Search results for: traditional similarity transformation model
16178 Book Recommendation Using Query Expansion and Information Retrieval Methods
Authors: Ritesh Kumar, Rajendra Pamula
Abstract:
In this paper, we present our contribution for book recommendation. In our experiment, we combine the results of Sequential Dependence Model (SDM) and exploitation of book information such as reviews, tags and ratings. This social information is assigned by users. For this, we used CLEF-2016 Social Book Search Track Suggestion task. Finally, our proposed method extensively evaluated on CLEF -2015 Social Book Search datasets, and has better performance (nDCG@10) compared to other state-of-the-art systems. Recently we got the good performance in CLEF-2016.Keywords: sequential dependence model, social information, social book search, query expansion
Procedia PDF Downloads 29116177 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 9316176 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 45516175 Revolutionary Solutions for Modeling and Visualization of Complex Software Systems
Abstract:
Existing software modeling and visualization approaches using UML are outdated, which are outcomes of reductionism and the superposition principle that the whole of a system is the sum of its parts, so that with them all tasks of software modeling and visualization are performed linearly, partially, and locally. This paper introduces revolutionary solutions for modeling and visualization of complex software systems, which make complex software systems much easy to understand, test, and maintain. The solutions are based on complexity science, offering holistic, automatic, dynamic, virtual, and executable approaches about thousand times more efficient than the traditional ones.Keywords: complex systems, software maintenance, software modeling, software visualization
Procedia PDF Downloads 40416174 The Effect of Support Program Based on The Health Belief Model on Reproductive Health Behavior in Women with Orthopedic Disabled
Authors: Eda Yakit Ak, Ergül Aslan
Abstract:
The study was conducted using the quasi-experimental design to determine the influence of the nursing support program prepared according to the Health Belief Model on reproductive health behaviors of orthopedically disabled women in the physical therapy and rehabilitation clinic at a university hospital between August 2019-October, 2020. The research sample included 50 women (35 in the control group and 15 in the experimental group with orthopedic disability). A 3-week nursing support program was applied to the experimental group of women. To collect the data, Introductory Information Form and Scale for Determining the Protective Attitudes of Married Women towards Reproductive Health (SDPAMW) were applied. The evaluation was made with a follow-up form for four months. In the first evaluation, the total SDPAMW scores were 119.93±20.59 for the experimental group and 122.20±16.71 for the control group. In the final evaluation, the total SDPAMW scores were 144.27±11.95 for the experimental group and 118.00±16.43 for the control group. The difference between the groups regarding the first and final evaluations for the total SDPAMW scores was statistically significant (p<0.01). In the experimental group, between the first and final evaluations regarding the sub-dimensions of SDPAMW, an increase was found in the behavior of seeing the doctor on reproductive health issues, protection from reproductive organ and breast cancer, general health behaviors to protect reproductive health, and protection from genital tract infections (p<0.05). Consequently, the nursing support program based on the Health Belief Model applied to orthopedically disabled women positively affected reproductive health behaviors.Keywords: orthopedically disabled, woman, reproductive health, nursing support program, health belief model
Procedia PDF Downloads 15216173 The Battle Against Corruption in Indonesia’s Municipalities
Authors: Edy Wahyu Susilo
Abstract:
This research discusses a comparative analysis of various anti-corruption responses of three Indonesian City Governments (Jakarta, Surabaya, and Medan) and completes previous findings on the effectiveness of the city anti-corruption program. Some factors (transparency, accountability, leadership, law enforcement, and bureaucratic reform) have been chosen in this study to diagnose the main role in the success and the failure of anti-corruption programs in these cities. These factors diagnose the relationship between factors and their dominancy, which is then utilized to create the city’s strategic anti-corruption programs. Although this study found leadership had a dominant influence both in encouraging and discouraging the performance of city transformation drastically, however, it is not the only factor that determined the performance of the city in the fight against corruption. It needs other factors as an ideal balancing element to achieve an anti-corruption program, namely KPK’s intervention and public engagement. Based on the dominance factors found, this research then develops an appropriate strategy using a policy evaluation approach to create a real practical guide regardless of the existence of good or bad leadership in the city. This research is expected to be a useful reference for stakeholders, especially the government, as a blueprint to prevent corruption by considering several important steps and guidance in efforts to eradicate corruption in the city, especially in Indonesia.Keywords: intervention, KPK (corruption eradication commission), law enforcements, leadership, policy evaluation
Procedia PDF Downloads 10016172 Legal Allocation of Risks: A Computational Analysis of Force Majeure Clauses
Authors: Farshad Ghodoosi
Abstract:
This article analyzes the effect of supervening events in contracts. Contracts serve an important function: allocation of risks. In spite of its importance, the case law and the doctrine are messy and inconsistent. This article provides a fresh look at excuse doctrines (i.e., force majeure, impracticability, impossibility, and frustration) with a focus on force majeure clauses. The article makes the following contributions: First, it furnishes a new conceptual and theoretical framework of excuse doctrines. By distilling the decisions, it shows that excuse doctrines rests on the triangle of control, foreseeability, and contract language. Second, it analyzes force majeure clauses used by S&P 500 companies to understand the stickiness and similarity of such clauses and the events they cover. Third, using computational and statistical tools, it analyzes US cases since 1810 in order to assess the weight given to the triangle of control, foreseeability, and contract language. It shows that the control factor plays an important role in force majeure analysis, while the contractual interpretation is the least important factor. The Article concludes that it is the standard for control -whether the supervening event is beyond the control of the party- that determines the outcome of cases in the force majeure context and not necessarily the contractual language. This article has important implications on COVID-19-related contractual cases. Unlike the prevailing narrative that it is the language of the force majeure clause that’s determinative, this article shows that the primarily focus of the inquiry will be on whether the effects of COVID-19 have been beyond the control of the promisee. Normatively, the Article suggests that the trifactor of control, foreseeability, and contractual language are not effective for allocation of legal risks in times of crises. It puts forward a novel approach to force majeure clauses whereby that the courts should instead focus on the degree to which parties have relied on (expected) performance, in particular during the time of crisis.Keywords: contractual risks, force majeure clauses, foreseeability, control, contractual language, computational analysis
Procedia PDF Downloads 15516171 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 16016170 An Optimal Control Model to Determine Body Forces of Stokes Flow
Authors: Yuanhao Gao, Pin Lin, Kees Weijer
Abstract:
In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method
Procedia PDF Downloads 41116169 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System
Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa
Abstract:
In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves
Procedia PDF Downloads 18816168 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 21616167 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification
Authors: Rebecca Angeles
Abstract:
This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.Keywords: Internet of Things (IOT), radio frequency identification (RFID), structurational model of technology (Orlikowski), supply chain management
Procedia PDF Downloads 23416166 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach
Authors: M. Khoshab, M. J. Sedigh
Abstract:
Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.Keywords: dynamic system, lag on supply demand, market stability, supply demand model
Procedia PDF Downloads 29716165 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout
Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration
Procedia PDF Downloads 58016164 Formulating Model of Green Supply Chain Impact on Chain Operational Performance, Case Study: Rahbaran Foolad Aria, Steel Industry
Authors: Seyedeh Mersedeh Banijamali, Ali Rajabzadeh
Abstract:
Industrial development in recent centuries has been replaced by a sustainable development. The industry executives, particularly in the development countries are looking for procedures to protect the environment, improve their organization's performance. One of these approaches is the green supply chain management. Green supply chain management approach as a comprehensive approach to environmental management that contains all flows from suppliers to producers and ultimately to consumers, in many industries, particularly in the Steel industry, which has a strategic role in the country's industrial and economic development, has been receiving significant attention. The purpose of this study is examining the impact of green supply chain on chain operational performance in the Steel industry and formulating model for it. In this way, first the components of green supply chain (in 5 dimensions, planning, sourcing, making, delivery and return) have been prioritized through TOPSIS decision technique and then impact of these components on operational performance has been modeled with model dynamic systems and Vensim software. This research shows that green supply chain has a positive impact on operational performance and improve it.Keywords: green supply chain, the dimensions of the green supply chain, operational performance, steel industry, dynamical systems
Procedia PDF Downloads 57716163 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study
Authors: Javier Navarro Garcia, Narciso Vazquez Carretero
Abstract:
Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics
Procedia PDF Downloads 14116162 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model
Authors: Sidrah Ahmed
Abstract:
The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients
Procedia PDF Downloads 20816161 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia
Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri
Abstract:
Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model
Procedia PDF Downloads 31816160 Economic Factors Affecting Greenfield Petroleum Refinery and Petrochemical Projects in Africa
Authors: Daniel Muwooya
Abstract:
This paper analyses economic factors that have affected the competitiveness of petroleum refinery and petrochemical projects in sub-Saharan Africa in the past and continue to plague greenfield projects today. Traditional factors like plant sizing and complexity, low-capacity utilization, changing regulatory environment, and tighter product specifications have been important in the past. Additional factors include the development of excess refinery capacity in Asia and the growth of renewable sources of energy – especially for transportation. These factors create both challenges and opportunities for the development of greenfield refineries and petrochemical projects in areas of increased demand growth and new low-cost crude oil production – like sub-Saharan Africa. This paper evaluates the strategies available to project developers and host countries to address contemporary issues of energy transition and the apparent reduction of funds available for greenfield oil and gas projects. The paper also evaluates the structuring of greenfield refinery and petrochemical projects for limited recourse project finance bankability. The methodology of this paper includes analysis of current industry data, conference proceedings, academic papers, and academic books on the subjects of petroleum refinery economics, refinery financing, refinery operations, and project finance generally and specifically in the oil and gas industry; evaluation of expert opinions from journal articles; working papers from international bodies like the World Bank and the International Energy Agency; and experience from playing an active role in the development and financing of US$ 10 Billion greenfield oil development project in Uganda. The paper also applies the discounted cash flow modelling to illustrate the circumstances of an inland greenfield refinery project in Uganda. Greenfield refinery and petrochemical projects are still necessary in sub-Saharan Africa to, among other aspirations, support the transition from traditional sources of energy like biomass to such modern forms as liquefied petroleum gas. Project developers and host governments will be required to structure projects that support global climate change goals without occasioning undue delays to project execution.Keywords: financing, refinery and petrochemical economics, Africa, project finance
Procedia PDF Downloads 6416159 The Magic Bullet in Africa: Exploring an Alternative Theoretical Model
Authors: Daniel Nkrumah
Abstract:
The Magic Bullet theory was a popular media effect theory that defined the power of the mass media in altering beliefs and perceptions of its audiences. However, following the People's Choice study, the theory was said to have been disproved and was supplanted by the Two-Step Flow Theory. This paper examines the relevance of the Magic Bullet theory in Africa and establishes whether it is still relevant in Africa's media spaces and societies. Using selected cases on the continent, it adopts a grounded theory approach and explores a new theoretical model that attempts to enforce an argument that the Two-Step Flow theory though important and valid, was ill-conceived as a direct replacement to the Magic Bullet theory.Keywords: magic bullet theory, two-step flow theory, media effects, african media
Procedia PDF Downloads 13216158 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 9816157 STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C
Authors: Sarah Gaßmeyer, Nadine Hülsemann, Raphael Stoll, Kenji Miyamoto, Robert Kourist
Abstract:
Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.Keywords: racemase, rational protein design, STD-NMR, structure guided saturation mutagenesis
Procedia PDF Downloads 30616156 Technology Use by African Smallholder Farmers and the Significant Mediating Factors
Authors: Enobong Akpan-Etuk
Abstract:
The willingness of smallholder farmers in Africa to adopt new agricultural technologies has been low, despite the technological advancement in agriculture. Although technology is seen as the main route out of the traditional methods of food production and poverty, the rate of adoption of agricultural technology remains low among farmers in Africa. Factors affecting the adoption of agricultural technologies include the acquisition of information, characteristics of the technology, education of farmers, social capital, farm size, and household size. This paper explored the literature on the influence of the factors that determine the adoption of technology by smallholder farmers.Keywords: smallholder, technology, adoption
Procedia PDF Downloads 15016155 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 35016154 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 22716153 Creative Practice and Consciousness in Juju Music: A Nigerian Musical and Cultural Perspective
Authors: Olupemi E. Oludare
Abstract:
This paper investigates the creative practice engaged in Juju music, a Nigerian Neo-traditional genre of the Yoruba, and its influence on the consciousness of societal praxis. It takes a musical and cultural perspective, as representational indices of how the people’s religious, social, educational, and political consciousness is expressed in their music. The study adopts the historical cum descriptive design in its methodology, tracing the historical development of Juju music, the appropriation of musical and cultural materials in its creative process, and a descriptive analysis of its musical practice, in order to substantiate the role and function of Juju music and its musicians in the political, philosophical, and social consciousness of Nigeria’s pre- and post-independence epoch. Data were collected through oral interviews of selected Juju practitioners, stakeholders, and enthusiasts. It also employed the use of discography of Juju musicians. This paper discusses musical factors such as form, melodic and rhythmic patterns, and thematic materials, while highlighting cultural factors such as linguistic elements, with textual analysis, as a conscious avenue of expression. The study revealed that Juju musicians composed their music by engaging both indigenous and foreign musical materials, as a means of creative practice for musical entertainment, while expressing the people’s consciousness of their beliefs, values, and socio-political issues, hence the music functioning as a vehicle for social commentaries. The popularization and commercialization of Juju music brought the musicians national and international accolades, subsequently attracting contributions from contemporary musicians, which led to innovations of new brands, such as ‘Afro-Juju’, ‘Gospel-Juju’, ‘Hip-Hop-Juju’, etc., albeit retaining the basic musical elements of its progenitor, as a conscious music for socio-cultural functions. This study concludes that Juju music and its musicians remain germane in the musical scene of the nation’s social, educational, and political terrain, especially in the current Nigerian democratic climate. This paper recommends the promotion and patronage of the Juju music in its original form, to prevent its decline in current times, since it serves as an enrichment of national identity both in Nigeria, and Internationally.Keywords: appropriation, consciousness, creative practice, national identity, neo-traditional
Procedia PDF Downloads 42916152 Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model.Keywords: diluted magnetic semiconductors, k.p method, effective masses, curie temperature, strain
Procedia PDF Downloads 10116151 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel
Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy
Abstract:
In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.Keywords: burner selection, natural gas, analysis, recirculation
Procedia PDF Downloads 16416150 Pharmaceutical Equivalence of Some Injectable Gentamicin Generics Used in Veterinary Practice in Nigeria
Authors: F. A. Gberindyer, M. O.Abatan, A. B. Saba
Abstract:
Background: Gentamicin is an aminoglycoside antibiotic used in the treatment of infections caused by Gram-negative aerobic bacteria organisms in human and animals. In Nigeria, there are arrays of multisource generic versions of injectable gentamicin sulphate in the drug markets. There is a high prevalence of counterfeit and substandard drugs in the third world countries with consequent effect on their therapeutic efficacy and safety. Aim: The aim of this study was to investigate pharmaceutical equivalence of some of these generics used in veterinary practice in Nigeria. Methodology: About 20 generics of injectable gentamicin sulphate were sampled randomly across Nigeria but 15 were analyzed for identity and potency. Identity test was done using Fourier transform infra red spectroscopy and the spectral for each product compared with that of the USP reference standard for similarity. Microbiological assay using agar diffusion method with E. coli as a test organism on nutrient agar was employed and the respective diameters of bacterial inhibition zones obtained after 24 hour incubation at 37°C. The percent potency for each product was thereafter calculated and compared with the official specification. Result And Discussion: None of the generics is produced in any African country. About 75 % of the products are imported from China whereas 60 % of the veterinary generics are manufactured in Holland. Absorption spectra for the reference and test samples were similar. Percent potencies of all test products were within the official specification of 95-115 %. Nigeria relies solely on imported injectable gentamicin sulphate products. All sampled generic versions passed both identity and potency tests. Clinicians should ensure that drugs are used rationally since the converse could be contributing to the therapeutic failures reported for most of these generics. Bioequivalence study is recommended to ascertain their interchangeability when parenteral extra venous routes are indicated.Keywords: generics, gentamicin, identity, multisource, potency
Procedia PDF Downloads 43216149 Developing Teachers as Change Agents: A Qualitative Study of Master of Education Graduates in Pakistan
Authors: Mir Afzal Tajik
Abstract:
The 'Strengthening Teacher Education in Pakistan' (STEP) is an innovative programme jointly funded by the Government of Canada and the Aga Khan Foundation Canada and implemented by the Aga Khan University - Institute for Educational Development (AKU-IED) in partnership with the local governments, education departments and communities in the provinces of Balochistan, Sindh and Gilgit-Baltistan in Pakistan. One of the key components of the programme is the professional development of teachers, headteachers and teacher educators through a variety of teacher education programmes including a two-year Masters of Education (MEd) Programme offered by AKU-IED. A number of teachers, headteachers and teacher educators from these provinces have been developed through the MEd Programme. This paper discusses a qualitative research study conducted to explore the nature, relevance, rigor and richness of the experiences of the MEd graduates, and how these experiences have fostered their own professional development and their ability to bring about positive changes in their schools. The findings of the study provide useful insights into the graduates’ self-actualization, the transformation of their professional beliefs and practices, the difference they have made in their schools, and the challenges they face. The study also provides recommendations for policy and practice related to teacher education programmes.Keywords: STEP, teacher education, Pakistan, Canada, Aga Khan foundation
Procedia PDF Downloads 351