Search results for: audio/visual peer learning
3176 Relation between Chronic Mechanical Low Back Pain and Hip Rotation
Authors: Mohamed M. Diab, Koura G. Mohamed, A. Balbaa, Radwan Sh. Ahamed
Abstract:
Background: Chronic mechanical low back pain (CMLBP) is the most common complaint of the working-age population. Mechanical low back pain is often a chronic, dull, aching pain of varying intensity that affects the lower spine. In the current proposal the hip rotation-CMLBP relationship is based on that limited hip motion will be compensated by motion in the lumbopelvic region and this increase force translates to the lumbar spine. The purpose of this study was to investigate if there a relationship between chronic mechanical low back pain (CMLBP) and hip medial and lateral rotation (peak torque and Range of motion (ROM) in patients with CMLBP. Methods: Sixty patients with CMLBP diagnosed by an orthopedist participated in the current study after signing a consent form. Their mean of age was (23.76±2.39) years, mean of weight (71.8±12.7) (Kg), mean of height (169.65±7.49) (Cm) and mean of BMI (25.5±3.86) (Kg/m2). Visual Analogue Scale (VAS) was used to assess pain. Fluid Filled Inclinometer was used to measure Hip rotation ROM (medial and lateral). Isokinetic Dynamometer was used to measure peak torque of hip rotators muscles (medial and lateral), concentric peak torque with tow Isokinetic speeds (60ᵒ/sec and 180ᵒ/sec) was selected to measure peak torque. Results: The results of this study demonstrated that there is poor relationship between pain and hip external rotation ROM, also there is poor relation between pain and hip internal rotation ROM. There is poor relation between pain and hip internal rotators peak torque and hip external rotators peak torque in both speeds. Conclusion: Depending on the current study it is not recommended to give an importance to hip rotation in treating Chronic Mechanical Low Back Pain.Keywords: hip rotation ROM, hip rotators strength, low back pain, chronic mechanical
Procedia PDF Downloads 3143175 Experimental Model of the Behaviour of Bolted Angles Connections with Stiffeners
Authors: Abdulkadir Cuneyt Aydin, Mahyar Maali, Mahmut Kılıç, Merve Sağıroğlu
Abstract:
The moment-rotation curves of semi-rigid connections are the visual expressions of the actual behaviour discovered in beam-to-column connections experiments. This research was to determine the behaviour of the connection using full-scale experiments under statically loaded. The stiffeners which are typically attached to beams web or flanges to control local buckling and to increase shear capacity in a beam web are almost always used in modern designs. They must also provide sufficient moment of inertia to control out of plane deformations. This study was undertaken to analyse the influence of stiffeners in the angles and beams on the behaviour of the beam-to-column joints. In addition, the aim was to provide necessary data to improve the Eurocode 3. The main parameters observed are the evolution of the resistance, the stiffness, the rotation capacity, the ductility of a joint and the Energy Dissipation. Experimental tests show that the plastic flexural resistance and the energy dissipation increased when thickness of stiffener beam, thickness of stiffener angles were increased in the test specimens. And also, while stiffness of joints, the bending moment capacity and the maximum bending moment increased with the increasing thickness of stiffener beam, these values decreased with the increasing thickness of stiffener angles. So, it is observed that the beam stiffener of angles are important in improving resistance moment of beam-to-column semi-rigid joints.Keywords: bolted angles connection, semi-rigid joints, ductility of a joint, angles and beams stiffeners
Procedia PDF Downloads 4643174 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 3003173 Tasting and Touring: Chinese Consumers’ Experiences with Australian Wine and Winery Tour: A Case Study of Sirromet Wines, Queensland
Authors: Ning Niu
Abstract:
The study hinges on consumer taste, food industry (wine production) and cultural consumption (vineyard tourism) which are related to the Chinese market, consumers, and visitors traveling to Australian vineyards. The research topic can be summed up as: the economic importance of the Chinese market on Australian wine production; the economic importance of the Chinese market have an impact on how Australian wine is produced or packaged; the impact of mass Chinese wine tourism on Australian vineyards; the gendered and cultured experience of wine tourism for Chines visitors. This study aims to apply the theories of Pierre Bourdieu into the research in food industry and cultural consumption; investigate Chinese experiences with Australian wine products and vineyard tours; to explore the cultural, gendered and class influences on their experiences. The academic background covers the concepts of habitus, taste, capital proposed by Pierre Bourdieu along with long-lasting concepts within China’s cultural context including mianzi (face, dignity/honor/hierarchy) and guanxi (connections/social network), in order to develop new perspectives to study the tastes of Chinese tourists coming to Australia for wine experiences. The documents cited from Australian government or industries will be interpreted, and the analysis of data will constitute the economic background for this current study. The study applies qualitative research and draws from the fieldwork, choosing ethnographic observation, interviews, personal experiences and discursive analysis of government documents and tourism documents. The expected sample size includes three tourism professionals, two or three local Australian wine producers, and 20 to 30 Chinese wine consumers and visitors travelling to Australian vineyards. An embodied ethnography will be used to observe the Chinese participants’ feelings, thoughts, and experiences of their engagement with Australian wine and vineyards. The researcher will interview with Chinese consumers, tourism professionals, and Australian winemakers to collect primary data. Note-taking, picture-taking, and audio-recording will be adopted with informants’ permissions. Personal or group interview will be last for 30 and 60 minutes respectively. Personal experiences of the researcher have been analyzed to respond to some research questions, and have accumulated part of primary data (e.g., photos and stories) to discover how 'mianzi' and 'guanxi' influence Australian wine and tourism industries to meet the demands’ of Chinese consumers. At current stage, the secondary data from analysis of official and industrial documents has proved the economic importance of Chinese market is influencing Australian wine and tourism industries. And my own experiences related to this study, in some sense, has proved the Chinese cultural concepts (mianzi and guanxi) are influencing the Australian wine production and package along with vineyard tours. Future fieldwork will discover more in this research realm, contribute more to knowledge.Keywords: habitus, taste, capital, mianzi, guanxi
Procedia PDF Downloads 1333172 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections
Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang
Abstract:
Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling
Procedia PDF Downloads 1623171 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 1593170 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1823169 Effects of Bariatric Surgery on Preventing the Progression of Diabetic Retinopathy
Authors: Yunzi Chen, James Laybourne, Sarah Steven, Peter Carey, David Steel, Maria Sandinha
Abstract:
Introduction: Bariatric surgery is popular with the rising incidence of obesity. Its well-known benefits include significant and rapid glycaemic control. However, cases of paradoxical worsening in diabetic retinopathy (DR) despite improved glycaemic control have been reported. Purpose: clarification on the evolution of diabetic retinopathy after bariatric surgery. Method: retrospective study of 40 patients with Type 2 diabetes who underwent bariatric surgery in a UK specialist bariatric unit between 2009 and 2011. Pre-operative and post-operative visual acuity (VA), weight, HbA1c and annual DRSS screening results were analysed. Median follow up was 50 months. Results: No significant change in VA was found during the post-operative period. 85% of patients improved HbA1c post-operatively of which 53% achieved non-diabetic HbA1c of <6.1% - despite this, 2 patients developed new DR. First post-operative screening showed 80% of patients experienced no change, 8% improved but 13% of patients developed new DR (1 case with sight-threatening maculopathy). 80% of these cases persisted up to 24 months. The proportion of patients developing new or worse DR fluctuated over time, peaking at the 3rd annual screening with 26% (15% regressed, 56% stable). The probability of developing new or worse DR postoperatively was significantly associated with a high pre-operative HbA1c (>8%) and male gender. Conclusions: bariatric surgery does not guarantee long-term improvement or prevention of DR. Asymptomatic changes in DR occurred up to 5 years postoperatively. We therefore consider it prudent to continue screening in this cohort of patients.Keywords: bariatric surgery, diabetic retinopathy, obesity, type 2 diabetes mellitus
Procedia PDF Downloads 2773168 Analytical Study and Conservation Processes of a Wooden Coffin of Middel Kingdom, Ancient Egypt
Authors: Mohamed Ahmed Abd El Kader
Abstract:
This paper describes the conservation processes of an Ancient Egyptian wooden coffin dating back to the Middle Kingdom, ancient Egypt, using several scientific and analytical methods in order to provide a deeper understanding of the deterioration status and a greater awareness of how well preserved the object is. Visual observation and 2D Programs, as well as Optical Microscopy (OM), Environmental scanning Electron Microscopy (ESEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used in our study. The identification of wood species and the composition of the pigments and previous restoration materials were made. The coffin was previously conserved and stored in improper conditions, which led to its further deterioration; the surface of the lid dust, which obscured the decorations as well as all necessary restoration work was promptly carried out as soon as the coffin was transferred from the display hall from the Egyptian Museum to the Wood Conservation Laboratory of the Grand Egyptian Museum-Conservation Center (GEM-CC). The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which was considered when applying the conservation plan. Conservation procedures have been applied with high accuracy to conserve the coffin including cleaning, consolidation of fragile painted layers, and the wooden boards forming the sides of the coffin were reassembled in their original positions. The materials and methods that were applied were extremely effective in stability and reinforcement of the coffin without harmfulness to the original materials and the coffin was successfully conserved and ready to display in the Grand Egyptian Museum (GEM).Keywords: coffin, middle kingdom, deterioration, 2d program
Procedia PDF Downloads 573167 An Investigation into the Views of Gifted Children on the Effects of Computer and Information Technologies on Their Lives and Education
Authors: Ahmet Kurnaz, Eyup Yurt, Ümit Çiftci
Abstract:
In this study, too, an attempt was made to reveal the place and effects of information technologies on the lives and education of gifted children based on the views of gifted. To this end, the effects of information technologies on gifted are general skills, technology use, academic and social skills, and cooperative and personal skills were investigated. These skills were explored depending on whether or not gifted had their own computers, had internet connection at home, or how often they use the internet, average time period they spent at the computer, how often they played computer games and their use of social media. The study was conducted using the screening model with a quantitative approach. The sample of the study consisted of 129 gifted attending 5-12th classes in 12 provinces in different regions of Turkey. 64 of the participants were female while 65 were male. The research data were collected using the using computer of gifted and information technologies (UCIT) questionnaire which was developed by the researchers and given its final form after receiving expert view. As a result of the study, it was found that UCIT use improved foreign language speaking skills of gifted, enabled them to get to know and understand different cultures, and made use of computer and information technologies while they study. At the end of the study these result were obtained: Gifted have positive idea using computer and communication technology. There are differences whether using the internet about the ideas UCIT. But there are not differences whether having computer, inhabited city, grade level, having internet at home, daily and weekly internet usage durations, playing the computer and internet game, having Facebook and Twitter account about the UCIT. UCIT contribute to the development of gifted vocabulary, allows knowing and understand different cultures, developing foreign language speaking skills, gifted do not give up computer when they do their homework, improve their reading, listening, understanding and writing skills in a foreign language. Gifted children want to have transition to the use of tablets in education. They think UCIT facilitates doing their homework, contributes learning more information in a shorter time. They'd like to use computer-assisted instruction programs at courses. They think they will be more successful in the future if their computer skills are good. But gifted students prefer teacher instead of teaching with computers and they said that learning can be run from home without going to school.Keywords: gifted, using computer, communication technology, information technologies
Procedia PDF Downloads 3933166 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry
Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc
Abstract:
Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning
Procedia PDF Downloads 5233165 Age and Second Language Acquisition: A Case Study from Maldives
Authors: Aaidha Hammad
Abstract:
The age a child to be exposed to a second language is a controversial issue in communities such as the Maldives where English is taught as a second language. It has been observed that different stakeholders have different viewpoints towards the issue. Some believe that the earlier children are exposed to a second language, the better they learn, while others disagree with the notion. Hence, this case study investigates whether children learn a second language better when they are exposed at an earlier age or not. The spoken and written data collected confirm that earlier exposure helps in mastering the sound pattern and speaking fluency with more native-like accent, while a later age is better for learning more abstract and concrete aspects such as grammar and syntactic rules.Keywords: age, fluency, second language acquisition, development of language skills
Procedia PDF Downloads 4303164 Vertebral Pain Features in Women of Different Age Depending on Body Mass Index
Authors: Vladyslav Povoroznyuk, Tetiana Orlуk, Nataliia Dzerovych
Abstract:
Introduction: Back pain is an extremely common health care problem worldwide. Many studies show a link between an obesity and risk of lower back pain. The aim is to study correlation and peculiarities of vertebral pain in women of different age depending on their anthropometric indicators. Materials: 1886 women aged 25-89 years were examined. The patients were divided into groups according to age (25-44, 45-59, 60-74, 75-89 years old) and body mass index (BMI: to 18.4 kg/m2 (underweight), 18.5-24.9 kg/m2 (normal), 25-30 kg/m2 (overweight) and more than 30.1 kg/m2 (obese). Methods: The presence and intensity of pain was evaluated in the thoracic and lumbar spine using a visual analogue scale (VAS). BMI is calculated by the standard formula based on body weight and height measurements. Statistical analysis was performed using parametric and nonparametric methods. Significant changes were considered as p <0.05. Results: The intensity of pain in the thoracic spine was significantly higher in the underweight women in the age groups of 25-44 years (p = 0.04) and 60-74 years (p=0.005). The intensity of pain in the lumbar spine was significantly higher in the women of 45-59 years (p = 0.001) and 60-74 years (p = 0.0003) with obesity. In the women of 45-74 years BMI was significantly positively correlated with the level of pain in the lumbar spine. Obesity significantly increases the relative risk of pain in the lumbar region (RR=0.07 (95% CI: 1.03-1.12; p=0.002)), while underweight significantly increases the risk of pain in the thoracic region (RR=1.21 (95% CI: 1.00-1.46; p=0.05)). Conclusion: In women, vertebral pain syndrome may be related to the anthropometric characteristics (e.g., BMI). Underweight may indirectly influence the development of pain in the thoracic spine and increase the risk of pain in this part by 1.21 times. Obesity influences the development of pain in the lumbar spine increasing the risk by 1.07 times.Keywords: body mass index, age, pain in thoracic and lumbar spine, women
Procedia PDF Downloads 3673163 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1103162 Symphony of Healing: Exploring Music and Art Therapy’s Impact on Chemotherapy Patients with Cancer
Authors: Sunidhi Sood, Drashti Narendrakumar Shah, Aakarsh Sharma, Nirali Harsh Panchal, Maria Karizhenskaia
Abstract:
Cancer is a global health concern, causing a significant number of deaths, with chemotherapy being a standard treatment method. However, chemotherapy often induces side effects that profoundly impact the physical and emotional well-being of patients, lowering their overall quality of life (QoL). This research aims to investigate the potential of music and art therapy as holistic adjunctive therapy for cancer patients undergoing chemotherapy, offering non-pharmacological support. This is achieved through a comprehensive review of existing literature with a focus on the following themes, including stress and anxiety alleviation, emotional expression and coping skill development, transformative changes, and pain management with mood upliftment. A systematic search was conducted using Medline, Google Scholar, and St. Lawrence College Library, considering original, peer-reviewed research papers published from 2014 to 2023. The review solely incorporated studies focusing on the impact of music and art therapy on the health and overall well-being of cancer patients undergoing chemotherapy in North America. The findings from 16 studies involving pediatric oncology patients, females affected by breast cancer, and general oncology patients show that music and art therapies significantly reduce anxiety (standardized mean difference: -1.10) and improve perceived stress (median change: -4.0) and overall quality of life in cancer patients undergoing chemotherapy. Furthermore, music therapy has demonstrated the potential to decrease anxiety, depression, and pain during infusion treatments (average changes in resilience scale: 3.4 and 4.83 for instrumental and vocal music therapy, respectively). This data calls for consideration of the integration of music and art therapy into supportive care programs for cancer patients undergoing chemotherapy. Moreover, it provides guidance to healthcare professionals and policymakers, facilitating the development of patient-centered strategies for cancer care in Canada. Further research is needed in collaboration with qualified therapists to examine its applicability and explore and evaluate patients' perceptions and expectations in order to optimize the therapeutic benefits and overall patient experience. In conclusion, integrating music and art therapy in cancer care promises to substantially enhance the well-being and psychosocial state of patients undergoing chemotherapy. However, due to the small population size considered in existing studies, further research is needed to bridge the knowledge gap and ensure a comprehensive, patient-centered approach, ultimately enhancing the quality of life (QoL) for individuals facing the challenges of cancer treatment.Keywords: anxiety, cancer, chemotherapy, depression, music and art therapy, pain management, quality of life
Procedia PDF Downloads 803161 Balance Rigor, Relevance and Socio-Emotional Learning in Math
Authors: Abimbola Akintounde
Abstract:
Supporting the social and emotional needs of young adolescents has become an emergent concern for schools around the world. Yet educators remain in a dilemma regarding the optimum approach for integrating social and emotional learning (SEL) into their content area instruction. The purpose of this study was to explore the perception of secondary students regarding their schoolwide SEL interventions. Twenty-four International Baccalaureate students in a final year mathematics course at an American Public Secondary School near Washington D. C. were randomly selected for participation in this study via an online electronic survey. The participants in this study used Likert-scale items to rate the effectiveness of the socio-emotional and character development programs being implemented at their schools. Respondents also ranked their preferred mode of delivery of social and emotional support programs. About 71% of the teenagers surveyed preferred SEL support rendered via interactive team-building activities and games, 42% of the high school students in the study ranked focus group discussions as their preferred format for SEL interventions, while only 13% of the respondents in the study regarded lectures and presentations as their preferred mode of SEL delivery. About one-fourth of the study participants agreed that explicit instruction was critical to enhancing students’ wellness, 79% agreed that SEL programs should foster less teacher talk, while 88% of the students indicated that student engagement was critical to their mental health. Eighty percent of the teenagers surveyed decried that the focus of their school-wide social and emotional programs was poorly prioritized. About two-thirds of the students agreed that social justice and equity issues should be embedded in their schools’ advisory programs. More than half of the respondents agitated for strategies for managing stress and their school workload. About 54% of the respondents also clamored for SEL programs that reinforce emotion regulation and coping strategies for anxiety. Based on the findings of this study, recommendations were proffered for best practices in the design and implementation of effective learner-friendly social and emotional development interventions.Keywords: SEL, math anxiety, student support, emotion regulation, social awareness, self awareness, self management, relationship building
Procedia PDF Downloads 763160 Study of the Allelopathic Effects of Certain Aromatic Plants on Grapevines
Authors: Tinatin Shengelia, Mzia Beruashvili
Abstract:
In organic farming, including organic viticulture, biodiversity plays a crucial role. Properly selected ‘companion’ and helper plants create favorable conditions for the growth and development of the main crop. Additionally, they can provide protection from pests and diseases, suppress weeds, improve the crop’s visual and taste characteristics, enhance nutrient absorption from the soil, and, as a result of all these factors, increase yields. The use of companion plants is particularly relevant for organic farms, where the range of pesticides and fertilizers is significantly restricted by organic regulations, and they must be replaced with alternative, environmentally safe methods. Therefore, the aim of this research was to study the allelopathic effects of companion aromatic plants on grapevines. The research employed methods used in organic farming and the biological control of harmful organisms. The experiments were conducted in control and experimental plots, each with three replications on equal areas (50 m²). The allelopathic potential of medicinal hyssop (Hyssopus officinalis), basil (Ocimum basilicum), marigold or Imeretian saffron (Tagetes patula), and lavender (Lavandula angustifolia L.) was studied in vineyards located in the Mtskheta-Mtianeti and Kakheti regions. The impact of these plants on grapevines (Vitis vinifera L.) (variety Muscat petitgrain), their growth and development according to the BBCH scale, yields, and diseases caused by certain pathogenic microorganisms (downy mildew, powdery mildew, anthracnose) were determined. Additionally, the biological, agricultural, and economic efficiency of using these companion plants was assessed.Keywords: organic farming, biodiversity, allelopathy, aromatic plants
Procedia PDF Downloads 253159 BERT-Based Chinese Coreference Resolution
Authors: Li Xiaoge, Wang Chaodong
Abstract:
We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.Keywords: BERT, coreference resolution, deep learning, nature language processing
Procedia PDF Downloads 2223158 Climate Change and Perceived Socialization: The Role of Parents’ Climate Change Coping Style and Household Communication
Authors: Estefanya Vazquez-Casaubon, Veroline Cauberghe, Dieneke Van de Sompel, Hayley Pearce
Abstract:
Working together to reduce the anthropogenic impact should be a collective action, including effort within the household. In the matter, children are considered to have an important role in influencing the household to reduce the environmental impact through reversed socialization where children motivate and increase the concern of the parents towards environmental protection. Previous studies reveal that communication between parents and kids is key for effective reversed socialization. However, multiple barriers have been identified in the literature, such as the acceptance of the influence from the kids, the properties of the communication, among other factors. Based on the previous evidence, the present study aims to assess barriers and facilitators of communication at the household level that have an impact on reversed socialization. More precisely, the study examines how parents’ climate change coping strategy (problem-focused, meaning-focused, disregarding) influences the valence and the type of the communication related to climate change, and eventually the extent to which they report their beliefs and behaviours to be influenced by the pro-environmental perspectives of their children; i.e. reversed socialization. Via an online survey, 723 Belgian parents self-reported on communication about environmental protection and risk within their household (such as the frequency of exchange about topics related to climate change sourced from school, the household rules, imparting knowledge to the children, and outer factors like media or peer pressure, the emotional valence of the communication), their perceived socialization, and personal factors (coping mechanisms towards climate change). The results, using structural equation modelling, revealed that parents applying a problem-solving coping strategy related to climate change, appear to communicate more often in a positive than in a negative manner. Parents with a disregarding coping style towards climate change appear to communicate less often in a positive way within the household. Parents that cope via meaning-making of climate change showed to communicate less often in either a positive or negative way. Moreover, the perceived valence of the communication (positive or negative) influenced the frequency and type of household communication. Positive emotions increased the frequency of the communication overall. However, the direct effect of neither of the coping mechanisms on the reversed socialization was significant. High frequency of communication about the media, environmental views of the household members among other external topics had a positive impact on the perceived socialization, followed by discussions school-related; while parental instructing had a negative impact on the perceived socialization. Moreover, the frequency of communication was strongly affected by the perceived valence of the communication (positive or negative). The results go in line with previous evidence that a higher frequency of communication facilitates reversed socialization. Hence the results outstand how the coping mechanisms of the parents can be either a facilitator when they cope via problem-solving, while parents that disregard might avert frequent communication about climate change at the household.Keywords: communication, parents’ coping mechanisms, environmental protection, household, perceived socialization
Procedia PDF Downloads 883157 Randomized, Controlled Blind Study Comparing Sacroiliac Intra-Articular Steroid Injection to Radiofrequency Denervation for Management of Sacroiliac Joint Pain
Authors: Ossama Salman
Abstract:
Background and objective: Sacroiliac joint pain is a common cause for chronic axial low back pain, with up to 20% prevalence rate. To date, no effective long-term treatment intervention has been embarked on yet. The aim of our study was to compare steroid block to radiofrequency ablation for SIJ pain conditions. Methods: A randomized, blind, study was conducted in 30 patients with sacroiliac joint pain. Fifteen patients received radiofrequency denervation of L4-5 primary dorsal rami and S1-3 lateral sacral branch, and 15 patients received steroid under fluoroscopy. Those in the steroid group who did not respond to steroid injections were offered to cross over to get radiofrequency ablation. Results: At 1-, 3- and 6-months post-intervention, 73%, 60% and 53% of patients, respectively, gained ≥ 50 % pain relief in the radiofrequency (RF) ablation group. In the steroid group, at one month post intervention follow up, only 20% gained ≥ 50 % pain relief, but failed to show any improvement at 3 months and 6 months follow up. Conclusions: Radiofrequency ablation at L4 and L5 primary dorsal rami and S1-3 lateral sacral branch may provide effective and longer pain relief compared to the classic intra-articular steroid injection, in properly selected patients with suspected sacroiliac joint pain. Larger studies are called for to confirm our results and lay out the optimal patient selection and treatment parameters for this poorly comprehended disorder.Keywords: lateral branch denervation, LBD, radio frequency, RF, sacroiliac joint, SIJ, visual analogue scale, VAS
Procedia PDF Downloads 2193156 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.Keywords: gradient boosting, XGBoost, LightGBM, CatBoost, home credit
Procedia PDF Downloads 1773155 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial
Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler
Abstract:
Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training
Procedia PDF Downloads 1193154 Concept-Based Assessment in Curriculum
Authors: Nandu C. Nair, Kamal Bijlani
Abstract:
This paper proposes a concept-based assessment to track the performance of the students. The idea behind this approach is to map the exam questions with the concepts learned in the course. So at the end of the course, each student will know how well he learned each concept. This system will give a self assessment for the students as well as instructor. By analyzing the score of all students, instructor can decide some concepts need to be teaching again or not. The system’s efficiency is proved using three courses from M-tech program in E-Learning technologies and results show that the concept-wise assessment improved the score in final exam of majority students on various courses.Keywords: assessment, concept, examination, question, score
Procedia PDF Downloads 4743153 Perception of People with a Physical Disability towards Those with a Different Kind of Disability
Authors: Monika Skura
Abstract:
People with physical disabilities, as with other people with differences in appearance or style of functioning come under negative social mechanisms. Therefore, it is worth asking what the relationship of the group is, who experience psychosocial effects because of their physical disability, towards people with intellectual disabilities, hearing impairments, visual impairments, mental illnesses, and their own physically disabled group. To analyse the perception of people with a physical disability, the study explores three areas: the acceptance or rejection of society’s stigmatization towards persons with disabilities; the importance of their own experience regarding their disability, in relation to another kind of disability; their level of acceptance to social interactions, in relation to various types of disabilities. The research sample consisted of 90 people with physical disabilities, who suffer from damage to the locomotor system. The data was collected using a questionnaire and the Adjective Check List by H. B. Gough and A. B. Heilbrun. This study utilized focus interviews to develop survey items for the questionnaire. The findings highlight that the response from those who were physically disabled agreed with the opinions of general society, not only with the issue of promoting integrated solutions and offering assistance but also having the same preferences and opinions about specific types of disability. However, their perception regarding their own group was noticeably different from that of general society. In the light of the study, for people with physical disabilities, just as for able-bodied people, it can be challenging to develop a meaningful relationship with people who have disabilities. All forms of disability suffer from negative attitudes and opinions that exist in society. The majority of those who were researched were focused primarily on their own problems, this inevitably hinders the integrity of the entire group, making it more difficult for it to find a cohesive voice, in which to promote their place within society.Keywords: general society’s opinions about disability, people with different kinds of disability, perception, physical disability
Procedia PDF Downloads 2513152 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 853151 The Importance of Student Feedback in Development of Virtual Engineering Laboratories
Authors: A. A. Altalbe, N. W Bergmann
Abstract:
There has been significant recent interest in on-line learning, as well as considerable work on developing technologies for virtual laboratories for engineering students. After reviewing the state-of-the-art of virtual laboratories, this paper steps back from the technology issues to look in more detail at the pedagogical issues surrounding virtual laboratories, and examines the role of gathering student feedback in the development of such laboratories. The main contribution of the paper is a set of student surveys before and after a prototype deployment of a simulation laboratory tool, and the resulting analysis which leads to some tentative guidelines for the design of virtual engineering laboratories.Keywords: engineering education, elearning, electrical engineering, virtual laboratories
Procedia PDF Downloads 3623150 Teachers' Views on Mother Tongue Language Curriculum Development
Authors: Wai Ha Leung
Abstract:
Mother tongue language (MTL) curriculum is core to school education in most countries/regions' school curriculum. Through mother tongue language learning, students are expected to enhance their understanding of the nation's culture and foster the sense of cultural and ethnic identity. However, MTL education in Hong Kong is complicated by the colonial history. This study examines Hong Kong Chinese language teachers' perceptions of MTL education, and the implication on MTL curriculum development. The questionnaire was administrated to 97 teachers, and interviews were carried out on 17 teachers. Usually, MTL is both the tool with which knowledge and skills are taught and learned and the vehicle for students to learn about the traditions of the countries' literature and culture. In Hong Kong, 95% of the population is of Chinese descent. Traditionally, education in China was a mixture of philosophy, history, politics and literacy. Chinese as an MTL subject in pre-colonial Hong Kong has always been assigned the mission of developing students' cultural identity in addition to the development of linguistic proficiency. During the colonial period, the Chinese Language curriculum shifted to be more language skills based with less emphasis on Chinese culture and moral education. After the sovereignty of Hong Kong was returned to China in 1997, although a new curriculum was implemented in 2002, teaching and learning in school as well as public examinations seem to be remaining language skills oriented instead of culturally based. This deviation from the trend of both Chinese traditional education and global mother tongue language education makes some Chinese language teachers feel confused. In addition, there is comment that in general Hong Kong students' Chinese language proficiency is becoming weaker and weaker in recent years. Thus, effectiveness of the skills oriented language curriculum has come under question. How a language teacher views the aims and objectives of the language subject he or she is teaching has a direct effect on the curriculum delivery and pedagogies used. It is, therefore, important to investigate what is the language teachers' perception of MTL education, and whether the current school curriculum can meet the teachers' expectation as well as achieve the aims of MTL education. Given this context, this study explored the views of Hong Kong Chinese language teachers on MTL education. The data indicate that teachers showed a strong resentment towards the current curriculum. Results may have implications on mother tongue language curriculum development.Keywords: Chinese language education, curriculum development, mother tongue language education, teachers' perception
Procedia PDF Downloads 4943149 Snapchat’s Scanning Feature
Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi
Abstract:
The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.Keywords: artificial intelligence, scanning, Snapchat, machine learning
Procedia PDF Downloads 1393148 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 923147 Why Do We Need Hierachical Linear Models?
Authors: Mustafa Aydın, Ali Murat Sunbul
Abstract:
Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure
Procedia PDF Downloads 655