Search results for: skin detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4431

Search results for: skin detection

3831 Ulnar Parametacarpal Flap for Coverage of Fifth Finger Defects: Propeller Flap Concept

Authors: Ahmed M. Gad, Ahmed S. Hweidi

Abstract:

Background: Defects of the little finger and adjacent areas are not uncommon. It could be a traumatic, post-burn, or after contracture release. Different options could be used for resurfacing these defect, including skin grafts, local or regional flaps. Ulnar para-metacarpal flap described by Bakhach in 1995 based on the distal division of the dorsal branch of the ulnar artery considered a good option for that. In this work, we applied the concept of propeller flap for better mobilization and in-setting of the ulnar para-metacarpal flap. Methods: The study included 15 cases with 4 females and 11 male patients. 10 of the patients had severe post-burn contractures of little finger, and 5 had post-traumatic little finger defects. Contractures were released and resulting soft tissue defects were reconstructed with propeller ulnar para-metacarpal artery flap. The flap based on two main perforators communicating with the palmar system, it was raised based on one of them depending on the extent of the defect and rotated 180 degrees after judicious dissection of the perforator. Results: 13 flaps survived completely, one of the cases developed partial skin loss, which healed by dressing, another flap was completely lost and covered later by a full-thickness skin graft. Conclusion: Ulnar para-metacarpal flap is a reliable option to resurface the little finger as well as adjacent areas. The application of the propeller flap concept based on whether the proximal or distal communicating branch makes the rotation and in-setting of the flap easier.

Keywords: little finger defects, propeller flap, regional hand defects, ulnar parametacarpal flap

Procedia PDF Downloads 197
3830 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 146
3829 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor

Authors: Ashwani Kumar

Abstract:

Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.

Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity

Procedia PDF Downloads 57
3828 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising

Procedia PDF Downloads 123
3827 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters

Authors: Iveta Bryjova

Abstract:

Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.

Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity

Procedia PDF Downloads 303
3826 Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions

Authors: Nisha Dhariwal, Anupama Sharma

Abstract:

The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent.

Keywords: cellulose, chemical sensor, heavy metal ions, indicator immobilization

Procedia PDF Downloads 301
3825 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 15
3824 Minimizing the Impact of Covariate Detection Limit in Logistic Regression

Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque

Abstract:

In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.

Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution

Procedia PDF Downloads 236
3823 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 265
3822 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 91
3821 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 289
3820 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine

Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef

Abstract:

Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.

Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation

Procedia PDF Downloads 198
3819 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 13
3818 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 57
3817 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: F. Sallem, B. Dahhou, A. Kamoun

Abstract:

In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.

Keywords: actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion

Procedia PDF Downloads 405
3816 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients

Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner

Abstract:

In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.

Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring

Procedia PDF Downloads 231
3815 A Study on Relationship of Lifestyle and Socio-Economic Status with Obesity in Indian Children

Authors: Sushma Ghildyal, Sanjay Kumar Singh

Abstract:

The present study was undertaken with the purpose to understand the relationship of lifestyle and Socio-Economic status with child obesity among 1000 boys aged from 16 to 18 years of Varanasi District of Uttar Pradesh State in India. The study was conducted in both urban and rural area of the District. Ten schools i.e. five from urban area and five from rural area were selected by using purposive sampling. Healthy boys of class 10th, 11th and 12th were taken as subjects for the study. Prior consent was obtained from school authority. Anthropometric measurements were taken from each subject. Anthropometric measurements were Standing Height, Weight, Biceps skin folds, Triceps skin folds, Sub-scapular skin folds and Supra-iliac skin folds taken by Lange’s skin fold caliper. Lifestyle and Socio-Economic Status were obtained by questionnaires. In order to assess the BMI, Body fat %, Lifestyle and Socio-Economic Status; descriptive analyses were done. To find out the significant association of obesity with lifestyle and Socio-Economic Status Chi-square test was used. To find out significant difference between obesity of Urban and Rural children t-test was applied. Level of significance was set at 0.05 level. The conclusions drawn were: (1) The result showed that in urban area Varanasi District of Uttar Pradesh 0.6% children were in very high level adaptive lifestyle, 6.2% were in high level adaptive lifestyle, 25.4% above average level adaptive lifestyle, 47.8% moderately adaptive lifestyle, 3.6% and 0.4% low and very low level adaptive lifestyle. (2) In rural area Varanasi District of Uttar Pradesh 0.00% children were in very high level adaptive lifestyle, 9.4% were in high level adaptive lifestyle, 24.8% average level adaptive lifestyle, 47.0% moderately adaptive lifestyle, 15.2% below average and 3.0% very low level adaptive lifestyle.(3) In urban area 12.8% were in upper class Socio-Economic Status, 56.6% in upper middle class Socio-Economic Status, 30.2% in middle class Socio-Economic Status and 0.2% in lower middle class Socio-Economic Status. (4) In rural area 1.4% were in upper class Socio-Economic Status, 15.2% in upper middle class Socio-Economic Status, 51.6% in middle class Socio-Economic Status and 0.8% in lower middle class Socio-Economic Status. (5) In urban area 21.2% children of 16-18 years were obese. (6) In rural area 0.2% children of 16-18 years were obese. (7) In overall Varanasi District of Uttar Pradesh 10.7% children of 16-18 years were obese. (8) There was no significant relationship of obesity with Lifestyle of urban area children of 16-18 years. (9) There was significant relationship of obesity with Socio-Economic Status of urban area children of 16-18 years (10) There was no significant relationship of obesity with Lifestyle of rural area children of 16-18 years of Varanasi District Uttar Pradesh. (11) There was significant relationship of obesity with Socio-Economic Status of rural area children of 16-18 years. (12) Results showed significant difference between urban and rural area children of 16-18 years in respect to obesity of Varanasi District of Uttar Pradesh.

Keywords: lifestyle, obesity, rural area, socio-economic status, urban area

Procedia PDF Downloads 480
3814 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59
3813 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: building system, time series, diagnosis, outliers, delay, data gap

Procedia PDF Downloads 245
3812 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 124
3811 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC

Authors: Zhongjie Yu, Hancheng Yu

Abstract:

In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.

Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC

Procedia PDF Downloads 131
3810 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis

Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo

Abstract:

Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.

Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine

Procedia PDF Downloads 173
3809 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.

Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test

Procedia PDF Downloads 217
3808 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems

Authors: N. Larbi, F. Debbat

Abstract:

Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.

Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing

Procedia PDF Downloads 435
3807 An Exploratory Study on Newborns Using Massage Oil to Induce Miliaria

Authors: Chia-Feng Chen, Wan-Yi Lin, Chia-En Liu

Abstract:

Background: There are approximately 600 newborns that stay four weeks in our postpartum agency every year. As we all know, newborn’s skin is 40-60% thinner than adult skin, newborn skin has a higher trans epidermal water loss, so many postpartum agencies use massage oil every day, no matter which seasons. In fact, neonatal miliaria or prickly heat is the most common condition from two to three -week- old newborns. According to research, about 80 percent of two to three -week- old baby are diagnosed with prickly heat because nurses apply massage oil to their faces every day. In China, we can use honeysuckle to wipe the newborn's face for treatment. Purpose: the purpose of the study is to discuss that using massage oil will be induced neonatal miliaria among two or three-week-old newborns and the aim of the study is to assess the protocol of miliaria condition with the face. Methods: a quasi-experimental design was used to evaluated the result between massage oil and non massage oil. A total of 22 participants were recruited randomly and analyzed from August to September in the south of China and collected for about 2 week long. The 22 participants were randomly selected and live in the stable air condition belong, 24 to 26℃. Results: the 64% of participants were diagnosed with miliaria using massage oil, the 2/8 of participants were diagnosed with miliaria no using massage oil. The pearson correction was0.67. The result of 22 participants, including massage oil, and diagnosed with miliaris. Besides, in our study, 9 of participants with miliaria for 3 to 6 days on the face, were treatment with honey-suckle wipe 3days through pediatric doctor suggestion. The effect of honey-suckle were useful in improving miliaria and decreasing the anxiety of parents. Conclusions: Miliaria is a common condition in newborns, especially in summer. The authors postulate that the massage oil did not find suitable for newborn in summer, and the study provides evidence that honey-suckle effectively control miliaria on using massage oil of participants.

Keywords: massage oil, miliaria, newborn, honey suckle

Procedia PDF Downloads 82
3806 Topology-Based Character Recognition Method for Coin Date Detection

Authors: Xingyu Pan, Laure Tougne

Abstract:

For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.

Keywords: coin, detection, character recognition, topology

Procedia PDF Downloads 253
3805 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 410
3804 A Rare Atypical Presentation of Iichthyosis Follicularis, Alopecia, and Photophobia Syndrome

Authors: D. R. Apoorva

Abstract:

Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome is a rare oculocutaneous disorder of genetic origin. This disorder results from mutations in the membrane-bound transcription factor protease site, two genes that impair cholesterol homeostasis, and the ability to cope with endoplasmic reticulum stress. We report a rare case of IFAP syndrome with an atypical presentation, and it was interesting to note that the child had patchy non-scarring alopecia over the scalp along with unilateral madarosis. To our best knowledge, this unique presentation has not been described earlier. The child presented with photophobia and unilateral ptosis. The child also had short stature and intellectual disability. Skin histopathology was nonspecific and consisted of dilated hair follicles with keratin plugs extending above the skin surface. This rare oculocutaneous disorder requires proper documentation so that identification of its variants may be possible in the future. Early recognition of atypical presentations can help in preventing cardiovascular complications, which remain the major cause of death.

Keywords: alopecia, photophobia, ichthyosis follicularis, IFAP syndrome

Procedia PDF Downloads 79
3803 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 235
3802 Immune Disregulation in Inflammatory Skin Diseases with Comorbid Metabolic Disorders

Authors: Roman Khanferyan, Levon Gevorkyan, Ivan Radysh

Abstract:

Skin barrier dysfunction induces multiple inflammatory skin diseases. Epidemiological studies clearly support the link between most dermatological pathologies, immune disorders and metabolic disorders. Among them most common are psoriasis (PS) and Atopic dermatitis (AD). Psoriasis is a chronic immune-mediated inflammatory skin disease that affects 1.5 to 3.0% of the world's population. Comorbid metabolic disorders play an important role in the progression of PS and AD, as well. It is well known that PS, AD and overweight/obesity are associated with common pathophysiological mechanisms of mild chronic inflammation. The goal of the study was to study the immune disturbances in patients with PS, AD and comorbid metabolic disorders. To study the prevalence of comorbidity of PS and AD (data from 1406 patient’s histories of diseases) were analyzed. The severity of the disease is assessed using the PASI index (Psoriasis Area and Severity Index). 59 patients with psoriasis of different localizations of lesions and severity, as well as with different body mass index (BMI), were examined. The determination of the concentration of pro-inflammatory cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNFa) and chemokines (RANTES, IP-10, MCP-1 and Eotaxin) in sera and supernatants of 48h-cultivated peripheral blood mononuclear cell (PBMC) of psoriasis patients and healthy volunteers (36 adults) have been carried out by multiplex assay (Luminex Corporation, USA). It has been demonstrated that 42% of PS patients had comorbidity with different types of atopies. The most common was bronchial asthma and allergic rhinitis. At the same time, the prevalence of AD in PS patients was determined in 8.7% of patients. It has been shown that serum levels of all studied cytokines (IL-6, IL-8, IFNγ, IL-17, L-18 and TNF) in most of the studied patients were higher in PS patients than in those with AD and healthy controls (p<0.05). An in vitro synthesis of the IL-6 and IFNγ by PBMC demonstrated similar results to those determined in blood sera. There was a high correlation between BMI, immune mediators and the concentrations of adipokines and chemokines (p<0.05). The concentrations of Leptin and Resistin in obese psoriatic patients were greater by 28.6% and 17%, respectively, compared to non-obese psoriatic patients. In obese patients with psoriasis the serum levels of adiponectin were decreased up to 1.3-fold. The mean serum RANTES, IP-10, MCP-1, EOTAXIN levels in obese psoriatic patients were decreased by up to 13.1%, 21.9%, 40.4% and 28.2%, respectively. Similar results have been demonstrated in AD patients with comorbid overweight and obesity. Thus, the study demonstrated the important role of cytokines and chemokines dysregulation in inflammatory skin diseases, especially in patients with comorbid obesity and overweight. Metabolic disorders promote the severity of PS and AD, highly increase immune dysregulation, and synthesis of adipokines, which correlates with the production of proinflammatory immune mediators in comorbid obesity and overweight.

Keywords: psoriasis, atopic dermatitis, pro-inflammatory cytokines, chemokines, comorbid obesity

Procedia PDF Downloads 35