Search results for: skin and muscles under compression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2162

Search results for: skin and muscles under compression

1562 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 75
1561 Effects of Wearable Garments on Postural Regulation in Community-Dwelling Elderly Adults

Authors: Mei Teng Woo, Keith Davids, Jarmo Liukkonen, Jia Yi Chow, Timo Jaakkola

Abstract:

Wearable garments such as tapes, compression garments, and braces could improve proprioception and reduced postural sway. The aim of this study was to examine the effects of wearable garments on postural regulation in a sample of community-dwelling elderly individuals, aged 65 years. It was hypothesized that wearable garments such as socks would provide stimulation to lower leg mechanoreceptors, and help participants achieve better postural regulation. Participants (N=63) performed a 30-s Romberg balance test protocol under four conditions (barefoot; wearing commercial socks; wearing clinical compression socks; wearing non-clinical compression socks), in a counterbalanced order, with four levels of performance difficulty: (1) standing on a stable surface with open eyes (SO); (2) a stable surface with closed eyes (SC); (3) a foam surface with open eyes (FO); and (4) a foam surface with closed eyes (FC). Centre of pressure (CoP) measurements included postural sway area (C90 area), trace length (TL) and sway velocity. Thirty-five participants (55.6%) showed positive effects of wearing the socks (responded group). In the responded group, it was revealed that socks showed significant differences in SO, SC and FO conditions for the two CoP measurements - TL and sway velocity (p < 0.05). In contrast, in the non-responded group, barefoot condition significantly decreased the TL and velocity in the SO condition. From the positive effects observed in the responded group, it is possible that wearable garments provide sensory cues that could interact with a biological cueing system to enhance performance in the postural regulation system. This study suggests that individuals respond to the socks treatments differently and future research should be undertaken to examine the factors that benefited the responded group of participants.

Keywords: community-dwelling, elderly adults, postural regulation, wearable garments

Procedia PDF Downloads 322
1560 Effect of Lime and Leaf Ash on Engineering Properties of Red Mud

Authors: Pawandeep Kaur, Prashant Garg

Abstract:

Red mud is a byproduct of aluminum extraction from Bauxite industry. It is dumped in a pond which not only uses thousands of acres of land but having very high pH, it pollutes the ground water and the soil also. Leaves are yet another big waste especially during autumn when they contribute immensely to the blockage of drains and can easily catch fire, among other risks hence also needs to be utilized effectively. The use of leaf ash and red mud in highway construction as a filling material may be an efficient way to dispose of leaf ash and red mud. In this study, leaf ash and lime were used as admixtures to improve the geotechnical engineering properties of red mud. The red mud was taken from National Aluminum Company Limited, Odisha, and leaf ash was locally collected. The aim of present study is to investigate the effect of lime and leaf ash on compaction characteristics and strength characteristics of red mud. California Bearing Ratio and Unconfined Compression Strength tests were performed on red mud by varying different percentages of lime and leaf ash. Leaf ash was added in proportion 2%,4%,6%,8% and 10% whereas lime was added in proportions of 5% to 15%. Optimized value of lime was decided with respect to maximum CBR (California Bearing Ratio) of red mud mixed with different proportions of lime. An increase of 300% in California Bearing ratio of red mud and an increase of 125% in Unconfined Compression Strength values were observed. It may, therefore, be concluded that red mud may be effectively utilized in the highway industry as a filler material.

Keywords: stabilization, lime, red mud, leaf ash

Procedia PDF Downloads 218
1559 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction

Authors: Bruce Wrightsman

Abstract:

Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.

Keywords: wood building systems, material histories, monocoque systems, construction waste

Procedia PDF Downloads 67
1558 Characterization of Structural Elements Concrete Metal Fibre

Authors: Benaouda Hemza

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 435
1557 Dose Measurement in Veterinary Radiology Using Thermoluminescent Dosimeter

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

Radiological protection for plants and animals is an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing a direct measurements technique with a thermoluminescent dosimeter. These measurements allow the determination of the entrance skin dose (ESD) by calculating the amount of radiation absorbed by the skin during exposure. A group of Thirty TLD-100 dosimeters produced by Harshaw Company, each with a repeatability greater than 95% and calibration using ¹³⁷Cs gamma source, were utilized to measure doses to ten small pets, including cats and dogs in the radiological department in a veterinary clinic in Shiraz, Iran. Radiological procedures were performed using a portable imaging unit (Philips Super M100, Philips Medical System, Germany) to acquire images of the abdomen; ten exams of abdomen images of different pets were monitored, measuring the thicknesses of the two projections (lateral and ventrodorsal) and the distance of the X-ray source from the surface of each pet during the exams. A group of two dosimeters was used for each pet which has been stacked on their skin on the abdomen region. The outcome of this study involved medical procedures with the same kVp, mAs, and nearly identical positions for different diagnostic X-ray procedures executed over a period of two months. The result showed the mean ESD value was 260.34±50.06 µGy due to the approximate size of pets. Based on the results, the ESD value is associated with animal size, and larger animals have higher values. If a procedure doesn't require repetition, the dose can be optimized. For smaller animals, the main challenge in veterinary radiology is the dose increase caused by repetitions, which is most noticeable in the ventro-dorsal position due to the difficulty in immobilizing the animal.

Keywords: direct dose measuring, dosimetry, radiation protection, veterinary medicine

Procedia PDF Downloads 46
1556 Prospects of Low Immune Response Transplants Based on Acellular Organ Scaffolds

Authors: Inna Kornienko, Svetlana Guryeva, Anatoly Shekhter, Elena Petersen

Abstract:

Transplantation is an effective treatment option for patients suffering from different end-stage diseases. However, it is plagued by a constant shortage of donor organs and the subsequent need of a lifelong immunosuppressive therapy for the patient. Currently some researchers look towards using of pig organs to replace human organs for transplantation since the matrix derived from porcine organs is a convenient substitute for the human matrix. As an initial step to create a new ex vivo tissue engineered model, optimized protocols have been created to obtain organ-specific acellular matrices and evaluated their potential as tissue engineered scaffolds for culture of normal cells and tumor cell lines. These protocols include decellularization by perfusion in a bioreactor system and immersion-agitation on an orbital shaker with use of various detergents (SDS, Triton X-100) and freezing. Complete decellularization – in terms of residual DNA amount – is an important predictor of probability of immune rejection of materials of natural origin. However, the signs of cellular material may still remain within the matrix even after harsh decellularization protocols. In this regard, the matrices obtained from tissues of low-immunogenic pigs with α3Galactosyl-tranferase gene knock out (GalT-KO) may be a promising alternative to native animal sources. The research included a study of induced effect of frozen and fresh fragments of GalT-KO skin on healing of full-thickness plane wounds in 80 rats. Commercially available wound dressings (Ksenoderm, Hyamatrix and Alloderm) as well as allogenic skin were used as a positive control and untreated wounds were analyzed as a negative control. The results were evaluated on the 4th day after grafting, which corresponds to the time of start of normal wound epithelization. It has been shown that a non-specific immune response in models treated with GalT-Ko pig skin was milder than in all the control groups. Research has been performed to measure technical skin characteristics: stiffness and elasticity properties, corneometry, tevametry, and cutometry. These metrics enabled the evaluation of hydratation level, corneous layer husking level, as well as skin elasticity and micro- and macro-landscape. These preliminary data may contribute to development of personalized transplantable organs from GalT-Ko pigs with significantly limited potential of immune rejection. By applying growth factors to a decellularized skin sample it is possible to achieve various regenerative effects based on the particular situation. In this particular research BMP2 and Heparin-binding EGF-like growth factor have been used. Ideally, a bioengineered organ must be biocompatible, non-immunogenic and support cell growth. Porcine organs are attractive for xenotransplantation if severe immunologic concerns can be bypassed. The results indicate that genetically modified pig tissues with knock-outed α3Galactosyl-tranferase gene may be used for production of low-immunogenic matrix suitable for transplantation.

Keywords: decellularization, low-immunogenic, matrix, scaffolds, transplants

Procedia PDF Downloads 264
1555 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring

Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh

Abstract:

Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.

Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness

Procedia PDF Downloads 325
1554 Characterization of Structural Elements in Metal Fiber Concrete

Authors: Ammari Abdelhammid

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 425
1553 Limit State Evaluation of Bridge According to Peak Ground Acceleration

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim

Abstract:

In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.

Keywords: allowable stress, limit state, safety factor, peak ground acceleration

Procedia PDF Downloads 202
1552 Effects of Applying Low-Dye Taping in Performing Double-Leg Squat on Electromyographic Activity of Lower Extremity Muscles for Collegiate Basketball Players with Excessive Foot Pronation

Authors: I. M. K. Ho, S. K. Y. Chan, K. H. P. Lam, G. M. W. Tong, N. C. Y. Yeung, J. T. C. Luk

Abstract:

Low-dye taping (LDT) is commonly used for treating foot problems, such as plantar fasciitis, and supporting foot arch for runners and non-athletes patients with pes planus. The potential negative impact of pronated feet leading to tibial and femoral internal rotation via the entire kinetic chain reaction was postulated and identified. The changed lower limb biomechanics potentially leading to poor activation of hip and knee stabilizers, such as gluteus maximus and medius, may associate with higher risk of knee injuries including patellofemoral pain syndrome and ligamentous sprain in many team sports players. It is therefore speculated that foot arch correction with LDT might enhance the use of gluteal muscles. The purpose of this study was to investigate the effect of applying LDT on surface electromyographic (sEMG) activity of superior gluteus maximus (SGMax), inferior gluteus maximus (IGMax), gluteus medius (GMed) and tibialis anterior (TA) during double-leg squat. 12 male collegiate basketball players (age: 21.72.5 years; body fat: 12.43.6%; navicular drop: 13.72.7mm) with at least three years regular basketball training experience participated in this study. Participants were excluded if they had recent history of lower limb injuries, over 16.6% body fat and lesser than 10mm drop in navicular drop (ND) test. Recruited subjects visited the laboratory once for the within-subject crossover study. Maximum voluntary isometric contraction (MVIC) tests on all selected muscles were performed in randomized order followed by sEMG test on double-leg squat during LDT and non-LDT conditions in counterbalanced order. SGMax, IGMax, GMed and TA activities during the entire 2-second concentric and 2-second eccentric phases were normalized and interpreted as %MVIC. The magnitude of the difference between taped and non-taped conditions of each muscle was further assessed via standardized effect90% confidence intervals (CI) with non-clinical magnitude-based inference. Paired samples T-test showed a significant decrease (4.71.4mm) in ND (95% CI: 3.8, 5.6; p < 0.05) while no significant difference was observed between taped and non-taped conditions in sEMG tests for all muscles and contractions (p > 0.05). On top of traditional significant testing, magnitude-based inference showed possibly increase in IGMax activity (small standardized effect: 0.270.44), likely increase in GMed activity (small standardized effect: 0.340.34) and possibly increase in TA activity (small standardized effect: 0.220.29) during eccentric phase. It is speculated that the decrease of navicular drop supported by LDT application could potentially enhance the use of inferior gluteus maximus and gluteus medius especially during eccentric phase in this study. As the eccentric phase of double-leg squat is an important component of landing activities in basketball, further studies on the onset and amount of gluteal activation during jumping and landing activities with LDT are recommended. Since both hip and knee kinematics were not measured in this study, the underlying cause of the observed increase in gluteal activation during squat after LDT is inconclusive. In this regard, the investigation of relationships between LDT application, ND, hip and knee kinematics, and gluteal muscle activity during sports specific jumping and landing tasks should be focused in the future.

Keywords: flat foot, gluteus maximus, gluteus medius, injury prevention

Procedia PDF Downloads 141
1551 Lactobacillus rhamnosus GG Increases the Re-Epithelialization Rate of Model Wounds by Stimulating Keratinocyte Migration in Ex-Vivo

Authors: W. Mohammedsaeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill

Abstract:

Many studies have demonstrated the importance of probiotics and their potential therapeutic effects within the gut. Recently, the possible therapeutic effects of probiotics in other tissues have also begun to be investigated. Comparatively few studies have evaluated the use of topical probiotics in relation to the skin. In this study, we have conducted preliminary investigations into whether a well-known probiotic, Lactobacillus rhamnosus GG (LGG), can increase the rate of re-epithelialization in a model wound. Full-thickness skin was obtained from individuals undergoing elective cosmetic surgery. This skin was wounded using excisional punch and cultured using a serum-free medium, either in the presence or absence of L. rhamnosus GG lysate. Histological staining of the sections was performed with Haematoxylin& Eosin E to quantify “epithelial tongue length”. This is the length of the new epithelial ‘tongue’ that grows and covers the exposed dermis at the inner wound edges. The length of the new epithelial ‘tongue’ was compared in untreated section and section treated with and L. rhamnosus GG made using108CFU/ml bacterial cells. L. rhamnosus GG lysate enhanced significantly the re-epithelialisation of treated wounds compared with that of untreated wounds (P=0.005, n=3). Tongue length, at day 1 was 7.55μm 0.15, at day 3 it was 18.5μm 0.25 and at day 7 was 22.9μm 0.35. These results can be compared with untreated cultures in which tongue length was 3.25μm 0.35, day 3 was 9.65μm 0.25 and day 7 was 13.5μm 0.15 post-wounding. In ex-vivo proliferation and migration cells were measured by determining the expression of nuclear proliferation marker Ki-67 and the expression of Phosphorylated cortactin respectively demonstrated that L. rhamnosus GG significantly increased NHEK proliferation and migration rates relative to controls. However, the dominant mechanism was migration because in ex-vivo skin treated with the L. rhamnosus GG up-regulated the gene expression of the chemokine receptor and ligands CXCR2 and CXCL2 comparing with controls (P=0.02, P=0.03 respectively, n=3). High levels of CXCL2/CXCL2 have already been implicated in multiple aspects of stimulation of wound healing through activation of keratinocyte migration. These data demonstrate that lysates from Lactobacillus rhamnosus GG increase re-epithelialization by stimulation of keratinocyte migration. The current study identifies the partial mechanism that contribute to stimulating the wound-healing process ex vivo in response to L. rhamnosus GG lysate is an increase in the production of CXCL2/ CXCR2 in ex vivo models. The use of probiotic lysates potentially offers new options to develop treatments that could improve wound healing.

Keywords: Lactobacillus rhamnosus GG, wounds, migration, lysate

Procedia PDF Downloads 316
1550 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 55
1549 Efficient Storage and Intelligent Retrieval of Multimedia Streams Using H. 265

Authors: S. Sarumathi, C. Deepadharani, Garimella Archana, S. Dakshayani, D. Logeshwaran, D. Jayakumar, Vijayarangan Natarajan

Abstract:

The need of the hour for the customers who use a dial-up or a low broadband connection for their internet services is to access HD video data. This can be achieved by developing a new video format using H. 265. This is the latest video codec standard developed by ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) on April 2013. This new standard for video compression has the potential to deliver higher performance than the earlier standards such as H. 264/AVC. In comparison with H. 264, HEVC offers a clearer, higher quality image at half the original bitrate. At this lower bitrate, it is possible to transmit high definition videos using low bandwidth. It doubles the data compression ratio supporting 8K Ultra HD and resolutions up to 8192×4320. In the proposed model, we design a new video format which supports this H. 265 standard. The major areas of applications in the coming future would lead to enhancements in the performance level of digital television like Tata Sky and Sun Direct, BluRay Discs, Mobile Video, Video Conferencing and Internet and Live Video streaming.

Keywords: access HD video, H. 265 video standard, high performance, high quality image, low bandwidth, new video format, video streaming applications

Procedia PDF Downloads 343
1548 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption

Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng

Abstract:

Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.

Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy

Procedia PDF Downloads 498
1547 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 56
1546 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: bending and deflection, bridge beam, compression, Nigerian Opepe, shear, structural reliability

Procedia PDF Downloads 444
1545 Characteristics of Edible Film Made from Skin and Bone Fish Gelatin, Spotted Oceanic Triggerfish (Canthidermis maculata) and Tilapia Fish (Oreochromis niloticus)

Authors: Normalina Arpi, Fahrizal Fahrizal, Dewi Yunita

Abstract:

Edible films can increase the shelf life of various food products by acting as water, oxygen, and lipid barrier. Fish gelatin as a film-forming agent has unique characteristics but varies depending on fish species. The purpose of this research is to characterize edible film made using skin and bone fish gelatin with the addition of plasticizer. Gelatin of spotted oceanic triggerfish (Canthidermis maculata) and tilapia (Oreochromis niloticus) were used. Glycerol and sorbitol with concentration of 0.25 and 0.5 % were added as a plasticizer. Spotted oceanic triggerfish gelatin with sorbitol resulted film with higher tensile strength and oxygen permeability, whereas tilapia gelatin with glycerol produced an edible film with higher elongation and water vapor permeability. The edible film made of spotted oceanic triggerfish gelatin and 0.25% sorbitol had the best characteristics.

Keywords: edible film, fish gelatin , glycerol, sorbitol

Procedia PDF Downloads 142
1544 Dynamic Web-Based 2D Medical Image Visualization and Processing Software

Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail

Abstract:

In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.

Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN

Procedia PDF Downloads 145
1543 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 137
1542 Spinal Hydatidosis: Therapeutic Management of 5 Cases

Authors: Ghoul Rachid Brahim, Trad Khodja Rafik

Abstract:

Vertebral localization of the hydatid cyst is a severe form of bone hydatidosis, is a parasitic infection caused by the larval forms of the tapeworms Echinococcus granulosus, The disease is slowly remaining silent (a long incubation period) which may explain why this pathology is often discovered at the stage of neurological complications. The objective of this study is to recall the clinical and radiological aspects of this condition and the importance of early diagnosis and appropriate management. We report a study of 5 patients with vertebral hydatidosis, four men and one woman, four (04) patients operated in the emergency setting for spinal cord compression (decompression by wide laminectomy with evacuation of intra and extra canal vesicles).Albendazole-based medical treatment is instituted in all patients. Results: The evolution was favorable for three patients, the other two patients reoperated for a local recurrence. Conclusion: Vertebral hydatidosis is a rare condition with a poor prognosis due to the risk of neurological damage, the infiltrating nature of bone lesions, the frequency of relapses and therapeutic difficulties. The only curative method remains surgery, which must aim for complete and large excision of the lesions as if it were a “malignant tumour”.

Keywords: hydatidosis, Echinococcosis granulosus, hydatid cyst, spinal cord compression, laminectomy

Procedia PDF Downloads 82
1541 Radix Saposhnikoviae Suppresses Allergic Contact Dermatitis in Mice by Regulating DCs Activated Th1-Type Cells

Authors: Hailiang Liu, Yan Ni, Jie Zheng, Xiaoyan Jiang, Min Hong

Abstract:

Allergic contact dermatitis (ACD) is a commonly clinical type IV allergic skin disease, with the pathological features of infiltration by mononuclear cells and tissue necrosis. Traditional Chinese medicine Radix Saposhnikoviae (RS) is traditionally employed to treat exogenous evils, rubella, itching, rheumatism and tetanus. Meanwhile, it is an important component of the commonly used anti-allergy compound. It’s now widely used as an immuno-modulating agent in mixed herbal decoctions to treat inflammation. However, its mechanism of anti-allergy remains unknown. RS was found to reduce ear thickness, as well as the infiltration of eosinophils. The proliferation of T lymphocytes was inhibited significantly by RS, markedly decreased IFN-γ levels in the supernatant of cells cultured and serum were detected with the treatment of RS. RS significantly decreased the amount of DCs in the mouse lymph nodes, and inhibited the expression of CD4 0 and CD86. Meanwhile, T-bet mRNA expression was down remarkably regulated by RS. These results indicate that RS cures Th1-induced allergic skin inflammation by regulating Th1/Th2 balance with decreasing Th1 differentiation, which might be associated with DCs.

Keywords: allergic contact dermatitis, Radix saposhnikoviae, dendritic cells, T-bet, GATA-3, CD4+ CD25+ Foxp3+ treg cells

Procedia PDF Downloads 360
1540 Failure Analysis of Laminated Veneer Bamboo Dowel Connections

Authors: Niloufar Khoshbakht, Peggi L. Clouston, Sanjay R. Arwade, Alexander C. Schreyer

Abstract:

Laminated veneer bamboo (LVB) is a structural engineered composite made from glued layers of bamboo. A relatively new building product, LVB is currently employed in similar sizes and applications as dimensional lumber. This study describes the results of a 3D elastic Finite Element model for halfhole specimens when loaded in compression parallel-to-grain per ASTM 5764. The model simulates LVB fracture initiation due to shear stresses in the dowel joint and predicts displacement at failure validated through comparison with experimental results. The material fails at 1mm displacement due to in-plane shear stresses. The paper clarifies the complex interactive state of in-plane shear, tension perpendicular-to-grain, and compression parallel-to-grain stresses that form different distributions in the critical zone beneath the bolt hole for half-hole specimens. These findings are instrumental in understanding key factors and fundamental failure mechanisms that occur in LVB dowel connections to help devise safe standards and further LVB product adoption and design.

Keywords: composite, dowel connection, embedment strength, failure behavior, finite element analysis, Moso bamboo

Procedia PDF Downloads 254
1539 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 259
1538 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 289
1537 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef

Authors: Messaoudi Mohammed Amin

Abstract:

The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.

Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 292
1536 Depth of Penetration and Nature of Interferential Current in Cutaneous, Subcutaneous and Muscle Tissues

Authors: A. Beatti, L. Chipchase, A. Rayner, T. Souvlis

Abstract:

The aims of this study were to investigate the depth of interferential current (IFC) penetration through soft tissue and to investigate the area over which IFC spreads during clinical application. Premodulated IFC and ‘true’ IFC at beat frequencies of 4, 40 and 90Hz were applied via four electrodes to the distal medial thigh of 15 healthy subjects. The current was measured via three Teflon coated fine needle electrodes that were inserted into the superficial layer of skin, then into the subcutaneous tissue (≈1 cm deep) and then into muscle tissue (≈2 cm deep). The needle electrodes were placed in the middle of the four IFC electrodes, between two channels and outside the four electrodes. Readings were taken at each tissue depth from each electrode during each treatment frequency then digitized and stored for analysis. All voltages were greater at all depths and locations than baseline (p < 0.01) and voltages decreased with depth (P=0.039). Lower voltages of all currents were recorded in the middle of the four electrodes with the highest voltage being recorded outside the four electrodes in all depths (P=0.000).For each frequency of ‘true’ IFC, the voltage was higher in the superficial layer outside the electrodes (P ≤ 0.01).Premodulated had higher voltages along the line of one circuit (P ≤ 0.01). Clinically, IFC appears to pass through skin layers to depth and is more efficient than premodulated IFC when targeting muscle tissue.

Keywords: electrotherapy, interferential current, interferential therapy, medium frequency current

Procedia PDF Downloads 330
1535 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 121
1534 A Review of Ethanol-Diesel Blend as a Fuel in Compression-Ignition Engine

Authors: Ibrahim Yahuza, Habou Dandakouta

Abstract:

The use of ethanol blended with diesel is receiving more attention by many researchers in the recent time. It was shown that ethanol–diesel blends were technically acceptable for existing diesel engines. Ethanol, as an attractive alternative fuel, is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression–ignition engines. In this review, the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may require special materials and modification of the fuel tank design. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol–diesel blends.

Keywords: ethanol, renewable, blend, bio-fuel, diesel engines

Procedia PDF Downloads 311
1533 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 224