect of performance management function, financialincentives, non-financial incentives, participation, and involvement in the decision-making on the employee performance of professional health workers in public district hospitals in Kampala. The study was devised in the social exchange theory and the equity theory. This study adopted a descriptive research design using quantitative approaches. The study used a cross-sectional research design with a mixed-methods approach. With a population of 402 individuals, the study considered a sample of 252 respondents, including doctors, nurses, midwives, pharmacists, and dentists from 3 district hospitals. The study instruments entailed a questionnaire as a quantitative data collection tool and interviews and focus group discussions as qualitative data gathering tools. To analyze quantitative data, descriptive statistics were used to assess the perceived status of Human resource management functions and the magnitude of intentions to stay, and inferential statistics were used to show the effect of predictors on the outcome variable by plotting a multiple linear regression. Qualitative data were analyzed in themes and reported in narrative and verbatim quotes and were used to complement descriptive findings for a better understanding of the magnitude of the study variables. The findings of this study showed a significant and positive effect of performance management function, financialincentives, non-financial incentives, and participation and involvement in decision-making on employee performance of professional health workers in public district hospitals in Kampala. This study is expected to be a major contributor for the improvement of the health system in the country and other similar settings as it has provided the insights for strategic orientation in the area of human resources for health, especially for enhanced employee performance in relation with the integrated human resource management approach

Keywords: human resource functions, employee performance, employee wellness, profecial workers

Procedia PDF Downloads 98
1283 Utility of Thromboelastography Derived Maximum Amplitude and R-Time (MA-R) Ratio as a Predictor of Mortality in Trauma Patients

Authors: Arulselvi Subramanian, Albert Venencia, Sanjeev Bhoi

Abstract:

Coagulopathy of trauma is an early endogenous coagulation abnormality that occurs shortly resulting in high mortality. In emergency trauma situations, viscoelastic tests may be better in identifying the various phenotypes of coagulopathy and demonstrate the contribution of platelet function to coagulation. We aimed to determine thrombin generation and clot strength, by estimating a ratio of Maximum amplitude and R-time (MA-R ratio) for identifying trauma coagulopathy and predicting subsequent mortality. Methods: We conducted a prospective cohort analysis of acutely injured trauma patients of the adult age groups (18- 50 years), admitted within 24hrs of injury, for one year at a Level I trauma center and followed up on 3rd day and 5th day of injury. Patients with h/o coagulation abnormalities, liver disease, renal impairment, with h/o intake of drugs were excluded. Thromboelastography was done and a ratio was calculated by dividing the MA by the R-time (MA-R). Patients were further stratified into sub groups based on the calculated MA-R quartiles. First sampling was done within 24 hours of injury; follow up on 3rd and 5thday of injury. Mortality was the primary outcome. Results: 100 acutely injured patients [average, 36.6±14.3 years; 94% male; injury severity score 12.2(9-32)] were included in the study. Median (min-max) on admission MA-R ratio was 15.01(0.4-88.4) which declined 11.7(2.2-61.8) on day three and slightly rose on day 5 13.1(0.06-68). There were no significant differences between sub groups in regard to age, or gender. In the lowest MA-R ratios subgroup; MA-R1 (<8.90; n = 27), injury severity score was significantly elevated. MA-R2 (8.91-15.0; n = 23), MA-R3 (15.01-19.30; n = 24) and MA-R4 (>19.3; n = 26) had no difference between their admission laboratory investigations, however slight decline was observed in hemoglobin, red blood cell count and platelet counts compared to the other subgroups. Also significantly prolonged R time, shortened alpha angle and MA were seen in MA-R1. Elevated incidence of mortality also significantly correlated with on admission low MA-R ratios (p 0.003). Temporal changes in the MA-R ratio did not correlated with mortality. Conclusion: The MA-R ratio provides a snapshot of early clot function, focusing specifically on thrombin burst and clot strength. In our observation, patients with the lowest MA-R time ratio (MA-R1) had significantly increased mortality compared with all other groups (45.5% MA-R1 compared with <25% in MA-R2 to MA-R3, and 9.1% in MA-R4; p < 0.003). Maximum amplitude and R-time may prove highly useful to predict at-risk patients early, when other physiologic indicators are absent.

Keywords: coagulopathy, trauma, thromboelastography, mortality

Procedia PDF Downloads 173
1282 Examining Moderating Mechanisms of Alignment Practice and Community Response through the Self-Construal Perspective

Authors: Chyong-Ru Liu, Wen-Shiung Huang, Wan-Ching Tang, Shan-Pei Chen

Abstract:

Two of the biggest challenges companies involved in sports and exercise information services face are how to strengthen participation in virtual sports/exercise communities and how to increase the ongoing participatoriness of those communities. In the past, relatively little research has explored mechanisms for strengthening alignment practice and community response from the perspective of self-construal, and as such this study seeks to explore the self-construal of virtual sports/exercise communities, the role it plays in the emotional commitment of forming communities, and the factor that can strengthen alignment practice. Moreover, which factor of the emotional commitment of forming virtual communities have the effect of strengthening interference in the process of transforming customer citizenship behaviors? This study collected 625 responses from the two leading websites in terms of fan numbers in the provision of information on road race and marathon events in Taiwan, with model testing conducted through linear structural equation modelling and the bootstrapping technique to test the proposed hypotheses. The results proved independent construal had a stronger positive direct effect on affective commitment to fellow customers than did interdependent construal, and the influences of affective commitment to fellow customers in enhancing customer citizenship behavior. Public self-consciousness moderates the relationships among independent self-construal and interdependent self-construal on effective commitment to fellow customers. Perceived playfulness moderates the relationships between effective commitment to fellow customers and customer citizenship behavior. The findings of this study provide significant insights for the researchers and related organizations. From the theoretical perspective, this is empirical research that investigated the self-construal theory and responses (i.e., affective commitment to fellow customers, customer citizenship behavior) in virtual sports/exercise communities. We further explore how to govern virtual sports/exercise community participants’ heterogeneity through public self-consciousness mechanism to align participants’ affective commitment. Moreover, perceived playfulness has the effect of strengthening effective commitment to fellow customers with customer citizenship behaviors. The results of this study can provide a foundation for the construction of future theories and can be provided to related organizations for reference in their planning of virtual communities.

Keywords: self-construal theory, public self-consciousness, affective commitment, customer citizenship behavior

Procedia PDF Downloads 105
1281 The School Governing Council as the Impetus for Collaborative Education Governance: A Case Study of Two Benguet Municipalities in the Highlands of Northern Philippines

Authors: Maria Consuelo Doble

Abstract:

For decades, basic public education in the Philippines has been beleaguered by a governance scenario of multi-layered decision-making and the lack of collaboration between sectors in addressing issues on poor access to schools, high dropout rates, low survival rates, and poor student performance. These chronic problems persisted despite multiple efforts making it appear that the education system is incapable of reforming itself. In the mountainous rural towns of La Trinidad and Tuba, in the province of Benguet in Northern Philippines, collaborative education governance was catalyzed by the intervention of Synergeia Foundation, a coalition made up of individuals, institutions and organizations that aim to improve the quality of education in the Philippines. Its major thrust is to empower the major stakeholders at the community level to make education work by building the capacities of School Governing Councils (SGCs). Although mandated by the Department of Education in 2006, the SGCs in Philippine public elementary schools remained dysfunctional. After one year of capacity-building by Synergeia Foundation, some SGCs are already exhibiting active community-based multi-sectoral collaboration, while there are many that are not. With the myriad of factors hindering collaboration, Synergeia Foundation is now confronted with the pressing question: What are the factors that promote collaborative governance in the SGCs so that they can address the education-related issues that they are facing? Using Emerson’s (2011) framework on collaborative governance, this study analyzes the application of collaborative governance by highly-functioning SGCs in the public elementary schools of Tuba and La Trinidad. Findings of this action research indicate how the dynamics of collaboration composed of three interactive and iterative components – principled engagement, shared motivation and capacity for joint action – have resulted in meaningful short-term impact such as stakeholder engagement and decreased a number of dropouts. The change in the behavior of stakeholders is indicative of adaptation to a more collaborative approach in governing education in Benguet highland settings such as Tuba and La Trinidad.

Keywords: basic public education, Benguet highlands, collaborative governance, School Governing Council

Procedia PDF Downloads 290
1280 A Study on Inverse Determination of Impact Force on a Honeycomb Composite Panel

Authors: Hamed Kalhori, Lin Ye

Abstract:

In this study, an inverse method was developed to reconstruct the magnitude and duration of impact forces exerted to a rectangular carbon fibre-epoxy composite honeycomb sandwich panel. The dynamic signals captured by Piezoelectric (PZT) sensors installed on the panel remotely from the impact locations were utilized to reconstruct the impact force generated by an instrumented hammer through an extended deconvolution approach. Two discretized forms of convolution integral are considered; the traditional one with an explicit transfer function and the modified one without an explicit transfer function. Deconvolution, usually applied to reconstruct the time history (e.g. magnitude) of a stochastic force at a defined location, is extended to identify both the location and magnitude of the impact force among a number of potential impact locations. It is assumed that a number of impact forces are simultaneously exerted to all potential locations, but the magnitude of all forces except one is zero, implicating that the impact occurs only at one location. The extended deconvolution is then applied to determine the magnitude as well as location (among the potential ones), incorporating the linear superposition of responses resulted from impact at each potential location. The problem can be categorized into under-determined (the number of sensors is less than that of impact locations), even-determined (the number of sensors equals that of impact locations), or over-determined (the number of sensors is greater than that of impact locations) cases. For an under-determined case, it comprises three potential impact locations and one PZT sensor for the rectangular carbon fibre-epoxy composite honeycomb sandwich panel. Assessments are conducted to evaluate the factors affecting the precision of the reconstructed force. Truncated Singular Value Decomposition (TSVD) and the Tikhonov regularization are independently chosen to regularize the problem to find the most suitable method for this system. The selection of optimal value of the regularization parameter is investigated through L-curve and Generalized Cross Validation (GCV) methods. In addition, the effect of different width of signal windows on the reconstructed force is examined. It is observed that the impact force generated by the instrumented impact hammer is sensitive to the impact locations of the structure, having a shape from a simple half-sine to a complicated one. The accuracy of the reconstructed impact force is evaluated using the correlation co-efficient between the reconstructed force and the actual one. Based on this criterion, it is concluded that the forces reconstructed by using the extended deconvolution without an explicit transfer function together with Tikhonov regularization match well with the actual forces in terms of magnitude and duration.

Keywords: honeycomb composite panel, deconvolution, impact localization, force reconstruction

Procedia PDF Downloads 533
1279 Academic Identities in Transition

Authors: Caroline Selai, Sushrut Jadhav

Abstract:

Background: University College London (UCL), the first secular university in England to admit students regardless of their religion and gender, has nearly 29,000 students of which approximately 30% are international students. The UCL Cultural Consultation Service (CCS) for staff and students is a unique service that provides assistance to staff and students experiencing challenges in their teaching, enabling, support work or studies which they believe may have a cultural component. The service provides one-to-one and group consultations, lectures, seminars, ‘grand rounds’, interactive workshops and bespoke interventions. Data: This paper presents a content analysis of CCS referrals over the last 36 months. We focus on the experience of international students, many of whom experience not only a challenge to their academic identity but also a profound challenge to their personal cultural identity. We also present 3 vignettes to illustrate how students interpret, accept, contest and resist changes in their cultural and academic identity. Discussion: This paper highlights (i) how students from collectivist cultures attempt to assimilate within an individualistic, highly competitive western university that is bound by its own institutional norms; (ii) problems in negotiating challenges at the interface of culture and gender (iii) the impact of culturally different hierarchies of power, discrimination and authority and (iv) the significance of earlier traumatic and kinship conflicts. Many international students’ social identities are shaped by their cultural and family scripts. A large number have been taught that their teachers are to be revered and their teachings unchallenged. This is at odds with quintessential goal of the western university to encourage healthy scepticism and hone students’ critical thinking skills. Conclusions: Pupil-teacher ‘cultural transference’ and shifts in cultural academic identities of students underscore critical aspects of developmental and learning challenges for students. Staff-student cultural conflict requires a broader, systemic analysis of students, staff and the wider organisation. Our findings challenge Eurocentric psychodynamic concepts such as the nature of parent-child relationship in Western Europe. We argue for a broader, more inclusive approach to develop both effective pedagogic skills in euro-american academic institutions and culturally- appropriate psychodynamic theory to underpin counselling international students.

Keywords: academic identity, cultural transference, cultural consultation in higher education, cultural formulation, cultural identity.

Procedia PDF Downloads 460
1278 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 489
1277 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area

Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert

Abstract:

Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.

Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle

Procedia PDF Downloads 190
1276 Cardiac Pacemaker in a Patient Undergoing Breast Radiotherapy-Multidisciplinary Approach

Authors: B. Petrović, M. Petrović, L. Rutonjski, I. Djan, V. Ivanović

Abstract:

Objective: Cardiac pacemakers are very sensitive to radiotherapy treatment from two sources: electromagnetic influence from the medical linear accelerator producing ionizing radiation- influencing electronics within the pacemaker, and the absorption of dose to the device. On the other hand, patients with cardiac pacemakers at the place of a tumor are rather rare, and single clinic hardly has experience with the management of such patients. The widely accepted international guidelines for management of radiation oncology patients recommend that these patients should be closely monitored and examined before, during and after radiotherapy treatment by cardiologist, and their device and condition followed up. The number of patients having both cancer and pacemaker, is growing every year, as both cancer incidence, as well as cardiac diseases incidence, are inevitably growing figures. Materials and methods: Female patient, age 69, was diagnozed with valvular cardiomyopathy and got implanted a pacemaker in 2005 and prosthetic mitral valve in 1993 (cancer was diagnosed in 2012). She was stable cardiologically and came to radiation therapy department with the diagnosis of right breast cancer, with the tumor in upper lateral quadrant of the right breast. Since she had all lymph nodes positive (28 in total), she had to have irradiated the supraclavicular region, as well as the breast with the tumor bed. She previously received chemotherapy, approved by the cardiologist. The patient was estimated to be with the high risk as device was within the field of irradiation, and the patient had high dependence on her pacemaker. The radiation therapy plan was conducted as 3D conformal therapy. The delineated target was breast with supraclavicular region, where the pacemaker was actually placed, with the addition of a pacemaker as organ at risk, to estimate the dose to the device and its components as recommended, and the breast. The targets received both 50 Gy in 25 fractions (where 20% of a pacemaker received 50 Gy, and 60% of a device received 40 Gy). The electrode to the heart received between 1 Gy and 50 Gy. Verification of dose planned and delivered was performed. Results: Evaluation of the patient status according to the guidelines and especially evaluation of all associated risks to the patient during treatment was done. Patient was irradiated by prescribed dose and followed up for the whole year, with no symptoms of failure of the pacemaker device during, or after treatment in follow up period. The functionality of a device was estimated to be unchanged, according to the parameters (electrode impedance and battery energy). Conclusion: Patient was closely monitored according to published guidelines during irradiation and afterwards. Pacemaker irradiated with the full dose did not show any signs of failure despite recommendations data, but in correlation with other published data.

Keywords: cardiac pacemaker, breast cancer, radiotherapy treatment planning, complications of treatment

Procedia PDF Downloads 436
1275 Controlled Doping of Graphene Monolayer

Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh

Abstract:

We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.

Keywords: graphene, doping, charge transfer, liquid phase exfoliation

Procedia PDF Downloads 62
1274 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 177
1273 Seasonal Short-Term Effect of Air Pollution on Cardiovascular Mortality in Belgium

Authors: Natalia Bustos Sierra, Katrien Tersago

Abstract:

It is currently proven that both extremes of temperature are associated with increased mortality and that air pollution is associated with temperature. This relationship is complex, and in countries with important seasonal variations in weather such as Belgium, some effects can appear as non-significant when the analysis is done over the entire year. We, therefore, analyzed the effect of short-term outdoor air pollution exposure on cardiovascular mortality during the warmer and colder months separately. We used daily cardiovascular deaths from acute cardiovascular diagnostics according to the International Classification of Diseases, 10th Revision (ICD-10: I20-I24, I44-I49, I50, I60-I66) during the period 2008-2013. The environmental data were population-weighted concentrations of particulates with an aerodynamic diameter less than 10 µm (PM₁₀) and less than 2.5 µm (PM₂.₅) (daily average), nitrogen dioxide (NO₂) (daily maximum of the hourly average) and ozone (O₃) (daily maximum of the 8-hour running mean). A Generalized linear model was applied adjusting for the confounding effect of season, temperature, dew point temperature, the day of the week, public holidays and the incidence of influenza-like illness (ILI) per 100,000 inhabitants. The relative risks (RR) were calculated for an increase of one interquartile range (IQR) of the air pollutant (μg/m³). These were presented for the four hottest months (June, July, August, September) and coldest months (November, December, January, February) in Belgium. We applied both individual lag model and unconstrained distributed lag model methods. The cumulative effect of a four-day exposure (day of exposure and three consecutive days) was calculated from the unconstrained distributed lag model. The IQR for PM₁₀, PM₂.₅, NO₂, and O₃ were respectively 8.2, 6.9, 12.9 and 25.5 µg/m³ during warm months and 18.8, 17.6, 18.4 and 27.8 µg/m³ during cold months. The association with CV mortality was statistically significant for the four pollutants during warm months and only for NO₂ during cold months. During the warm months, the cumulative effect of an IQR increase of ozone for the age groups 25-64, 65-84 and 85+ was 1.066 (95%CI: 1.002-1.135), 1.041 (1.008-1.075) and 1.036 (1.013-1.058) respectively. The cumulative effect of an IQR increase of NO₂ for the age group 65-84 was 1.066 (1.020-1.114) during warm months and 1.096 (1.030-1.166) during cold months. The cumulative effect of an IQR increase of PM₁₀ during warm months reached 1.046 (1.011-1.082) and 1.038 (1.015-1.063) for the age groups 65-84 and 85+ respectively. Similar results were observed for PM₂.₅. The short-term effect of air pollution on cardiovascular mortality is greater during warm months for lower pollutant concentrations compared to cold months. Spending more time outside during warm months increases population exposure to air pollution and can, therefore, be a confounding factor for this association. Age can also affect the length of time spent outdoors and the type of physical activity exercised. This study supports the deleterious effect of air pollution on cardiovascular mortality (CV) which varies according to season and age groups in Belgium. Public health measures should, therefore, be adapted to seasonality.

Keywords: air pollution, cardiovascular, mortality, season

Procedia PDF Downloads 164
1272 Modernization of Translation Studies Curriculum at Higher Education Level in Armenia

Authors: A. Vahanyan

Abstract:

The paper touches upon the problem of revision and modernization of the current curriculum on translation studies at the Armenian Higher Education Institutions (HEIs). In the contemporary world where quality and speed of services provided are mostly valued, certain higher education centers in Armenia though do not demonstrate enough flexibility in terms of the revision and amendment of courses taught. This issue is present for various curricula at the university level and Translation Studies related curriculum, in particular. Technological innovations that are of great help for translators have been long ago smoothly implemented into the global Translation Industry. According to the European Master's in Translation (EMT) framework, translation service provision comprises linguistic, intercultural, information mining, thematic, and technological competencies. Therefore, to form the competencies mentioned above, the curriculum should be seriously restructured to meet the modern education and job market requirements, relevant courses should be proposed. New courses, in particular, should focus on the formation of technological competences. These suggestions have been made upon the author’s research of the problem across various HEIs in Armenia. The updated curricula should include courses aimed at familiarization with various computer-assisted translation (CAT) tools (MemoQ, Trados, OmegaT, Wordfast, etc.) in the translation process, creation of glossaries and termbases compatible with different platforms), which will ensure consistency in translation of similar texts and speeding up the translation process itself. Another aspect that may be strengthened via curriculum modification is the introduction of interdisciplinary and Project-Based Learning courses, which will enable info mining and thematic competences, which are of great importance as well. Of course, the amendment of the existing curriculum with the mentioned courses will require corresponding faculty development via training, workshops, and seminars. Finally, the provision of extensive internship with translation agencies is strongly recommended as it will ensure the synthesis of theoretical background and practical skills highly required for the specific area. Summing up, restructuring and modernization of the existing curricula on Translation Studies should focus on three major aspects, i.e., introduction of new courses that meet the global quality standards of education, professional development for faculty, and integration of extensive internship supervised by experts in the field.

Keywords: competencies, curriculum, modernization, technical literacy, translation studies

Procedia PDF Downloads 130
1271 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
1270 Numerical Reproduction of Hemodynamic Change Induced by Acupuncture to ST-36

Authors: Takuya Suzuki, Atsushi Shirai, Takashi Seki

Abstract:

Acupuncture therapy is one of the treatments in traditional Chinese medicine. Recently, some reports have shown the effectiveness of acupuncture. However, its full acceptance has been hindered by the lack of understanding on mechanism of the therapy. Acupuncture applied to Zusanli (ST-36) enhances blood flow volume in superior mesenteric artery (SMA), yielding peripheral vascular resistance – regulated blood flow of SMA dominated by the parasympathetic system and inhibition of sympathetic system. In this study, a lumped-parameter approximation model of blood flow in the systemic arteries was developed. This model was extremely simple, consisting of the aorta, carotid arteries, arteries of the four limbs and SMA, and their peripheral vascular resistances. Here, the individual artery was simplified to a tapered tube and the resistances were modelled by a linear resistance. We numerically investigated contribution of the peripheral vascular resistance of SMA to the systemic blood distribution using this model. In addition to the upstream end of the model, which correlates with the left ventricle, two types of boundary condition were applied; mean left ventricular pressure which correlates with blood pressure (BP) and mean cardiac output which corresponds to cardiac index (CI). We examined it to reproduce the experimentally obtained hemodynamic change, in terms of the ratio of the aforementioned hemodynamic parameters from their initial values before the acupuncture, by regulating the peripheral vascular resistances and the upstream boundary condition. First, only the peripheral vascular resistance of SMA was changed to show contribution of the resistance to the change in blood flow volume in SMA, expecting reproduction of the experimentally obtained change. It was found, however, this was not enough to reproduce the experimental result. Then, we also changed the resistances of the other arteries together with the value given at upstream boundary. Here, the resistances of the other arteries were changed simultaneously in the same amount. Consequently, we successfully reproduced the hemodynamic change to find that regulation of the upstream boundary condition to the value experimentally obtained after the stimulation is necessary for the reproduction, though statistically significant changes in BP and CI were not observed in the experiment. It is generally known that sympathetic and parasympathetic tones take part in regulation of whole the systemic circulation including the cardiac function. The present result indicates that stimulation to ST-36 could induce vasodilation of peripheral circulation of SMA and vasoconstriction of that of other arteries. In addition, it implies that experimentally obtained small changes in BP and CI induced by the acupuncture may be involved in the therapeutic response.

Keywords: acupuncture, hemodynamics, lumped-parameter approximation, modeling, systemic vascular resistance

Procedia PDF Downloads 223
1269 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis

Authors: Sarai Guerrero, Lijia Liu

Abstract:

Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.

Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate

Procedia PDF Downloads 133
1268 A Concept Study to Assist Non-Profit Organizations to Better Target Developing Countries

Authors: Malek Makki

Abstract:

The main purpose of this research study is to assist non-profit organizations (NPOs) to better segment a group of least developing countries and to optimally target the most needier areas, so that the provided aids make positive and lasting differences. We applied international marketing and strategy approaches to segment a sub-group of candidates among a group of 151 countries identified by the UN-G77 list, and furthermore, we point out the areas of priorities. We use reliable and well known criteria on the basis of economics, geography, demography and behavioral. These criteria can be objectively estimated and updated so that a follow-up can be performed to measure the outcomes of any program. We selected 12 socio-economic criteria that complement each other: GDP per capita, GDP growth, industry value added, export per capita, fragile state index, corruption perceived index, environment protection index, ease of doing business index, global competitiveness index, Internet use, public spending on education, and employment rate. A weight was attributed to each variable to highlight the relative importance of each criterion within the country. Care was taken to collect the most recent available data from trusted well-known international organizations (IMF, WB, WEF, and WTO). Construct of equivalence was carried out to compare the same variables across countries. The combination of all these weighted estimated criteria provides us with a global index that represents the level of development per country. An absolute index that combines wars and risks was introduced to exclude or include a country on the basis of conflicts and a collapsing state. The final step applied to the included countries consists of a benchmarking method to select the segment of countries and the percentile of each criterion. The results of this study allowed us to exclude 16 countries for risks and security. We also excluded four countries because they lack reliable and complete data. The other countries were classified per percentile thru their global index, and we identified the needier and the areas where aids are highly required to help any NPO to prioritize the area of implementation. This new concept is based on defined, actionable, accessible and accurate variables by which NPO can implement their program and it can be extended to profit companies to perform their corporate social responsibility acts.

Keywords: developing countries, international marketing, non-profit organization, segmentation

Procedia PDF Downloads 302
1267 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 185
1266 Circadian Rhythmic Expression of Choroid Plexus Membrane Transport Proteins

Authors: Rafael Mineiro, André Furtado, Isabel Gonçalves, Cecília Santos, Telma Quintela

Abstract:

The choroid plexus (CP) epithelial cells form the blood-cerebrospinal fluid barrier. This barrier is highly important for brain protection by physically separating the blood from the cerebrospinal fluid, controlling the trafficking of molecules, including therapeutic drugs, from blood to the brain. The control is achieved by tight junctions between epithelial cells, membrane receptors and transport proteins from the solute carrier and ATP-binding cassette superfamily on the choroid plexus epithelial cells membrane. Previous research of our group showed a functional molecular clock in the CP. The key findings included a rhythmic expression of Bmal1, Per2, and Cry2 in female rat CP. and a rhythmic expression of Cry2 and Per2 in male rat CP. Furthermore, in cultured rat CP epithelial cells we already showed that 17β-estradiol upregulates the expression of Bmal1 and Per1, where the Per1 and Per2 upregulation was abrogated in the presence of the estrogen receptors antagonist ICI. These findings, together with the fact that the CP produces robust rhythms, prompt us to understand the impact of sex hormones and circadian rhythms in CP drug transporters expression, which is a step towards the development and optimization of therapeutic strategies for efficiently delivering drugs to the brain. For that, we analyzed the circadian rhythmicity of the Abcb1, Abcc2, Abcc4 Abcg2, and Oat3 drug transporters at the CP of male and female rats. This analysis was performed by accessing the gene expression of the mentioned transporters at 4 time points by RT-qPCR and the presence of rhythms was evaluated by the CircWave software. Our findings showed a rhythmic expression of Abcc1 in the CP of male rats, of Abcg2 in female rats, and of Abcc4 and Oat3 in both male and female rats with an almost antiphasic pattern between male and female rats for Abcc4. In conclusion, these findings translated to a functional point of view may account for daily variations in brain permeability for several therapeutic drugs, making our findings important data for the future establishment and development of therapeutic strategies according to daytime.

Keywords: choroid plexus, circadian rhythm, membrane transporters, sex hormones

Procedia PDF Downloads 11
1265 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust

Procedia PDF Downloads 129
1264 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 217
1263 Acrylic Microspheres-Based Microbial Bio-Optode for Nitrite Ion Detection

Authors: Siti Nur Syazni Mohd Zuki, Tan Ling Ling, Nina Suhaity Azmi, Chong Kwok Feng, Lee Yook Heng

Abstract:

Nitrite (NO2-) ion is used prevalently as a preservative in processed meat. Elevated levels of nitrite also found in edible bird’s nests (EBNs). Consumption of NO2- ion at levels above the health-based risk may cause cancer in humans. Spectrophotometric Griess test is the simplest established standard method for NO2- ion detection, however, it requires careful control of pH of each reaction step and susceptible to strong oxidants and dyeing interferences. Other traditional methods rely on the use of laboratory-scale instruments such as GC-MS, HPLC and ion chromatography, which cannot give real-time response. Therefore, it is of significant need for devices capable of measuring nitrite concentration in-situ, rapidly and without reagents, sample pretreatment or extraction step. Herein, we constructed a microspheres-based microbial optode for visual quantitation of NO2- ion. Raoutella planticola, the bacterium expressing NAD(P)H nitrite reductase (NiR) enzyme has been successfully extracted by microbial technique from EBN collected from local birdhouse. The whole cells and the lipophilic Nile Blue chromoionophore were physically absorbed on the photocurable poly(n-butyl acrylate-N-acryloxysuccinimide) [poly (nBA-NAS)] microspheres, whilst the reduced coenzyme NAD(P)H was covalently immobilized on the succinimide-functionalized acrylic microspheres to produce a reagentless biosensing system. Upon the NiR enzyme catalyzes the oxidation of NAD(P)H to NAD(P)+, NO2- ion is reduced to ammonium hydroxide, and that a colour change from blue to pink of the immobilized Nile Blue chromoionophore is perceived as a result of deprotonation reaction increasing the local pH in the microspheres membrane. The microspheres-based optosensor was optimized with a reflectance spectrophotometer at 639 nm and pH 8. The resulting microbial bio-optode membrane could quantify NO2- ion at 0.1 ppm and had a linear response up to 400 ppm. Due to the large surface area to mass ratio of the acrylic microspheres, it allows efficient solid state diffusional mass transfer of the substrate to the bio-recognition phase, and achieve the steady state response as fast as 5 min. The proposed optical microbial biosensor requires no sample pre-treatment step and possesses high stability as the whole cell biocatalyst provides protection to the enzymes from interfering substances, hence it is suitable for measurements in contaminated samples.

Keywords: acrylic microspheres, microbial bio-optode, nitrite ion, reflectometric

Procedia PDF Downloads 445