Search results for: tomato yield prediction
4093 Introduction of a New and Efficient Nematicide, Abamectin by Gyah Corporation, Iran, for Root-knot Nematodes Management Planning Programs
Authors: Shiva Mardani, Mehdi Nasr-Esfahani, Majid Olia, Hamid Molahosseini, Hamed Hassanzadeh Khankahdani
Abstract:
Plant-parasitic nematodes cause serious diseases on plants and effectively reduce food production in quality and quantity worldwide, with at least 17 nematode species in the three important and major genera, including Meloidogyne, Heterodera, and Pratylenchus. Root-knot nematodes (RKN), Meloidogyne spp. with the dominant species, Meloidogynejavanica, are considered as the important plant pathogens of agricultural products globally. The hosts range can be vegetables, bedding plants, grasses, shrubs, numerous weeds, and trees, including forests. In this study, chemical management was carried out on RKN, M. javanica, to investigate the efficacy of Iranian Abamectin insecticide product [acaricide Abamectin (Vermectin® 2% EC, Gyah Corp., Iran)] verses imported normal Abamectin available in the Iran markets [acaricide Abamectin (Vermectin® 1.8% EC, Cropstar Chemical Industry Co., Ltd.)] each of which at the rate of 8 L./ha, on Tomatoes, Solanumlycopersicum L., (No. 29-41, Dutch company Siemens) as a test plant, and the controls (infested to RKN and without any chemical pesticides treatments); and (sterile soil without any RKN and chemical pesticides treatments) at the greenhouse in Isfahan, Iran. The trails were repeated thrice. The results indicated a highly significant reduction in RKN population and an increase in biomass parameters at 1% level of significance, respectively. Relatively similar results were obtained in all the three experiments conducted on tomato root-knot nematodes. The treatments of Gyah-Abamectin (51.6%) and external Abamectin (40.4%) had the highest to least effect on reducing the number of larvae in the soil compared to the infected controls, respectively. Gyah-Abamectin by 44.1% and then external one by 31.9% had the highest effect on reducing the number of larvae and eggs in the root and 31.4% and 24.1% reduction in the number of galls compared to the infected controls, respectively. Based on priority, Gyah-Abamectin (47.4 % ) and external Abamectin (31.1 %) treatments had the highest effect on reducing the number of egg- masses in the root compared to the infected controls, with no significant difference between Gyah-Abamectin and external Abamectin. The highest reproduction of larvae and egg in the root was observed in the infected controls (75.5%) and the lowest in the healthy controls (0.0%). The highest reduction in the larval and egg reproduction in the roots compared to the infected controls was observed in Gyah-Abamectin and the lowest in the external one. Based on preference, Gyah-Abamectin (37.6%) and external Abamectin (26.9%) had the highest effect on the reduction of the larvae and egg reproduction in the root compared to the infected controls, respectively. Regarding growth parameters factors, the lowest stem length was observed in external Abamectin (51.9 cm), with nosignificantly different from Gyah-Abamectin and healthy controls. The highest root fresh weight was recorded in the infected controls (19.81 gr.) and the lowest in the healthy ones (9.81 gr.); the highest root length in the healthy controls (22.4 cm), and the lowest in the infected controls and external Abamectin (12.6 and 11.9 cm), respectively. Conclusively, the results of these three tests on tomato plants revealed that Gyah-Abamectin 2% compared to external Abamectin 1.8% is competitive in the chemical management of the root nematodes of these types of products and is a suitable alternative in this regard.Keywords: solanum lycopersicum, vermectin, biomass, tomato
Procedia PDF Downloads 964092 Potentiality of Litchi-Fodder Based Agroforestry System in Bangladesh
Authors: M. R. Zaman, M. S. Bari, M. Kajal
Abstract:
A field experiment was conducted at the Agroforestry and Environment Research Field, Hajee Mohammad Danesh Science and Technology University, Dinajpur during 2013 to investigate the potentiality of three napier fodder varieties under Litchi orchard. The experiment was consisted of 2 factors RCBD with 3 replications. Among the two factors, factor A was two production systems; S1= Litchi + fodder and S2 = Fodder (sole crop); another factor B was three napier varieties: V1= BARI Napier -1 (Bazra), V2= BARI Napier - 2 (Arusha) and V3= BARI Napier -3 (Hybrid). The experimental results revealed that there were significant variation among the varieties in terms of leaf growth and yield. The maximum number of leaf plant -1 was recorded in variety Bazra (V1) whereas the minimum number was recorded in hybrid variety (V3).Significantly the highest (13.75, 14.53 and14.84 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was also recorded in variety Bazra whereas the lowest (5.89, 6.36 and 9.11 tha-1 at 1st, 2nd v and 3rd harvest respectively) yield was in hybrid variety. Again, in case of production systems, there were also significant differences between the two production systems were founded. The maximum number of leaf plant -1 was recorded under Litchi based AGF system (T1) whereas the minimum was recorded in open condition (T2). Similarly, significantly the highest (12.00, 12.35 and 13.31 tha-1 at 1st, 2nd and 3rd harvest respectively) yield of napier was recorded under Litchi based AGF system where as the lowest (9.73, 10.47 and 11.66 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was recorded in open condition i.e. napier in sole cropping. Furthermore, the interaction effect of napier variety and production systems were also gave significant deviation result in terms of growth and yield. The maximum number of leaf plant -1 was recorded under Litchi based AGF systems with Bazra variety whereas the minimum was recorded in open condition with hybrid variety. The highest yield (14.42, 16.14 and 16.15 tha-1 at 1st, 2nd and 3rd harvest respectively) of napier was found under Litchi based AGF systems with Bazra variety. Significantly the lowest (5.33, 5.79 and 8.48 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was found in open condition i.e. sole cropping with hybrid variety. In case of the quality perspective, the highest nutritive value (DM, ASH, CP, CF, EE, and NFE) was found in Bazra (V1) and the lowest value was found in hybrid variety (V3). Therefore, the suitability of napier production under Litchi based AGF system may be ranked as Bazra > Arusha > Hybrid variety. Finally, the economic analysis showed that maximum BCR (5.20) was found in the Litchi based AGF systems over sole cropping (BCR=4.38). From the findings of the taken investigation, it may be concluded that the cultivation of Bazra napier varieties in the floor of Litchi orchard ensures higher revenue to the farmers compared to its sole cropping.Keywords: potentiality, Litchi, fodder, agroforestry
Procedia PDF Downloads 3234091 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate
Authors: Han Kexi, Lv Xuewei, Song Bing
Abstract:
This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying
Procedia PDF Downloads 2164090 Static Strain Aging in Ferritic and Austenitic Stainless Steels
Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet
Abstract:
Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength
Procedia PDF Downloads 4404089 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 3554088 Decline in Melon Yield and Its Contribution to Young Farmers' Diversification into Watermelon Farming in Oyo State, Nigeria
Authors: Oyediran Wasiu Oyeleke
Abstract:
Melon is a popular economic cucurbit in Southwest, Nigeria. In recent time, many young farmers are shifting from melon to watermelon farming due to poor yield and low monetary returns. Hence, this study was carried out to assess the decline in melon yield and its contribution to young farmers’ diversification into watermelon farming in Oyo state, Nigeria. Purposive sampling technique was used in selecting 75 respondents from five villages in Ibarapa block of the Oyo State Agricultural Development Project (ADP). Data collected were analyzed using descriptive statistics and Pearson Product Moment Correlation (PPMC). Results show that majority of the respondents (77.3%) were between 31-40 years of age and 46.70% had secondary school education. Most of the respondents (80%) cultivated more than 3 ha of land for watermelon. Majority of the respondents (74.7%) intercropped melon with other crops while watermelon was cultivated as a sole crop. None of the respondents either grew improved melon seeds (certified seeds) or applied fertilizers but all respondents cultivated treated watermelon seeds, applied fertilizers, and agro-chemicals. The average yields of melon fell from 376.53kg/ha in 2009 to 280.70kg/ha in 2011. However, the respondents were shifting into watermelon production because of available quality seeds and its early maturity, easy harvest, and high sales. There was a significant relationship between melon output and young farmers’ diversification to watermelon in the study area at p < 0.05. The study concluded that decline in the melon yield discouraged youth to continue melon farming in the study area. It is hereby recommended that certified melon seeds should be made available while extension service providers should provide training support for the young farmers in order to reposition and boost melon production in the study area.Keywords: decline, melon yield, contribution, watermelon, diversification, young farmers
Procedia PDF Downloads 1864087 Physicochemical Analysis of Soxhlet Extracted Oils from Selected Northern Nigerian Seeds
Authors: Abdulhamid Abubakar, Sani Ibrahim, Fakai I. Musa
Abstract:
The aim of the present study is to investigate the potential use of the selected seed oils. The oil was extracted using Soxhlet apparatus and the physicochemical characteristics of the oil determined using standard methods. The following results were obtained for the physicochemical parameters analysed: for Egusi seed oil, Oil yield 53.20%, Saponification value 178.03±1.25 mgKOH/g, iodine value 49.10±0.32 g I2/100 g, acid value 4.30±0.86 mgKOH/g, and Peroxide value 5.80±0.27 meq/kg were obtained. For Pawpaw seed oil, Oil yield 40.10%, Saponification value 24.13±3.93 mgKOH/g, iodine value 24.87±0.19 g I2/100g, acid value 9.46±0.40 mgKOH/g, and Peroxide value 3.12±1.22 meq/kg were obtained. For Sweet orange seed oil, oil yield 43.10%, Saponification value 106.30±2.37 mgKOH/g, Iodine value 37.08±0.04 g I2/100g, acid value 7.59±0.77 mgKOH/g, and Peroxide value 2.21±0.46 meq/kg were obtained. From the obtained values of the determined parameters, the oils can be extracted from the three selected seeds in commercial quantities and that the egusi and sweet orange seed oils may be utilized in the industrial soap production.Keywords: Carica papaya, Citrus sinensis, physicochemical, iodine value, peroxide value
Procedia PDF Downloads 4424086 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 1174085 Fracture and Fatigue Crack Growth Analysis and Modeling
Authors: Volkmar Nolting
Abstract:
Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring
Procedia PDF Downloads 494084 Synthesis and Antimicrobial Profile of Newer Schiff Bases and Thiazolidinone Derivatives
Authors: N. K. Fuloria, S. Fuloria, R. Gupta
Abstract:
Esterification of p-bromo-m-cresol offered 2-(4-bromo-3-methyl phenoxy)acetate (1), which was hydrazinated to yield 2-(4-bromo-3-methyl phenoxy)aceto hydrazide (2). Compound (2) was reacted with different aromatic aldehydes to yield N-(substituted benzylidiene)-2-(4-bromo-3-methyl phenoxy)acetamide(3a-c). Cyclization of compound (3a-c) with thioglycolic acid yielded 2-(4-bromo-3-methylphenoxy)-N-(4-oxo-2-arylthiazolidin-3-yl) acetamide (4a-c). The newly synthesized compounds were characterized on the basis of spectral studies and evaluated for antibacterial and antifungal activities.Keywords: imines, thiazolidinone, schiff base, antimicrobial
Procedia PDF Downloads 4454083 The Use of Water Resources Yield Model at Kleinfontein Dam
Authors: Lungile Maliba, O. I. Nkwonta, E Onyari
Abstract:
Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model
Procedia PDF Downloads 1394082 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 6924081 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity
Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink
Abstract:
The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction
Procedia PDF Downloads 3124080 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique
Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian
Abstract:
Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction
Procedia PDF Downloads 794079 Agronomic Evaluation of Flax Cultivars (Linum Usitatissimum L.) in Response to Irrigation Intervals
Authors: Emad Rashwan, M. Mousa, Ayman EL Sabagh, Celaleddin Barutcular
Abstract:
Flax is a potential winter crop for Egypt that can be grown for both seed and fiber. The study was conducted during two successive winter seasons of 2013/2014, and 2014/2015 in the experimental farm of El-Gemmeiza Agricultural Research Station, Agriculture research Centre, Egypt. The objective of this work was to evaluate the effect of irrigation intervals (25, 35 and 45) on the seed yield and quality of flax cultivars (Sakha1, Giza9 and Giza10). Obtained results indicate that highly significant for all studied traits among irrigation intervals except oil percentage that was not significant in both seasons. Irrigated flax plants every 35 days gave the maximum values for all characters. In contrast, irrigation every 45 days gave the minimum values for all studied characters under this study. In respect to cultivars, significant differences in most yield and quality characters were found. Furthermore, the performance of Sakha1 cultivar was superior in total plant height, main stem diameter, seed index, seed, oil, biological and straw yield /ha as well as fiber length and fiber fineness. Meanwhile, Giza9 and Giza10 cultivars were surpassed in fiber yield/hand fiber percentage, respectively. The interactions between irrigation intervals and flax cultivars were highly significant for total plant height, main stem diameter, seed, oil, biological and straw yields /ha. Based on the results, all flax cultivars recorded the maximum values for major traits were measured under irrigation of flax plants every 35 days.Keywords: flax, fiber, irrigation intervals, oil, seed yield
Procedia PDF Downloads 2544078 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 3384077 Effect of Aging Time and Mass Concentration on the Rheological Behavior of Vase of Dam
Authors: Hammadi Larbi
Abstract:
Water erosion, the main cause of the siltation of a dam, is a natural phenomenon governed by natural physical factors such as aggressiveness, climate change, topography, lithology, and vegetation cover. Currently, a vase from certain dams is released downstream of the dikes during devastation by hydraulic means. The vases are characterized by complex rheological behaviors: rheofluidification, yield stress, plasticity, and thixotropy. In this work, we studied the effect of the aging time of the vase in the dam and the mass concentration of the vase on the flow behavior of a vase from the Fergoug dam located in the Mascara region. In order to test the reproducibility of results, two replicates were performed for most of the experiments. The flow behavior of the vase studied as a function of storage time and mass concentration is analyzed by the Herschel Bulkey model. The increase in the aging time of the vase in the dam causes an increase in the yield stress and the consistency index of the vase. This phenomenon can be explained by the adsorption of the water by the vase and the increase in volume by swelling, which modifies the rheological parameters of the vase. The increase in the mass concentration in the vase leads to an increase in the yield stress and the consistency index as a function of the concentration. This behavior could be explained by interactions between the granules of the vase suspension. On the other hand, the increase in the aging time and the mass concentration of the vase in the dam causes a reduction in the flow index of the vase. The study also showed an exponential decrease in apparent viscosity with the increase in the aging time of the vase in the dam. If a vase is allowed to age long enough for the yield stress to be close to infinity, its apparent viscosity is also close to infinity; then the apparent viscosity also tends towards infinity; this can, for example, subsequently pose problems when dredging dams. For good dam management, it could be then deduced to reduce the dredging time of the dams as much as possible.Keywords: vase of dam, aging time, rheological behavior, yield stress, apparent viscosity, thixotropy
Procedia PDF Downloads 284076 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 1944075 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India
Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi
Abstract:
French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.Keywords: earliness, pod, protected environment, quality, yield
Procedia PDF Downloads 1064074 Irradiated-Chitosan and Methyl Jasmonate Modulate the Growth, Physiology and Alkaloids Production in Catharanthus roseus (l.) G. Don.
Authors: Moin Uddin, M. Masroor A. Khan, Faisal Rasheed, Tariq Ahmad Dar, Akbar Ali, Lalit Varshney
Abstract:
Oligomers, obtained by exposing the natural polysaccharides (alginate, carrageenan, chitosan, etc.) to cobalt-60 generated gamma radiation may prove as potent plant growth promoters when applied as foliar sprays to the plants. They function as endogenous growth elicitors, triggering the synthesis of different enzymes and modulating various plant responses by exploiting the gene expression. Exogenous application of Jasmonic acid or of its methyl ester, methyl jasmonate (MeJ) has been reported to increase the secondary metabolites production in medicinal and aromatic plants. Keeping this in mind, three pot experiments were conducted to test whether the foliar application of irradiated-chitosan (IC) and MeJ, applied alone or in combination, could augment the active constituents as well as growth, physiological and yield attributes of Catharanthus roseus, which carries anticancer alkaloids, viz. vincristine and vinblastine, in its leaves in addition to various other useful alkaloids. Totally, 5 spray treatments, comprising various aqueous solutions of IC [20, 40, 80 and 160 mg L-1 (Experiment 1)], MeJ (10, 20, 30 and 40 mg L-1 (Experiment 2)] and those of IC+MeJ [40+20, 40+30, 80+20, 80+30, 160+20 and 160+30 mg L-1 (Experiment 3)], were applied at seven days interval. Total leaf-alkaloids content as well as growth, physiological and yield parameters, evaluated at 120 days after sowing, were significantly enhanced by IC application. IC application could not increase the leaf-content of vincristine and vinblastine; nonetheless, it significantly augmented the yield of these alkaloids owing to enhancing the dry mass of leaves per plant. MeJ application, particularly at 30 mg L-1, increased both content (17%) and yield (48%) of total leaf-alkaloids as well as the content and yield of vincristine ( 29 and 63%, respectively) and vinblastine (14 and 44%, respectively) alkaloids, though it significantly decreased most other parameters studied, particularly at higher concentrations (30 and 40 mg L-1 of MeJ). As compared to the control (water-spray treatment), collective application of IC (80 mg L-1) and MeJ (20 mg L-1) resulted in the highest values of most of the parameters studied. However, 80 mg L-1 of IC applied with 30 mg L-1 of MeJ gave the best results for the content and yield of total as well as anticancer leaf-alkaloids (vincristine and vinblastine). Comparing the control, it increased the content and yield of total leaf-alkaloids (37 and 118%, respectively) and those of vincristine (65 and 163%, respectively) and vinblastine (31 and 107%, respectively). Conclusively, the applied technique significantly enhanced the production of total as well as anticancer alkaloids of Catharanthus roseus.Keywords: anticancer alkaloids (vincristine and vinblastine), catharanthus roseus, irradiated chitosan, methyl jasmonate
Procedia PDF Downloads 3924073 Effect of Tillage Techniques on the Performance of Kharif Rice Varieties
Authors: Mahua Banerjee, Debtanu Maiti
Abstract:
Zero-tillage cultivation is a farming practice that reduces costs while maintaining harvests and protecting the environment. Innovative partnerships among researchers, farmers, and other actors in the agricultural value chain have enabled the adoption of zero-tillage to sow rice in the Indo-Gangetic Plains, increasing farmers' incomes, fostering more sustainable use of soil and water, and providing a platform for cropping diversification and the introduction of other resource-conserving practices. A field experiment was conducted in the farmer’s field of Ausgram I Block, Burdwan, West Bengal, India under sandy loam soil with soil pH of 5.2, which is low in Nitrogen, medium in Phosphorus and Potassium. There were three techniques of tillage-T1: Zero tillage in Rice, T2: conventional tillage in Rice, T3: Rice grown with Drum seeder and three varieties namely V1: MTU 7029 V2-MTU 1010, V3: Pratikha thus making nine treatment combinations which were replicated thrice and the experiment was laid out in Factorial Randomised Block Design. Among the three varieties, rice variety MTU 7029 gave higher yield in all the tillage techniques. The highest yield was obtained under Zero tillage followed by conventional tillage. From economic analysis it was revealed that the benefit:cost ratio was higher in Zero tillage and rice cultivation by drum seeder. Zero-till is increasingly being adopted because it gives more yield at less cost, saves labour and farmer time. Farmers will be interested in this technology once they overcome their tillage biases.Keywords: economics, Indo-Gangetic plain, rice, zero tillage, yield
Procedia PDF Downloads 3784072 Management of Distillery Spentwash to Enhance Productivity of Dryland Crops and Reduce Environmental Pollution: A Case Study in Southern Dry Zone of Karnataka, India
Authors: A. Sathish, N. N. Lingaraju, K. N. Geetha, C. A. Srinivasamurthy, S. Bhaskar
Abstract:
Under dryland conditions, it is observed that the soil organic matter is low due to low organic carbon content due to poor management with less use of inputs. On the other hand, disposal of sugar industry waste, i.e., spentwash is a major concern with limited space for land based treatment and disposal which causes environmental pollution. Spentwash is also a resource that can be applied for productive uses since it contains nutrients that have the potential for use in agriculture. The disposal of spent wash may lead to environmental pollution. Hence as an alternative mechanism, it was applied once to dry lands, and the experiments were conducted from 2012-13 to 2016-17 in kharif season in Maddur Taluk, Mandya District, Karnataka State, India. The study conducted was in 93 different farmers field (maize-11, finger millet-80 & horsegram-14). Spentwash was applied at the rate of 100 m³ ha⁻¹ before sowing of the crops. The results showed that yield of dryland crops like finger millet, horse gram and maize was recorded 14.75 q ha⁻¹, 6 q ha⁻¹ and 31.00 q ha⁻¹, respectively and the yield increase to an extent of 10-25 per cent with one time application of spentwash to dry lands compared to farmers practice, i.e., chemical fertilizer application. The higher yield may be attributed to slow and steady release of nutrients by spentwash throughout the crop growth period. In addition, the growth promoting and other beneficial substances present in spentwash might have also helped in better plant growth and yield. The soil sample analysis after harvest of the crops indicate acidic to neutral pH, EC of 0.11 dSm⁻¹ and Na of 0.20 C mol (P⁺) kg⁻¹ in the normal range which are not harmful. Hence, it can be applied to drylands at least once in 3 years which enhances yield as well as reduces environmental pollution.Keywords: dryland crops, pollution, sugar industry waste, spentwash
Procedia PDF Downloads 2384071 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 294070 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives
Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić
Abstract:
In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes
Procedia PDF Downloads 4544069 Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.)
Authors: A. Mollafilabi, A. Koocheki, P. Rezvani Moghaddam, M. Nassiri Mahalati
Abstract:
In order to study the effects of corm weights and times of corm lifting saffron in different planting beds, an experiment was conducted as Factorial layout based on a Randomized Complete Block Design with three replications at the Fadak Research Center of Agricultural Research in Food Science during 2010. Treatments were two corm weights (8-10, 10 < g), two planting beds (stone wool and peat moss) and five levels of lifting time (mi-June, early July, mid-July, early August and mid-August). No. of corms were 457 corms.m-2 and for 40 days and were stored for 90 days in incubation, 85% relative humidity and 25°C temperature in the darkness. Then, saffron corms were transferred to growth chamber with 17 °C in 8 hours light and 16 hours darkness. Characteristics were number of flower, fresh weight of flower, dry weight of flower, fresh and dry weight of stigma, fresh and dry weight of style, fresh and dry weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Results showed that the corm weight, bed type and time of corm lifting had significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid-June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian farms. Picrocrocin, Safranal and Crocin contents was graded as excellent thread in peat moss under controlled conditions compared with ISO Standard of 203.Keywords: corm density, dry stigma, safranal-flowering, yield saffron
Procedia PDF Downloads 3334068 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1424067 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 2864066 Effects of Palm Waste Ash Residues on Acidic Soil in Relation to Physiological Responses of Habanero Chili Pepper (Capsicum chinense jacq.)
Authors: Kalu Samuel Ukanwa, Kumar Patchigolla, Ruben Sakrabani
Abstract:
The use of biosolids from thermal conversion of palm waste for soil fertility enhancement was tested in acidic soil of Southern Nigeria for the growing of Habanero chili pepper (Capsicum chinense jacq.). Soil samples from the two sites, showed pH 4.8 and 4.8 for site A and B respectively, below 5.6-6.8 optimum range and other fertility parameters indicating a low threshold for pepper growth. Nursery planting was done at different weeks to determine the optimum planting period. Ash analysis showed that it contains 26% of total K, 20% of total Ca, 0.27% of total P, and pH 11. The two sites were laid for an experiment in randomized complete block design and setup with three replications side by side. Each plot measured 3 x 2 m and a total of 15 plots for each site, four treatments, and one control. Outlined as control, 2, 4, 6 and 8 tonnes/hectare of palm waste ash, the combined average for both sites with correspondent yield after six harvests in one season are; 0, 5.8, 6, 6, 14.5 tonnes/hectare respectively to treatments. Optimum nursery survival rate was high in July; the crop yield was linear to the ash application. Site A had 6% yield higher than site B. Fruit development, weight, and total yield in relation to the control plot showed that palm waste ash is effective for soil amendment, nutrient delivery, and exchange.Keywords: ash, palm waste, pepper, soil amendment
Procedia PDF Downloads 1334065 High-Yield Synthesis of Nanohybrid Shish-Kebab of Polyethylene on Carbon NanoFillers
Authors: Dilip Depan, Austin Simoneaux, William Chirdon, Ahmed Khattab
Abstract:
In this study, we present a novel approach to synthesize polymer nanocomposites with nanohybrid shish-kebab architecture (NHSK). For this low-density and high density polyethylene (PE) was crystallized on various carbon nano-fillers using a novel and convenient method to prepare high-yield NHSK. Polymer crystals grew epitaxially on carbon nano-fillers using a solution crystallization method. The mixture of polymer and carbon fillers in xylene was flocculated and precipitated in ethanol to improve the product yield. Carbon nanofillers of varying diameter were also used as a nucleating template for polymer crystallization. The morphology of the prepared nanocomposites was characterized scanning electron microscopy (SEM), while differential scanning calorimetry (DSC) was used to quantify the amount of crystalline polymer. Interestingly, whatever the diameter of the carbon nanofiller is, the lamellae of PE is always perpendicular to the long axis of nanofiller. Surface area analysis was performed using BET. Our results indicated that carbon nanofillers of varying diameter can be used to effectively nucleate the crystallization of polymer. The effect of molecular weight and concentration of the polymer was discussed on the basis of chain mobility and crystallization capability of the polymer matrix. Our work shows a facile, rapid, yet high-yield production method to form polymer nanocomposites to reveal application potential of NHSK architecture.Keywords: carbon nanotubes, polyethylene, nanohybrid shish-kebab, crystallization, morphology
Procedia PDF Downloads 3294064 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia
Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono
Abstract:
Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length
Procedia PDF Downloads 214