Search results for: solar panel efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8377

Search results for: solar panel efficiency

2077 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments

Authors: William J. Crowther, Conor Marsh

Abstract:

Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.

Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics

Procedia PDF Downloads 100
2076 Clinical and Sleep Features in an Australian Population Diagnosed with Mild Cognitive Impairment

Authors: Sadie Khorramnia, Asha Bonney, Kate Galloway, Andrew Kyoong

Abstract:

Sleep plays a pivotal role in the registration and consolidation of memory. Multiple observational studies have demonstrated that self-reported sleep duration and sleep quality are associated with cognitive performance. Montreal Cognitive Assessment questionnaire is a screening tool to assess mild cognitive (MCI) impairment with a 90% diagnostic sensitivity. In our current study, we used MOCA to identify MCI in patients who underwent sleep study in our sleep department. We then looked at the clinical risk factors and sleep-related parameters in subjects found to have mild cognitive impairment but without a diagnosis of sleep-disordered breathing. Clinical risk factors, including physician, diagnosed hypertension, diabetes, and depression and sleep-related parameters, measured during sleep study, including percentage time of each sleep stage, total sleep time, awakenings, sleep efficiency, apnoea hypopnoea index, and oxygen saturation, were evaluated. A total of 90 subjects who underwent sleep study between March 2019 and October 2019 were included. Currently, there is no pharmacotherapy available for MCI; therefore, identifying the risk factors and attempting to reverse or mitigate their effect is pivotal in slowing down the rate of cognitive deterioration. Further characterization of sleep parameters in this group of patients could open up opportunities for potentially beneficial interventions.

Keywords: apnoea hypopnea index, mild cognitive impairment, sleep architecture, sleep study

Procedia PDF Downloads 143
2075 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water

Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.

Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water

Procedia PDF Downloads 431
2074 Using Computational Fluid Dynamics (CFD) Modeling to Predict the Impact of Nuclear Reactor Mixed Tank Flows Using the Momentum Equation

Authors: Joseph Amponsah

Abstract:

This research proposes an equation to predict and determine the momentum source equation term after factoring in the radial friction between the fluid and the blades and the impeller's propulsive power. This research aims to look at how CFD software can be used to predict the effect of flows in nuclear reactor stirred tanks through a momentum source equation and the concentration distribution of tracers that have been introduced in reactor tanks. The estimated findings, including the dimensionless concentration curves, power, and pumping numbers, dimensionless velocity profiles, and mixing times 4, were contrasted with results from tests in stirred containers. The investigation was carried out in Part I for vessels that were agitated by one impeller on a central shaft. The two types of impellers employed were an ordinary Rushton turbine and a 6-bladed 45° pitched blade turbine. The simulations made use of numerous reference frame techniques and the common k-e turbulence model. The impact of the grid type was also examined; unstructured, structured, and unique user-defined grids were looked at. The CFD model was used to simulate the flow field within the Rushton turbine nuclear reactor stirred tank. This method was validated using experimental data that were available close to the impeller tip and in the bulk area. Additionally, analyses of the computational efficiency and time using MRF and SM were done.

Keywords: Ansys fluent, momentum equation, CFD, prediction

Procedia PDF Downloads 79
2073 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation

Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang

Abstract:

Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².

Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres

Procedia PDF Downloads 68
2072 Teachers' Learning Community and Their Self Efficacy

Authors: Noha Desouky Aly, Maged Makram Habib

Abstract:

Given the imperative role educational institutions have in the creation of a motivational learning community that develops and engages their students, the influence of evoking the same environment for their teachers needs to be examined. Teachers and their role lie at the core of the efficiency of the learning experience. One exigent aspect in the process of providing professional development to teachers is to involve them in this process, and the best manner would be through creating a learning community in which they are directly engaged and responsible for their own learning. An educational institution that thinks first of its teachers learning and growth would achieve its goals in providing an effective education for its students. The purpose of this research paper is to examine the effect of engaging teachers in a learning community in which they are responsible for their own learning through conducting and providing the material required for the training on their self efficacy, engagement, and perceived autonomy. The sample includes twenty instructors at the German University in Cairo teaching Academic skills at the Department of English and Scientific Methods. The courses taught at the department include Academic skills, writing argumentative essays, critical thinking, communication and presentation skills, and research paper writing. Procedures for the duration of eight weeks will entail pre-post measures to include The Teachers Self Efficacy Scale and an interview. During the weekly departmental meeting, teachers are to share resources and experiences or research and present a topic of their choice that contributes to their professional development. Results are yet to be found.

Keywords: learning community, self- efficacy, teachers, learning experience

Procedia PDF Downloads 490
2071 Developing a Comprehensive Green Building Rating System Tailored for Nigeria: Analyzing International Sustainable Rating Systems to Create Environmentally Responsible Standards for the Nigerian Construction Industry and Built Environment

Authors: Azeez Balogun

Abstract:

Inexperienced building score practices are continually evolving and vary across areas. Yet, a few middle ideas stay steady, such as website selection, design, energy efficiency, water and material conservation, indoor environmental great, operational optimization, and waste discount. The essence of green building lies inside the optimization of 1 or more of those standards. This paper conducts a comparative analysis of 7 extensively recognized sustainable score structures—BREEAM, CASBEE, green GLOBES, inexperienced superstar, HK-BEAM, IGBC green homes, and LEED—based totally on the perceptions and opinions of stakeholders in Nigeria certified in green constructing rating systems. The purpose is to pick out and adopt an appropriate green building rating device for Nigeria. Numerous components of those systems had been tested to determine the high-quality health of the Nigerian built environment. The findings imply that LEED, the important machine within the USA and Canada, is the most suitable for Nigeria due to its sturdy basis, extensive funding, and confirmed blessings. LEED obtained the highest rating of eighty out of one hundred points on this assessment.

Keywords: structure, built surroundings, inexperienced building score gadget, Nigeria Inexperienced Constructing Council, sustainability

Procedia PDF Downloads 26
2070 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays

Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze

Abstract:

After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.

Keywords: concrete substrate, surface preparation, overlays, bond tensile strength

Procedia PDF Downloads 456
2069 The Impact of Structural Empowerment on Risk Management Practices: A Case Study of Saudi Arabia Construction Small and Medium-Sized Enterprises

Authors: S. Alyami, S. Mohammad

Abstract:

These Risk management practices have a significant impact on construction SMEs. The effective utilisation of these practices depends on culture change in order to optimise decision making for critical activities within construction projects. Thus, successful implementation of empowerment strategies would enhance operational employees to participate in effective decision making. However, there remain many barriers to individuals and organisations within empowerment strategies that require empirical investigation before the industry can benefit from their implementation. Gaps in understanding the relationship between employee empowerment and risk management practices still exist. This research paper aims to examine the impact of the structural empowerment on risk management practices in construction SMEs. The questionnaire has been distributed to participants (162 employees) that involve projects and civil engineers within a case study from Saudi construction SMEs. Partial least squares based structural equation modeling (PLS-SEM) was utilised to perform analysis. The results reveal a positive relationship between empowerment and risk management practices. The study shows how structural empowerment contributes to operational employees in risk management practices through involving activities such as decision making, self-efficiency, and autonomy. The findings of this study will contribute to close the current gaps in the construction SMEs context.

Keywords: construction SMEs, culture, decision making, empowerment, risk management

Procedia PDF Downloads 117
2068 The Actoprotective Efficiency of Pyrimidine Derivatives

Authors: Nail Nazarov, Vladimir Zobov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Reznik

Abstract:

There have been studied effects of xymedon and six new pyrimidine derivatives, that are close and distant analogs of xymedon, on rats' working capacity in the test 'swimming to failure'. It has been shown that a single administration of the studied compounds did not have a statistically significant effect in the test. In the conditions of multiple intraperitoneal administration of the studied pyrimidine derivatives, the compound L-ascorbate, 1-(2-hydroxyethyl)-4.6-dimethyl-1.2-dihydropyrimidine-2-one had the lowest toxicity and the most pronounced actoprotective effect. Introduction in the dose of 20 mg/kg caused a statistically significant increase 440 % in the duration of swimming of rats on the 14th day of the experiment compared with the control group. Multiple administration of the compound in the conditions of physical load did not affect leucopoiesis but stimulates erythropoiesis resulting in an increase in the number of erythrocytes and a hemoglobin level. The substance introduction under mixed exhausting loads prevented such changes of blood biochemical parameters as reduction of glucose, increased of urea and lactic acid levels, what indicates improvement in the animals' tolerability of loads and an anti-catabolic effect of the compound. Absence of hepato and cardiotoxic effects of the substance has been shown. This work was performed with the financial support of Russian Science Foundation (grant № 14-50-00014).

Keywords: actoprotectors, physical working capacity, pyrimidine derivatives, xymedon

Procedia PDF Downloads 289
2067 Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles

Authors: Thian Khoon Tan, Poi Sim Khiew, Wee Siong Chiu, Chin Hua Chia

Abstract:

This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes.

Keywords: nanoparticles, photocatalyst, magnetically enhanced, wastewater, synthetic dyes, azo dyes

Procedia PDF Downloads 9
2066 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM

Authors: Clement Leroy, Guillaume Boitel

Abstract:

This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.

Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery

Procedia PDF Downloads 204
2065 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: chromosomes, cropping, genetic algorithm, genes

Procedia PDF Downloads 426
2064 Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh

Authors: M. Israil Hossain, T. P. Tiwari, Ashrafuzzaman Gulandaz, Nusrat Jahan

Abstract:

Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through ‘V” belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator’s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation.

Keywords: cost effective, mobile maize sheller, maize shelling capacity, small farmers, two wheel tractor

Procedia PDF Downloads 182
2063 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 210
2062 Quality Assessment and Classification of Recycled Aggregates from CandDW According to the European Standards

Authors: M. Eckert, D. Mendes, J P. Gonçalves, C. Moço, M. Oliveira

Abstract:

The intensive extraction of natural aggregates leads to both depletion of natural resources and unwanted environmental impacts. On the other hand, uncontrolled disposal of Construction and Demolition Wastes (C&DW) causes the lifetime reduction of landfills. It is known that the European Union produces, each year, about 850 million tons of C&DW. For all the member States of the European Union, one of the milestones to be reached by 2020, according to the Resource Efficiency Roadmap (COM (2011) 571) of the European Commission, is to recycle 70% of the C&DW. In this work, properties of different types of recycled C&DW aggregates and natural aggregates were compared. Assays were performed according to European Standards (EN 13285; EN 13242+A1; EN 12457-4; EN 12620; EN 13139) for the characterization of there: physical, mechanical and chemical properties. Not standardized tests such as water absorption over time, mass stability and post compaction sieve analysis were also carried out. The tested recycled C&DW aggregates were classified according to the requirements of the European Standards regarding there potential use in concrete, mortar, unbound layers of road pavements and embankments. The results of the physical and mechanical properties of recycled C&DW aggregates indicated, in general, lower quality properties when compared to natural aggregates, particularly, for concrete preparation and unbound layers of road pavements. The results of the chemical properties attested that the C&DW aggregates constitute no environmental risk. It was concluded that recycled aggregates produced from C&DW have the potential to be used in many applications.

Keywords: recycled aggregate, sustainability, aggregate properties, European Standard Classification

Procedia PDF Downloads 670
2061 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian

Abstract:

In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.

Keywords: cottonseed oil, crystallization, gossypol, green-leaf

Procedia PDF Downloads 107
2060 Classification Framework of Production Planning and Scheduling Solutions from Supply Chain Management Perspective

Authors: Kwan Hee Han

Abstract:

In today’s business environments, frequent change of customer requirements is a tough challenge to manufacturing company. To cope with these challenges, a production planning and scheduling (PP&S) function might be established to provide accountability for both customer service and operational efficiency. Nowadays, many manufacturing firms have utilized PP&S software solutions to generate a realistic production plan and schedule to adapt to external changes efficiently. However, companies which consider the introduction of PP&S software solution, still have difficulties for selecting adequate solution to meet their specific needs. Since the task of PP&S is the one of major building blocks of SCM (Supply Chain Management) architecture, which deals with short term decision making in the production process of SCM, it is needed that the functionalities of PP&S should be analysed within the whole SCM process. The aim of this paper is to analyse the PP&S functionalities and its system architecture from the SCM perspective by using the criteria of level of planning hierarchy, major 4 SCM processes and problem-solving approaches, and finally propose a classification framework of PP&S solutions to facilitate the comparison among various commercial software solutions. By using proposed framework, several major PP&S solutions are classified and positioned according to their functional characteristics in this paper. By using this framework, practitioners who consider the introduction of computerized PP&S solutions in manufacturing firms can prepare evaluation and benchmarking sheets for selecting the most suitable solution with ease and in less time.

Keywords: production planning, production scheduling, supply chain management, the advanced planning system

Procedia PDF Downloads 196
2059 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty

Authors: Reza Alikhani

Abstract:

This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.

Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience

Procedia PDF Downloads 68
2058 Prediction of Flow Around a NACA 0015 Profile

Authors: Boukhadia Karima

Abstract:

The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.

Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel

Procedia PDF Downloads 409
2057 Synchronized Vehicle Routing for Equitable Resource Allocation in Food Banks

Authors: Rabiatu Bonku, Faisal Alkaabneh

Abstract:

Inspired by a food banks distribution operation for non-profit organization, we study a variant synchronized vehicle routing problem for equitable resource allocation. This research paper introduces a Mixed Integer Programming (MIP) model aimed at addressing the complex challenge of efficiently distributing vital resources, particularly for food banks serving vulnerable populations in urban areas. Our optimization approach places a strong emphasis on social equity, ensuring a fair allocation of food to partner agencies while minimizing wastage. The primary objective is to enhance operational efficiency while guaranteeing fair distribution and timely deliveries to prevent food spoilage. Furthermore, we assess four distinct models that consider various aspects of sustainability, including social and economic factors. We conduct a comprehensive numerical analysis using real-world data to gain insights into the trade-offs that arise, while also demonstrating the models’ performance in terms of fairness, effectiveness, and the percentage of food waste. This provides valuable managerial insights for food bank managers. We show that our proposed approach makes a significant contribution to the field of logistics optimization and social responsibility, offering valuable insights for improving the operations of food banks.

Keywords: food banks, humanitarian logistics, equitable resource allocation, synchronized vehicle routing

Procedia PDF Downloads 61
2056 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions

Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din

Abstract:

Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.

Keywords: photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent

Procedia PDF Downloads 303
2055 Enhancement of Dielectric Properties of Co-Precipitated Spinel Ferrites NiFe₂O₄/Carbon Nano Fibers Nanohybrid

Authors: Iftikhar Hussain Gul, Syeda Aatika

Abstract:

Nickel ferrite was prepared via wet chemical co-precipitation route. Carbon Nano Fibers (CNFs) were used to prepare NiFe₂O₄/CNFs nanohybrids. Polar solvent (ortho-xylene) was used for the dispersion of CNFs in ferrite matrix. X-ray diffraction patterns confirmed the formation of NiFe₂O₄/CNFs nanohybrids without any impurity peak. FTIR patterns showed two consistent characteristic absorption bands for tetrahedral and octahedral sites, confirming the formation of spinel structure of NiFe₂O₄. Scanning Electron Microscopy (SEM) images confirmed the coating of nickel ferrite nanoparticles on CNFs, which confirms the efficiency of deployed method. The dielectric properties were measured as a function of frequency at room temperature. Pure NiFe₂O₄ showed dielectric constant of 1.79 ×10³ at 100 Hz, which increased massively to 2.92 ×10⁶ at 100 Hz with the addition of 20% by weight of CNFs, proving it to be potential candidate for applications in supercapacitors. The impedance analysis showed a considerable decrease of resistance, reactance and cole-cole plot which confirms the decline of impedance on addition of CNFs. The pure NiFe₂O₄ has highest impedance values of 5.89 ×10⁷ Ohm at 100 Hz while the NiFe₂O₄/CNFs nanohybrid with CNFs (20% by weight) has the lowest impedance values of 4.25×10³ Ohm at 100 Hz, which proves this nanohybrid is useful for high-frequency applications.

Keywords: AC impedance, co-precipitation, nanohybrid, Fourier transform infrared spectroscopy, x-ray diffraction

Procedia PDF Downloads 135
2054 Analysis of Adaptive Facade Systems and Evaluation of Their Applicability in Turkey

Authors: Selin Öztürk Demirkiran

Abstract:

Approaches towards sustainability and energy efficiency are significant topics of our era. These approaches need to be addressed across various fields and are relevant to multiple disciplines. Building facades, as the first surface encountering external weather conditions, should be considered and analyzed within this context. Current seasonal changes due to global warming and the influence on climates have highlighted the necessity for building systems to adapt to these changes, emphasizing the need for long-lasting solutions. Therefore, this study aims to examine adaptive system applications using examples from similar climatic regions and buildings of different functions, classifying them according to adaptive system criteria. It also aims to explore and evaluate the current stage of such systems in Turkey and the potential for their implementation. In this study, six building examples with different functions, including two examples for each adaptive type, were analyzed from regions with climates similar to those in Turkey, with detailed examination sheets prepared. The purpose of this study is to contribute to ongoing developments by presenting findings on current concepts and analyses and proposing a distinct approach for the characterization of these elements at the scale of Turkey. From this perspective, there is a considerable amount of literature on adaptive facade designs, and while application examples exist, adaptive approaches have been developed and partially implemented. It is expected that innovative solutions in this field will find a place in Turkey in the near future, following the increasing number of examples globally.

Keywords: adaptive facade, smart building facades, facade innovation, sustainability.

Procedia PDF Downloads 19
2053 Crops Cold Stress Alleviation by Silicon: Application on Turfgrass

Authors: Taoufik Bettaieb, Sihem Soufi

Abstract:

As a bioactive metalloid, silicon (Si) is an essential element for plant growth and development. It also plays a crucial role in enhancing plants’ resilience to different abiotic and biotic stresses. The morpho-physiological, biochemical, and molecular background of Si-mediated stress tolerance in plants were unraveled. Cold stress is a severe abiotic stress response to the decrease of plant growth and yield by affecting various physiological activities in plants. Several approaches have been used to alleviate the adverse effects generated from cold stress exposure, but the cost-effective, environmentally friendly, and defensible approach is the supply of silicon. Silicon has the ability to neutralize the harmful impacts of cold stress. Therefore, based on these hypotheses, this study was designed in order to investigate the morphological and physiological background of silicon effects applied at different concentrations on cold stress mitigation during early growth of a turfgrass, namely Paspalum vaginatum Sw. Results show that silicon applied at different concentrations improved the morphological development of Paspalum subjected to cold stress. It is also effective on the photosynthetic apparatus by maintaining stability the photochemical efficiency. As the primary component of cellular membranes, lipids play a critical function in maintaining the structural integrity of plant cells. Silicon application decreased membrane lipid peroxidation and kept on membrane frontline barrier relatively stable under cold stress.

Keywords: crops, cold stress, silicon, abiotic stress

Procedia PDF Downloads 121
2052 Biological Feedstocks for Sustainable Aviation Fuel

Authors: Odi Fawwaz Alrebei, Abdulkarem I. Amhamed, Rim Ahmad Ismail

Abstract:

Sustainable Aviation Fuel (SAF) has emerged as a critical solution for reducing the aviation sector's carbon footprint. Biological feedstocks, such as lignocellulosic biomass, microalgae, used cooking oil, and municipal solid waste, offer significant potential to replace fossil-based jet fuels with renewable alternatives. This review paper aims to critically examine the current landscape of biological feedstocks for SAF production, focusing on feedstock availability, conversion technologies, and environmental impacts. The paper evaluates the biochemical pathways employed in transforming these feedstocks into SAF, such as hydrothermal liquefaction, Fischer-Tropsch synthesis, and microbial fermentation, highlighting the advancements and challenges in each method. Additionally, the sustainability of biological feedstocks is analyzed with respect to lifecycle emissions, land use, and water consumption, emphasizing the need for region-specific strategies to maximize benefits. Special attention is given to the role of microbial consortia in optimizing feedstock degradation and conversion processes. The review concludes by discussing the scalability and economic viability of biological feedstock-based SAF, with a focus on policy frameworks and technological innovations that can facilitate widespread adoption. This comprehensive review underscores the pivotal role of biological feedstocks in achieving a decarbonized aviation sector and identifies future research directions for improving SAF production efficiency and sustainability.

Keywords: fuel diversity, biological feedstocks, SAF, aviation

Procedia PDF Downloads 10
2051 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production

Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga

Abstract:

The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.

Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets

Procedia PDF Downloads 408
2050 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 152
2049 Effect of Temperature on Pervaporation Performance of Ag-Poly Vinyl Alcohol Nanocomposite Membranes

Authors: Asmaa Selim, Peter Mizsey

Abstract:

Bio-ethanol is considered of higher potential as a green renewable energy source owing to its environmental benefits and its high efficiency. In the present study, silver nanoparticles were in-situ generated in a poly (vinyl alcohol) in order to improve its potentials for pervaporation of ethanol-water mixture using solution-casting. Effect of silver content on the pervaporation separation index and the enrichment factor of the membrane at 15 percentage mass water at 40ᵒC was reported. Pervaporation data for nanocomposite membranes showed around 100% increase in the water permeance values while the intrinsic selectivity decreased. The water permeances of origin crosslinked PVA membrane, and the 2.5% silver loaded PVA membrane are 26.65 and 70.45 (g/m².kPa.h) respectively. The values of total flux and water flux are closed to each other, indicating that membranes could be effectively used to break the azeotropic point of ethanol-water. Effect of temperature on the pervaporation performance, permeation parameter and diffusion coefficient of both water and ethanol was discussed. The negative heat of sorption ∆Hs values calculated on the basis of the estimated Arrhenius activation energy values indicating that the sorption process was controlled by Langmuir’s mode. The overall results showed that the membrane containing 0.5 mass percentage of Ag salt exhibited excellent PV performance.

Keywords: bio-ethanol, diffusion coefficient, nanocomposite, pervaporation, poly (vinyl alcohol), silver nanoparticles

Procedia PDF Downloads 168
2048 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 177