Search results for: vapour compression systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10241

Search results for: vapour compression systems

9641 Building Rating Systems: A Critical Review on Their Sustainability Compatibility

Authors: Divya Mohanan, Deepa G. Nair

Abstract:

The most accepted international definition of sustainable development quoted from the Brundtland Report published in 1987 states that development that meets the needs of the present without compromising the ability of future generations to meet their own needs. This definition serves as a foundation for many fields including the building sector to consider sustainability and focuses on the three pillars of sustainability social, economic, and environment. The building industry due to its multi-faceted nature requires building codes, standards, and certification systems to effectively address the sustainability assessment. In the last decade, many buildings rating systems evolved that address sustainability in one way and many more are on the drawing boards yet to come. This paper attempts to offer a comprehensive literature review of seven popular building rating systems (LEED (US), BREEAM (UK), CASBEE (Japan), GRIHA, LEED, IGBC), scrutinizing their macro-areas, segments of sustainability and thus highlight the need for a framework which addresses the assessment of the building in terms of sustainability as a whole.

Keywords: building rating systems, sustainability, LEED, BREEAM, CASBEE, GRIHA, IGBC

Procedia PDF Downloads 165
9640 DCT and Stream Ciphers for Improved Image Encryption Mechanism

Authors: T. R. Sharika, Ashwini Kumar, Kamal Bijlani

Abstract:

Encryption is the process of converting crucial information’s unreadable to unauthorized persons. Image security is an important type of encryption that secures all type of images from cryptanalysis. A stream cipher is a fast symmetric key algorithm which is used to convert plaintext to cipher text. In this paper we are proposing an image encryption algorithm with Discrete Cosine Transform and Stream Ciphers that can improve compression of images and enhanced security. The paper also explains the use of a shuffling algorithm for enhancing securing.

Keywords: decryption, DCT, encryption, RC4 cipher, stream cipher

Procedia PDF Downloads 361
9639 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake

Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.

Abstract:

Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.

Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows

Procedia PDF Downloads 108
9638 Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement

Authors: Ahmed N. Shmroukh, I. M. S. Taha, A. M. Abdel-Ghany, M. Attalla

Abstract:

Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration.

Keywords: fog systems, measuring air dry bulb temperature, temperature measurement, vortex separator

Procedia PDF Downloads 296
9637 Ecological Systems Theory, the SCERTS Model, and the Autism Spectrum, Node and Nexus

Authors: C. Surmei

Abstract:

Autism Spectrum Disorder (ASD) is a complex developmental disorder that can affect an individual’s (but is not limited to) cognitive development, emotional development, language acquisition and the capability to relate to others. Ecological Systems Theory is a sociocultural theory that focuses on environmental systems with which an individual interacts. The SCERTS Model is an educational approach and multidisciplinary framework that addresses the challenges confronted by individuals on the autism spectrum and other developmental disabilities. To aid the understanding of ASD and educational philosophies for families, educators, and the global community alike, a Comparative Analysis was undertaken to examine key variables (the child, society, education, nurture/care, relationships, communication). The results indicated that the Ecological Systems Theory and the SCERTS Model were comparable in focus, motivation, and application, attaining to a viable and notable relationship between both theories. This paper unpacks two child development philosophies and their relationship to each other.

Keywords: autism spectrum disorder, ecological systems theory, education, SCERTS model

Procedia PDF Downloads 586
9636 Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas

Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek

Abstract:

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.

Keywords: continuous measurement, flue gas, mercury determination, speciation

Procedia PDF Downloads 196
9635 A Systems-Level Approach towards Transition to Electrical Vehicles

Authors: Mayuri Roy Choudhury, Deepti Paul

Abstract:

Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.

Keywords: transition, electrical vehicles, systems-level, algorithms

Procedia PDF Downloads 227
9634 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 219
9633 Two-Way Reminder Systems to Support Activities of Daily Living for Adults with Cognitive Impairments: A Scoping Review

Authors: Julia Brudzinski, Ashley Croswell, Jade Mardin, Hannah Shilling, Jennifer Berg-Carnegie

Abstract:

Adults with brain injuries and mental illnesses commonly experience cognitive impairments that interfere with their participation in activities of daily living (ADLs). Prior research states that electronic reminder systems can support adults with cognitive impairments; however, previous studies focus primarily on one-way reminder systems. Research on adults with chronic diseases reported that two-way reminder systems yield better health outcomes and disease self-management compared to one-way reminder systems. Literature was identified through systematically searching 7 databases and hand-searching relevant reference lists. Retrieved studies were independently screened and reviewed by at least two members of the research team. Data was extracted on study design, participant characteristics, intervention details, study objectives, outcome measures, and important results. 574 articles were screened and reviewed. Nine articles met all inclusion criteria and were included. The literature focused on three main areas: system feasibility (n=8), stakeholder satisfaction (n=6), and efficacy of the two-way reminder systems (n=6). Participants in eight of the studies had brain injuries, with participants in only one study having a mental illness (i.e., schizophrenia). Two-way reminder systems were used to support participation in a wide range of ADLs. The current literature on two-way reminder systems to support ADLs for adults with cognitive impairments focuses on feasibility, stakeholder satisfaction, and system efficacy. Future research should focus on addressing the barriers to accessing and implementing two-way reminder systems and identifying specific client characteristics that would benefit most from using these systems.

Keywords: brain injury, digital health, occupational therapy, activities of daily living, two-way reminder systems

Procedia PDF Downloads 74
9632 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Atrin Barzegar, Yas Barzegar, Stefano Marrone, Francesco Bellini, Laura Verde

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 75
9631 Sustainable Food Systems in Community Development: Integrating Urban Food Security into a Growing Population

Authors: Opal Giulianelli, Pegah Zamani

Abstract:

Sustainable food has become a frequently debated topic in recent years due to a consumer push for environmentally sustainable food. While some research works on improving the monoculture farm systems that are currently in use, others focus on expanding the definition of sustainable food systems. This research looks at those concepts of alternative food systems applied to a more extensive city system. The goal is to create a theoretical site plan that could be implemented in emerging cities and other urban environments. This site plan combines the ideas of environmentally sustainable food development, such as food forests, urban farming, and community gardens. This would represent one part of a larger sustainable food system that can be altered depending on the environment or the people it is serving. However, this research is being carried out with the southeast United States in mind and, therefore, may prove difficult to apply to other regions, especially those of radically different climates.

Keywords: alternative food systems, urban design, food forests, aquaponics, hydroponics, food security, food system design

Procedia PDF Downloads 101
9630 Integrating Knowledge into Health Care Systems: A Case Study Investigation on UAE Health Care

Authors: Alya Al Ghufli, Kelaithim Al Tunaiji, Sara Al Ali, Khalid Samara

Abstract:

It is well known that health care systems encompass a variety of key knowledge sources that need to be integrated and shared amongst all types of users to attain higher-levels of motivation and productivity. The development of Health Integrated Systems (HIS) is often seen as a crucial step in strengthening the integration of knowledge to help serve the information needs of health care users. As an emergent economy, the United Arab Emirates (UAE) is regarded as a new arrival in the area of health information systems. As a new nation, there may be several challenges in terms of organisational climate and the sufficient skills and knowledge activities for effective use of HIS. In this regard, the lack of coordination, attitudes and practice of health-related systems can eventually result in unnecessary data and generally poor use of the system. This paper includes results from a qualitative preliminary study carried out from a case study investigation in a single large primary health care organisation in the United Arab Emirates (UAE) comprising various health care users. The study explored health care user’s perceptions about health integration and the impact it has on their practice. The main sources of information were semi-structured interviews and non-obtrusive observations. The authors conclude by presenting various recommendations for the development of HIS and knowledge activities and areas for further study.

Keywords: health integrated systems, knowledge sharing, knowledge activities, health information systems

Procedia PDF Downloads 436
9629 A Review On Traditional Agroforestry Systems In Europe Revisited: Biodiversity, Ecosystem Services, And Future Perspectives

Authors: Thuy Hang Le

Abstract:

Traditional agroforestry systems are land-use practices still widespread in tropical and subtropical countries, while in Europe have significantly decreased due to land-use intensification, land abandonment, and urbanization. Nevertheless, scientific evidence reveals that traditional agroforestry systems significantly support biodiversity and ecosystem services and may positively contribute to socioeconomic rural regional development. We worked out a review that follows the PRISMA approach and compiled comprehensive information on traditional agroforestry systems in Europe. Based on the differentiation of different land-use systems, also considering the agricultural as well as forestry components, we compiled information regarding current distribution, management (agrodiversity), biodiversity and agrobiodiversity, ecosystem and landscape services, threats, and restoration initiatives. From a total of 3,304 studies that dealt with agroforestry systems in Europe, both “modern” (e.g., buffer strip) and “traditional” (e.g., meadow orchards), we filtered out 158 studies from 35 European countries which represent the basis for in-depth investigation. We found, for example, that the traditional pastoral agroforestry system in the Mediterranean region, the so-called Dehesa, can harbor up to 300 plant species as well as 238 bird species, of which 134 are breeding birds. With regard to carbon storage, the traditional orchard agroforestry system in Germany stocks ranged between 6.5 and 9.8 Mg C ha−1, showing significantly higher values compared to an intensively used grassland with around 3.4 to 6.7 Mg C ha−1. With the remarkably high benefit for biodiversity and ecosystem services provided, the important role and multifunctionality of traditional agroforestry systems in Europe should be acknowledged and promoted.

Keywords: biodiversity, ecosystem services, landscape services, traditional agroforestry systems

Procedia PDF Downloads 73
9628 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software

Procedia PDF Downloads 374
9627 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 384
9626 Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement

Authors: Ramli Nazir, Hossein Moayedi

Abstract:

Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.

Keywords: erosion control, soil confinement, soil erosion, slope stability

Procedia PDF Downloads 841
9625 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis

Procedia PDF Downloads 353
9624 Strong Microcapsules with Macroporous Polymer Shells

Authors: Eve S. A. Loiseau, Marion Frey, Yves Blickenstorfer, Fabian Niedermair, André R. Studart

Abstract:

Porous microcapsules have a broad range of applications that require a robust shell. We propose a new method to produce macroporous polymer capsules with controlled size, shell thickness, porosity and mechanical properties using co-flow flow-focusing glass capillary devices. The porous structure was investigated through SEM and the permeability through confocal microscopy. Compression tests on single capsules were performed. We obtained microcapsules with tailored permeability from open to close pores structures and able to withstand loads up to 150 g.

Keywords: microcapsules, micromechanics, porosity, polymer shells

Procedia PDF Downloads 448
9623 Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations

Authors: Hycham Aboutaleb, Bruno Monsuez

Abstract:

Current systems' complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal, and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponentially growing effort, cost, and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework, and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graph-based formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity.

Keywords: higraph-based, formalism, system engineering paradigm, modeling requirements, graph-based transformations

Procedia PDF Downloads 403
9622 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 67
9621 Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures

Authors: Diyar Yousif Ali

Abstract:

Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame.

Keywords: reinforced concrete structures, pushover analysis, base shear, steel bracing

Procedia PDF Downloads 90
9620 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.

Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney

Procedia PDF Downloads 574
9619 An Approach for Multilayered Ecological Networks

Authors: N. F. F. Ebecken, G. C. Pereira

Abstract:

Although networks provide a powerful approach to the study of a wide variety of ecological systems, their formulation usually does not include various types of interactions, interactions that vary in space and time, and interconnected systems such as networks. The emerging field of 'multilayer networks' provides a natural framework for extending ecological systems analysis to include these multiple layers of complexity as it specifically allows for differentiation and modeling of intralayer and interlayer connectivity. The structure provides a set of concepts and tools that can be adapted and applied to the ecology, facilitating research in high dimensionality, heterogeneous systems in nature. Here, ecological multilayer networks are formally defined based on a review of prior and related approaches, illustrates their application and potential with existing data analyzes, and discusses limitations, challenges, and future applications. The integration of multilayer network theory into ecology offers a largely untapped potential to further address ecological complexity, to finally provide new theoretical and empirical insights into the architecture and dynamics of ecological systems.

Keywords: ecological networks, multilayered networks, sea ecology, Brazilian Coastal Area

Procedia PDF Downloads 155
9618 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine

Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker

Abstract:

Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.

Keywords: diesel engine, fuel pump, opposing pistons, two-stroke

Procedia PDF Downloads 141
9617 Modeling and Control of an Acrobot Using MATLAB and Simulink

Authors: Dong Sang Yoo

Abstract:

The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative of underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.

Keywords: acrobot, MATLAB and simulink, sliding mode control, underactuated system

Procedia PDF Downloads 798
9616 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: FSAE, suspension system, Adams Car, kinematic

Procedia PDF Downloads 51
9615 A Holistic Approach for Technical Product Optimization

Authors: Harald Lang, Michael Bader, A. Buchroithner

Abstract:

Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications.

Keywords: design, product development, product optimization, systems engineering

Procedia PDF Downloads 624
9614 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems

Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun

Abstract:

Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.

Keywords: application management, hardware management, power electronics, building blocks

Procedia PDF Downloads 521
9613 Observer-Based Leader-Following Consensus of Nonlinear Fractional-Order Multi-Agent Systems

Authors: Ali Afaghi, Sehraneh Ghaemi

Abstract:

The coordination of the multi-agent systems has been one of the interesting topic in recent years, because of its potential applications in many branches of science and engineering such as sensor networks, flocking, underwater vehicles and etc. In the most of the related studies, it is assumed that the dynamics of the multi-agent systems are integer-order and linear and the multi-agent systems with the fractional-order nonlinear dynamics are rarely considered. However many phenomena in nature cannot be described within integer-order and linear characteristics. This paper investigates the leader-following consensus problem for a class of nonlinear fractional-order multi-agent systems based on observer-based cooperative control. In the system, the dynamics of each follower and leader are nonlinear. For a multi-agent system with fixed directed topology firstly, an observer-based consensus protocol is proposed based on the relative observer states of neighboring agents. Secondly, based on the property of the stability theory of fractional-order system, some sufficient conditions are presented for the asymptotical stability of the observer-based fractional-order control systems. The proposed method is applied on a five-agent system with the fractional-order nonlinear dynamics and unavailable states. The simulation example shows that the proposed scenario results in the good performance and can be used in many practical applications.

Keywords: fractional-order multi-agent systems, leader-following consensus, nonlinear dynamics, directed graphs

Procedia PDF Downloads 398
9612 A Regional Innovation System Model Based on the Systems Thinking Approach

Authors: Samara E., Kilintzis P., Katsoras E., Martinidis G.

Abstract:

Regions play an important role in the global economy by driving research and innovation policies through a major tool, the Regional Innovation System (RIS). RIS is a social system that encompasses the systematic interaction of the various organizations that comprise it in order to improve local knowledge and innovation. This article describes the methodological framework for developing and validating a RIS model utilizing system dynamics. This model focuses on the functional structure of the RIS, separating it in six diverse, interacting sub-systems.

Keywords: innovations, regional development, systems thinking, social system

Procedia PDF Downloads 73