Search results for: salt ‘glassier’
90 Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions
Authors: F. Al-Fahad, J. Chakkamalayath, A. Al-Aibani
Abstract:
Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction.Keywords: curing, durability, maturity, strength
Procedia PDF Downloads 30089 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug
Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto
Abstract:
Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility
Procedia PDF Downloads 58188 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2
Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen
Abstract:
Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel
Procedia PDF Downloads 14687 Oviposition Responses of the Malaria Mosquito Anopheles gambiae sensu stricto to Hay Infusion Volatiles in Laboratory Bioassays and Investigation of Volatile Detection Methods
Authors: Lynda K. Eneh, Okal N. Mike, Anna-Karin Borg-Karlson, Ulrike Fillinger, Jenny M. Lindh
Abstract:
The responses of individual gravid Anopheles gambiae sensu stricto (s.s.) to hay infusion volatiles were evaluated under laboratory conditions. Such infusions have long been known to be effective baits for monitoring mosquitoes that vector arboviral and filarial diseases but have previously not been tested for malaria vectors. Hay infusions were prepared by adding sun-dried Bermuda grass to lake water and leaving the mixture in a covered bucket for three days. The proportions of eggs laid by gravid An. gambiae s.s. in diluted (10%) and concentrated infusions ( ≥ 25%) was compared to that laid in lake water in two-choice egg-count bioassays. Furthermore, with the aim to develop a method that can be used to collect volatiles that influence the egg-laying behavior of malaria mosquitoes, different volatile trapping methods were investigated. Two different polymer-traps eluted using two different desorption methods and three parameters were investigated. Porapak®-Q traps and solvent desorption was compared to Tenax®-TA traps and thermal desorption. The parameters investigated were: collection time (1h vs. 20h), addition of salt (0.15 g/ml sodium chloride (NaCl) vs. no NaCl), and stirring the infusion (0 vs. 300 rpm). Sample analysis was with gas chromatography-mass spectrometry (GC-MS). An. gambiae s.s was ten times less likely to lay eggs in concentrated hay infusion than in lake water. The volatiles were best characterized by thermally desorbed Tenax traps, collected for 20 hours from infusion aliquots with sodium chloride added. Ten volatiles identified from headspace and previously indicated as putative oviposition semiochemicals for An. gambiae s.s. or confirmed semiochemicals for other mosquito species were tested in egg-count bioassays. Six of these (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole and 3-methylindole), when added to lake water, were avoided for egg-laying when lake water was offered as the alternative in dual-choice egg count bioassays. These compounds likely contribute to the unfavorable oviposition responses towards hay infusions. This difference in oviposition response of different mosquito species should be considered when designing control measures.Keywords: Anopheles gambiae, oviposition behaviour, egg-count cage bioassays, hay infusions, volatile detection, semiochemicals
Procedia PDF Downloads 34886 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System
Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta
Abstract:
Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp
Procedia PDF Downloads 19285 The Development and Change of Settlement in Tainan County (1904-2015) Using Historical Geographic Information System
Authors: Wei Ting Han, Shiann-Far Kung
Abstract:
In the early time, most of the arable land is dry farming and using rainfall as water sources for irrigation in Tainan county. After the Chia-nan Irrigation System (CIS) was completed in 1930, Chia-nan Plain was more efficient allocation of limited water sources or irrigation, because of the benefit from irrigation systems, drainage systems, and land improvement projects. The problem of long-term drought, flood and salt damage in the past were also improved by CIS. The canal greatly improved the paddy field area and agricultural output, Tainan county has become one of the important agricultural producing areas in Taiwan. With the development of water conservancy facilities, affected by national policies and other factors, many agricultural communities and settlements are formed indirectly, also promoted the change of settlement patterns and internal structures. With the development of historical geographic information system (HGIS), Academia Sinica developed the WebGIS theme with the century old maps of Taiwan which is the most complete historical map of database in Taiwan. It can be used to overlay historical figures of different periods, present the timeline of the settlement change, also grasp the changes in the natural environment or social sciences and humanities, and the changes in the settlements presented by the visualized areas. This study will explore the historical development and spatial characteristics of the settlements in various areas of Tainan County. Using of large-scale areas to explore the settlement changes and spatial patterns of the entire county, through the dynamic time and space evolution from Japanese rule to the present day. Then, digitizing the settlement of different periods to perform overlay analysis by using Taiwan historical topographic maps in 1904, 1921, 1956 and 1989. Moreover, using document analysis to analyze the temporal and spatial changes of regional environment and settlement structure. In addition, the comparison analysis method is used to classify the spatial characteristics and differences between the settlements. Exploring the influence of external environments in different time and space backgrounds, such as government policies, major construction, and industrial development. This paper helps to understand the evolution of the settlement space and the internal structural changes in Tainan County.Keywords: historical geographic information system, overlay analysis, settlement change, Tainan County
Procedia PDF Downloads 12884 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats
Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram
Abstract:
The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.Keywords: organic zinc, immune, rats, reproductive
Procedia PDF Downloads 28583 Effect of Fermentation on the Bioavailability of Some Fruit Extracts
Authors: Kubra Ozkan, Osman Sagdic
Abstract:
To better understand the benefits of these fresh and fermented fruits on human health, the consequences of human metabolism and the bioavailability must be known. In this study, brine with 10% salt content, sugar, and vinegar (5% acetic acid) was added to fruits (Prunus domestica L. and Prunus amygdalus Batsch) in different formulations. Samples were stored at 20±2˚C for their fermentation for 21 days. The effects of in vitro digestion were determined on the bioactive compounds in fresh and fermented fruits ((Prunus domestica L. and Prunus amygdalus Batsch). Total phenolic compounds, total flavonoid compounds and antioxidant capacities of post gastric (PG), IN (with small intestinal absorbers) and OUT (without small intestine absorbers) samples obtained as gastric and intestinal digestion in vitro were measured. Bioactive compounds and antioxidant capacity were determined by spectrophotometrically. Antioxidant capacity was tested by the CUPRAC methods, the total phenolic content (TPC) was determined by the Folin-Ciocalteu method, the total flavonoid content (TFC) determined by Aluminium trichloride (AlCl3) method. While the antioxidant capacity of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 2.21±0.05 mg TEAC/g, 4.39±0.02mg TEAC/g; these values for fermented fruits were found 2.37±0.08mg TEAC/g, 5.38±0.07mg TEAC/g respectively. While the total phenolic contents of fresh fruits namely, Prunus domestica L. and Prunus amygdalus Batsch samples were 0.51±0.01mg GAE/g, 5.56±0.01mg GAE/g; these values for fermented fruits were found as 0.52±0.01mg GAE/g, 6.81±0.03mg GAE/g, respectively. While the total flavonoid amounts of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 0.19±0.01mg CAE/g, 2.68±0.02mg CAE/g, these values for fermented fruits were found 0.20±0.01mg CAE/g, 2.93±0.02mg CAE/g, respectively. This study showed that phenolic, flavonoid compounds and antioxidant capacities of the samples were increased during the fermantation process. As a result of digestion, the amounts of bioactive components decreased in the stomach and intestinal environment. The bioavailability values of the phenolic compounds in fresh and fermented Prunus domestica L. fruits are 40.89% and 43.28%, respectively. The bioavailability values of the phenolic compounds in fresh and fermented Prunus amygdalus Batsch fruits 4.27% and 3.82%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus domestica L. fruits are 5.32% and 19.98%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus amygdalus Batsch fruits 2.22% and 1.53%, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus domestica L. fruits are 33.06% and 33.51, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus amygdalus Batsch fruits 14.50% and 15.31%, respectively. Fermentation process; Prunus amygdalus Batsch decreased bioavailability while Prunus domestica increased bioavailability. When two fruits are compared; Prunus domestica bioavailability is more than Prunus amygdalus Batsch.Keywords: bioactivity, bioavailability, fermented, fruit, nutrition
Procedia PDF Downloads 16082 Integration of the Electro-Activation Technology for Soy Meal Valorization
Authors: Natela Gerliani, Mohammed Aider
Abstract:
Nowadays, the interest of using sustainable technologies for protein extraction from underutilized oilseeds is growing. Currently, a major disposal problem for the oil industry is by-products of plant food processing such as soybean meal. That is why valorization of soybean meal is important for the oil industry since it contains high-quality proteins and other valuable components. Generally, soybean meal is used in livestock and poultry feed but is rarely used in human feed. Though chemical composition of this meal compensate nutritional deficiency and can be used to balance protein in human food. Regarding the efficiency of soybean meal valorization, extraction is a key process for obtaining enriched protein ingredient, which can be incorporated into the food matrix. However, most of the food components such as proteins extracted from oilseeds by-products imply the utilization of organic and inorganic chemicals (e.g. acids, bases, TCA-acetone) having a significant environmental impact. In a context of sustainable production, the use of an electro-activation technology seems to be a good alternative. Indeed, the electro-activation technology requires only water, food grade salt and electricity as main materials. Moreover, this innovative technology helps to avoid special equipment and trainings for workers safety as well as transport and storage of hazardous materials. Electro-activation is a technology based on applied electrochemistry for the generation of acidic and alkaline solutions on the basis of the oxidation-reduction reactions that occur at the vicinity electrode/solution interfaces. It is an eco-friendly process that can be used to replace the conventional acidic and alkaline extraction. In this research, the electro-activation technology for protein extraction from soybean meal was carried out in the electro-activation reactor. This reactor consists of three compartments separated by cation and anion exchange membranes that allow creating non-contacting acidic and basic solutions. Different current intensities (150 mA, 300 mA and 450 mA) and treatment durations (10 min, 30 min and 50 min) were tested. The results showed that the extracts obtained by the electro-activation method have good quality in comparison to conventional extracts. For instance, extractability obtained with electro-activation method was 55% whereas with the conventional method it was only 36%. Moreover, a maximum protein quantity of 48 % in the extract was obtained with the electro-activation technology comparing to the maximum amount of protein obtained by conventional extraction of 41 %. Hence, the environmentally sustainable electro-activation technology seems to be a promising type of protein extraction that can replace conventional extraction technology.Keywords: by-products, eco-friendly technology, electro-activation, soybean meal
Procedia PDF Downloads 22681 Regeneration of a Liquid Desiccant Using Membrane Distillation to Unlock Coastal Desert Agriculture Potential
Authors: Kimberly J. Cribbs, Ryan M. Lefers, TorOve Leiknes, Noreddine Ghaffour
Abstract:
In Gulf Cooperation Council (GCC) countries, domestic agriculture is hindered by a lack of freshwater, poor soil quality, and ambient temperatures unsuitable for cultivation resulting in a heavy reliance on imported food. Attempts to minimize the risk of food insecurity by growing crops domestically creates a significant demand on limited freshwater resources in this region. Cultivating food in a greenhouse allows some of these challenges, such as poor soil quality and temperatures unsuitable for cultivation, to be overcome. One of the most common methods for greenhouse cooling is evaporative cooling. This method cools the air by the evaporation of water and requires a large amount of water relative to that needed for plant growth and air with a low relative humidity. Considering that much of the population in GCC countries live within 100 km of a coast and that sea water can be utilized for evaporative cooling, coastal agriculture could reduce the risk of food insecurity and water demand. Unfortunately, coastal regions tend to experience both high temperatures and high relative humidity causing evaporative cooling by itself to be inadequate. Therefore, dehumidification is needed prior to utilizing evaporative cooling. Utilizing a liquid desiccant for air dehumidification is promising, but the desiccant regeneration to retain its dehumidification potential remains a significant obstacle for the adoption of this technology. This project studied the regeneration of a magnesium chloride (MgCl₂) desiccant solution from 20wt% to 30wt% by direct contact membrane distillation (DCMD) and explored the possibility of using the recovered water for irrigation. Two 0.2 µm hydrophobic PTFE membranes were tested at feed temperatures of 80, 70, and 60°C and with a permeate temperature of 20°C. It was observed that the permeate flux increases as the difference between the feed and coolant temperature increases and also as the feed concentration decreases. At 21wt% the permeate flux was 34,17, and 14 L m⁻² h⁻¹ for feed temperatures of 80, 70, and 60°C, respectively. Salt rejection decreased overtime; however, it remained greater than 99.9% over an experimental time span of 10 hours. The results show that DCMD can successfully regenerate the magnesium chloride desiccant solution.Keywords: agriculture, direct contact membrane distillation, GCC countries, liquid desiccant, water recovery
Procedia PDF Downloads 14780 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery
Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia
Abstract:
In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium
Procedia PDF Downloads 20679 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat
Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh
Abstract:
Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences
Procedia PDF Downloads 42578 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages
Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska
Abstract:
The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method. Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.Keywords: sea buckthorn, meat products, texture, color parameters, lipid oxidation
Procedia PDF Downloads 29577 Purification of Bacillus Lipopeptides for Diverse Applications
Authors: Vivek Rangarajan, Kim G. Clarke
Abstract:
Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC
Procedia PDF Downloads 20476 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods
Authors: Shima Nabinejad, Holger Schüttrumpf
Abstract:
Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.Keywords: crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges
Procedia PDF Downloads 25575 Development of a Process Method to Manufacture Spreads from Powder Hardstock
Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien
Abstract:
It has been over 200 years since margarine was discovered and manufactured using liquid oil, liquified hardstock oils and other oil phase & aqueous phase ingredients. Henry W. Bradley first used vegetable oils in liquid state and around 1871, since then; spreads have been traditionally manufactured using liquified oils. The main objective of this study was to develop a process method to produce spreads using spray dried hardstock fat powders as a structing fats in place of current liquid structuring fats. A high shear mixing system was used to condition the fat phase and the aqueous phase was prepared separately. Using a single scraped surface heat exchanger and pin stirrer, margarine was produced. The process method was developed for to produce spreads with 40%, 50% and 60% fat . The developed method was divided into three steps. In the first step, fat powders were conditioned by melting and dissolving them into liquid oils. The liquified portion of the oils were at 65 °C, whilst the spray dried fat powder was at 25 °C. The two were mixed using a mixing vessel at 900 rpm for 4 minutes. The rest of the ingredients i.e., lecithin, colorant, vitamins & flavours were added at ambient conditions to complete the fat/ oil phase. The water phase was prepared separately by mixing salt, water, preservative, acidifier in the mixing tank. Milk was also separately prepared by pasteurizing it at 79°C prior to feeding it into the aqueous phase. All the water phase contents were chilled to 8 °C. The oil phase and water phase were mixed in a tank, then fed into a single scraped surface heat exchanger. After the scraped surface heat exchanger, the emulsion was fed in a pin stirrer to work the formed crystals and produce margarine. The margarine produced using the developed process had fat levels of 40%, 50% and 60%. The margarine passed all the qualitative, stability, and taste assessments. The scores were 6/10, 7/10 & 7.5/10 for the 40%, 50% & 60% fat spreads, respectively. The success of the trials brought about differentiated knowledge on how to manufacture spreads using non micronized spray dried fat powders as hardstock. Manufacturers do not need to store structuring fats at 80-90°C and even high in winter, instead, they can adapt their processes to use fat powders which need to be stored at 25 °C. The developed process method used one scrape surface heat exchanger instead of the four to five currently used in votator based plants. The use of a single scraped surface heat exchanger translated to about 61% energy savings i.e., 23 kW per ton of product. Furthermore, it was found that the energy saved by implementing separate pasteurization was calculated to be 6.5 kW per ton of product produced.Keywords: margarine emulsion, votator technology, margarine processing, scraped sur, fat powders
Procedia PDF Downloads 8974 Response of Caldeira De Tróia Saltmarsh to Sea Level Rise, Sado Estuary, Portugal
Authors: A. G. Cunha, M. Inácio, M. C. Freitas, C. Antunes, T. Silva, C. Andrade, V. Lopes
Abstract:
Saltmarshes are essential ecosystems both from an ecological and biological point of view. Furthermore, they constitute an important social niche, providing valuable economic and protection functions. Thus, understanding their rates and patterns of sedimentation is critical for functional management and rehabilitation, especially in an SLR scenario. The Sado estuary is located 40 km south of Lisbon. It is a bar built estuary, separated from the sea by a large sand spit: the Tróia barrier. Caldeira de Tróia is located on the free edge of this barrier, and encompasses a salt marsh with ca. 21,000 m². Sediment cores were collected in the high and low marshes and in the mudflat area of the North bank of Caldeira de Tróia. From the low marsh core, fifteen samples were chosen for ²¹⁰Pb and ¹³⁷Cs determination at University of Geneva. The cores from the high marsh and the mudflat are still being analyzed. A sedimentation rate of 2.96 mm/year was derived from ²¹⁰Pb using the Constant Flux Constant Sedimentation model. The ¹³⁷Cs profile shows a peak in activity (1963) between 15.50 and 18.50 cm, giving a 3.1 mm/year sedimentation rate for the past 53 years. The adopted sea level rise scenario was based on a model built with the initial rate of SLR of 2.1 mm/year in 2000 and an acceleration of 0.08 mm/year². Based on the harmonic analysis of Setubal-Tróia tide gauge of 2005 data, the tide model was estimated and used to build the tidal tables to the period 2000-2016. With these tables, the average mean water levels were determined for the same time span. A digital terrain model was created from LIDAR scanning with 2m horizontal resolution (APA-DGT, 2011) and validated with altimetric data obtained with a DGPS-RTK. The response model calculates a new elevation for each pixel of the DTM for 2050 and 2100 based on the sedimentation rates specific of each environment. At this stage, theoretical values were chosen for the high marsh and the mudflat (respectively, equal and double the low marsh rate – 2.92 mm/year). These values will be rectified once sedimentation rates are determined for the other environments. For both projections, the total surface of the marsh decreases: 2% in 2050 and 61% in 2100. Additionally, the high marsh coverage diminishes significantly, indicating a regression in terms of maturity.Keywords: ¹³⁷Cs, ²¹⁰Pb, saltmarsh, sea level rise, response model
Procedia PDF Downloads 24773 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates
Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe
Abstract:
Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane
Procedia PDF Downloads 7672 Dietary Anion-Cation Balance of Grass and Net Acid-Base Excretion in Urine of Suckler Cows
Authors: H. Scholz, P. Kuehne, G. Heckenberger
Abstract:
Dietary Anion-Cation Balance (DCAB) in grazing systems under German conditions has a tendency to decrease from May until September and often are measured DCAB lower than 100 meq per kg dry matter. Lower DCAB in grass feeding system can change the metabolic status of suckler cows and often are results in acidotic metabolism. Measurement of acid-base excretion in dairy cows has been proved to a method to evaluate the acid-base status. The hypothesis was that metabolic imbalances could be identified by urine measurement in suckler cows. The farm study was conducted during the grazing seasons 2017 and 2018 and involved 7 suckler cow farms in Germany. Suckler cows were grazing during the whole time of the investigation and had no access to other feeding components. Cows had free access to water and salt block and free access to minerals (loose). The dry matter of the grass was determined at 60 °C and were then analysed for energy and nutrient content and for the Dietary Cation-Anion Balance (DCAB). Urine was collected in 50 ml-glasses and analysed for net acid-base excretion (NSBA) and the concentration of creatinine and urea in the laboratory. Statistical analysis took place with ANOVA with fixed effects of farms (1-7), month (May until September), and number of lactations (1, 2, and ≥ 3 lactations) using SPSS Version 25.0 for windows. An alpha of 0.05 was used for all statistical tests. During the grazing periods of years 2017 and 2018, an average DCAB was observed in the grass of 167 meq per kg DM. A very high mean variation could be determined from -42 meq/kg to +439 meq/kg. Reference values in relation to DCAB were described between 150 meq and 400 meq per kg DM. It was found the high chlorine content with reduced potassium level led to this reduction in DCAB at the end of the grazing period. Between the DCAB of the grass and the NSBA in urine of suckler cows was a correlation according to PEARSON of r = 0.478 (p ≤ 0.001) or after SPEARMAN of r = 0.601 (p ≤ 0.001) observed. For the control of urine values of grazing suckler cows, the wide spread of the values poses a challenge of the interpretation, especially since the DCAB is unknown. The influence of several feeding components such as chlorine, sulfur, potassium, and sodium (ions for the DCAB) and dry matter feed intake during the grazing period of suckler cows should be taken into account in further research. The results obtained show that up a decrease in the DCAB is related to a decrease in NSBA in urine of suckler cows. Monitoring of metabolic disturbances should include analysis of urine, blood, milk, and ruminal fluid.Keywords: dietary anion-cation balance, DCAB, net acid-base excretion, NSBA, suckler cow, grazing period
Procedia PDF Downloads 15071 Water Desalination by Membrane Distillation with MFI Zeolite Membranes
Authors: Angelo Garofalo, Laura Donato, Maria Concetta Carnevale, Enrico Drioli, Omar Alharbi, Saad Aljlil, Alessandra Criscuoli, Catia Algieri
Abstract:
Nowadays, water scarcity may be considered one of the most important and serious questions concerning our community: in fact, there is a remarkable mismatch between water supply and water demand. Exploitation of natural fresh water resources combined with higher water demand has led to an increased requirement for alternative water resources. In this context, desalination provides such an alternative source, offering water otherwise not accessible for irrigational, industrial and municipal use. Considering the various drawbacks of the polymeric membranes, zeolite membranes represent a potential device for water desalination owing to their high thermal and chemical stability. In this area wide attention was focused on the MFI (silicalite, ZSM-5) membranes, having a pore size lower (about 5.5 Å) than the major kinetic diameters of hydrated ions. In the present work, a scale-up for the preparation of supported silicalite membranes was performed. Therefore, tubular membranes 30 cm long were synthesized by using the secondary growth method coupled with the cross flow seeding procedure. The secondary growth presents two steps: seeding and growth of zeolite crystals on the support. This process, decoupling zeolite nucleation from crystals growth, permits to control the conditions of each step separately. The seeding procedure consists of a cross-flow filtration through a porous support coupled with the support rotation and tilting. The combination of these three different aspects allows a homogeneous and uniform coverage of the support with the zeolite seeds. After characterization by scanning electron microscope (SEM), X-ray diffractometry (XRD) and Energy-dispersive X-ray (EDX) analysis, the prepared membranes were tested by means of single gas permeation and then by Vacuum Membrane Distillation (VMD) using both deionized water and NaCl solutions. The experimental results evidenced the possibility to perform the scale up for the preparation of almost defect free silicalite membranes. VMD tests indicated the possibility to prepare membranes that exhibit interesting performance in terms of fluxes and salt rejections for concentrations from 0.2 M to 0.9 M. Furthermore, it was possible to restore the original performance of the membrane after an identified cleaning procedure. Acknowledgements: The authors gratefully acknowledge the support of the King Abdulaziz City for Science and Technology (KACST) for funding the research Project 895/33 entitled ‘Preparation and Characterization of Zeolite Membranes for Water Treatment’.Keywords: desalination, MFI membranes, secondary growth, vacuum membrane distillation
Procedia PDF Downloads 25370 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam
Authors: Huu Hue Van
Abstract:
The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir
Procedia PDF Downloads 8369 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study
Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas
Abstract:
The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions
Procedia PDF Downloads 23968 Analysis of the Properties of Hydrophobised Heat-Insulating Mortar with Perlite
Authors: Danuta Barnat-Hunek
Abstract:
The studies are devoted to assessing the effectiveness of hydrophobic and air entraining admixtures based on organ silicon compounds. Mortars with lightweight aggregate–perlite were the subjects of the investigation. The following laboratory tests were performed: density, open porosity, total porosity, absorptivity, capability to diffuse water vapour, compressive strength, flexural strength, frost resistance, sodium sulphate corrosion resistance and the thermal conductivity coefficient. The composition of the two mixtures of mortars was prepared: mortars without a hydrophobic admixture and mortars with cementitious waterproofing material. Surface hydrophobisation was produced on the mortars without a hydrophobic admixture using a methyl silicone resin, a water-based emulsion of methyl silicone resin in potassium hydroxide and alkyl-alkoxy-silane in organic solvents. The results of the effectiveness of hydrophobisation of mortars are the following: The highest absorption after 14 days of testing was shown by mortar without an agent (57.5%), while the lowest absorption was demonstrated by the mortar with methyl silicone resin (52.7%). After 14 days in water the hydrophobisation treatment of the samples proved to be ineffective. The hydrophobised mortars are characterized by an insignificant mass change due to freezing and thawing processes in the case of the methyl silicone resin – 1%, samples without hydrophobisation –5%. This agent efficiently protected the mortars against frost corrosion. The standard samples showed very good resistance to the pressure of sodium sulphate crystallization. Organosilicon compounds have a negative influence on the chemical resistance (weight loss about 7%). The mass loss of non-hydrophobic mortar was 2 times lower than mortar with the hydrophobic admixture. Hydrophobic and aeration admixtures significantly affect the thermal conductivity and the difference is mainly due to the difference in porosity of the compared materials. Hydrophobisation of the mortar mass slightly decreased the porosity of the mortar, and thus in an increase of 20% of its compressive strength. The admixture adversely affected the ability of the hydrophobic mortar – it achieved the opposite effect. As a result of hydrophobising the mass, the mortar samples decreased in density and had improved wettability. Poor protection of the mortar surface is probably due to the short time of saturating the sample in the preparation. The mortars were characterized by high porosity (65%) and water absorption (57.5%), so in order to achieve better efficiency, extending the time of hydrophobisation would be advisable. The highest efficiency was obtained for the surface hydrophobised with the methyl silicone resin.Keywords: hydrophobisation, mortars, salt crystallization, frost resistance
Procedia PDF Downloads 20967 Effect of Pollutions on Mangrove Forests of Nayband National Marine Park
Authors: Esmaeil Kouhgardi, Elaheh Shakerdargah
Abstract:
The mangrove ecosystem is a complex of various inter-related elements in the land-sea interface zone which is linked with other natural systems of the coastal region such as corals, sea-grass, coastal fisheries and beach vegetation. The mangrove ecosystem consists of water, muddy soil, trees, shrubs, and their associated flora, fauna and microbes. It is a very productive ecosystem sustaining various forms of life. Its waters are nursery grounds for fish, crustacean, and mollusk and also provide habitat for a wide range of aquatic life, while the land supports a rich and diverse flora and fauna, but pollutions may affect these characteristics. Iran has the lowest share of Persian Gulf pollution among the eight littoral states; environmental experts are still deeply concerned about the serious consequences of the pollution in the oil-rich gulf. Prolongation of critical conditions in the Persian Gulf has endangered its aquatic ecosystem. Water purification equipment, refineries, wastewater emitted by onshore installations, especially petrochemical plans, urban sewage, population density and extensive oil operations of Arab states are factors contaminating the Persian Gulf waters. Population density has been the major cause of pollution and environmental degradation in the Persian Gulf. Persian Gulf is a closed marine environment which is connected to open waterways only from one way. It usually takes between three and four years for the gulf's water to be completely replaced. Therefore, any pollution entering the water will remain there for a relatively long time. Presently, the high temperature and excessive salt level in the water have exposed the marine creatures to extra threats, which mean they have to survive very tough conditions. The natural environment of the Persian Gulf is very rich with good fish grounds, extensive coral reefs and pearl oysters in abundance, but has become increasingly under pressure due to the heavy industrialization and in particular the repeated major oil spillages associated with the various recent wars fought in the region. Pollution may cause the mortality of mangrove forests by effect on root, leaf and soil of the area. Study was showed the high correlation between industrial pollution and mangrove forests health in south of Iran and increase of population, coupled with economic growth, inevitably caused the use of mangrove lands for various purposes such as construction of roads, ports and harbors, industries and urbanization.Keywords: Mangrove forest, pollution, Persian Gulf, population, environment
Procedia PDF Downloads 39866 Investigating the Aerosol Load of Eastern Mediterranean Basin with Sentinel-5p Satellite
Authors: Deniz Yurtoğlu
Abstract:
Aerosols directly affect the radiative balance of the earth by absorbing and/or scattering the sun rays reaching the atmosphere and indirectly affect the balance by acting as a nucleus in cloud formation. The composition, physical, and chemical properties of aerosols vary depending on their sources and the time spent in the atmosphere. The Eastern Mediterranean Basin has a high aerosol load that is formed from different sources; such as anthropogenic activities, desert dust outbreaks, and the spray of sea salt; and the area is subjected to atmospheric transport from other locations on the earth. This region, which includes the deserts of Africa, the Middle East, and the Mediterranean sea, is one of the most affected areas by climate change due to its location and the chemistry of the atmosphere. This study aims to investigate the spatiotemporal deviation of aerosol load in the Eastern Mediterranean Basin between the years 2018-2022 with the help of a new pioneer satellite of ESA (European Space Agency), Sentinel-5P. The TROPOMI (The TROPOspheric Monitoring Instrument) traveling on this low-Earth orbiting satellite is a UV (Ultraviolet)-sensing spectrometer with a resolution of 5.5 km x 3.5 km, which can make measurements even in a cloud-covered atmosphere. By using Absorbing Aerosol Index data produced by this spectrometer and special scripts written in Python language that transforms this data into images, it was seen that the majority of the aerosol load in the Eastern Mediterranean Basin is sourced from desert dust and anthropogenic activities. After retrieving the daily data, which was separated from the NaN values, seasonal analyses match with the normal aerosol variations expected, which are high in warm seasons and lower in cold seasons. Monthly analyses showed that in four years, there was an increase in the amount of Absorbing Aerosol Index in spring and winter by 92.27% (2019-2021) and 39.81% (2019-2022), respectively. On the other hand, in the summer and autumn seasons, a decrease has been observed by 20.99% (2018-2021) and 0.94% (2018-2021), respectively. The overall variation of the mean absorbing aerosol index from TROPOMI between April 2018 to April 2022 reflects a decrease of 115.87% by annual mean from 0.228 to -0.036. However, when the data is analyzed by the annual mean values of the years which have the data from January to December, meaning from 2019 to 2021, there was an increase of 57.82% increase (0.108-0.171). This result can be interpreted as the effect of climate change on the aerosol load and also, more specifically, the effect of forest fires that happened in the summer months of 2021.Keywords: aerosols, eastern mediterranean basin, sentinel-5p, tropomi, aerosol index, remote sensing
Procedia PDF Downloads 6665 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application
Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay
Abstract:
Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery
Procedia PDF Downloads 12464 High-Pressure Polymorphism of 4,4-Bipyridine Hydrobromide
Authors: Michalina Aniola, Andrzej Katrusiak
Abstract:
4,4-Bipyridine is an important compound often used in chemical practice and more recently frequently applied for designing new metal organic framework (MoFs). Here we present a systematic high-pressure study of its hydrobromide salt. 4,4-Bipyridine hydrobromide monohydrate, 44biPyHBrH₂O, at ambient-pressure is orthorhombic, space group P212121 (phase a). Its hydrostatic compression shows that it is stable to 1.32 GPa at least. However, the recrystallization above 0.55 GPa reveals a new hidden b-phase (monoclinic, P21/c). Moreover, when the 44biPyHBrH2O is heated to high temperature the chemical reactions of this compound in methanol solution can be observed. High-pressure experiments were performed using a Merrill-Bassett diamond-anvil cell (DAC), modified by mounting the anvils directly on the steel supports, and X-ray diffraction measurements were carried out on a KUMA and Excalibur diffractometer equipped with an EOS CCD detector. At elevated pressure, the crystal of 44biPyHBrH₂O exhibits several striking and unexpected features. No signs of instability of phase a were detected to 1.32 GPa, while phase b becomes stable at above 0.55 GPa, as evidenced by its recrystallizations. Phases a and b of 44biPyHBrH2O are partly isostructural: their unit-cell dimensions and the arrangement of ions and water molecules are similar. In phase b the HOH-Br- chains double the frequency of their zigzag motifs, compared to phase a, and the 44biPyH+ cations change their conformation. Like in all monosalts of 44biPy determined so far, in phase a the pyridine rings are twisted by about 30 degrees about bond C4-C4 and in phase b they assume energy-unfavorable planar conformation. Another unusual feature of 44biPyHBrH2O is that all unit-cell parameters become longer on the transition from phase a to phase b. Thus the volume drop on the transition to high-pressure phase b totally depends on the shear strain of the lattice. Higher temperature triggers chemical reactions of 44biPyHBrH2O with methanol. When the saturated methanol solution compound precipitated at 0.1 GPa and temperature of 423 K was required to dissolve all the sample, the subsequent slow recrystallization at isochoric conditions resulted in disalt 4,4-bipyridinium dibromide. For the 44biPyHBrH2O sample sealed in the DAC at 0.35 GPa, then dissolved at isochoric conditions at 473 K and recrystallized by slow controlled cooling, a reaction of N,N-dimethylation took place. It is characteristic that in both high-pressure reactions of 44biPyHBrH₂O the unsolvated disalt products were formed and that free base 44biPy and H₂O remained in the solution. The observed reactions indicate that high pressure destabilized ambient-pressure salts and favors new products. Further studies on pressure-induced reactions are carried out in order to better understand the structural preferences induced by pressure.Keywords: conformation, high-pressure, negative area compressibility, polymorphism
Procedia PDF Downloads 24563 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model
Authors: A. Shakoor, M. Arshad
Abstract:
The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.Keywords: groundwater quality, groundwater management, PMWIN, MT3D model
Procedia PDF Downloads 37662 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya
Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson
Abstract:
The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.Keywords: coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill
Procedia PDF Downloads 36061 First Systematic Review on Aerosol Bound Water: Exploring the Existing Knowledge Domain Using the CiteSpace Software
Authors: Kamila Widziewicz-Rzonca
Abstract:
The presence of PM bound water as an integral chemical compound of suspended aerosol particles (PM) has become one of the hottest issues in recent years. The UN climate summits on climate change (COP24) indicate that PM of anthropogenic origin (released mostly from coal combustion) is directly responsible for climate change. Chemical changes at the particle-liquid (water) interface determine many phenomena occurring in the atmosphere such as visibility, cloud formation or precipitation intensity. Since water-soluble particles such as nitrates, sulfates, or sea salt easily become cloud condensation nuclei, they affect the climate for example by increasing cloud droplet concentration. Aerosol water is a master component of atmospheric aerosols and a medium that enables all aqueous-phase reactions occurring in the atmosphere. Thanks to a thorough bibliometric analysis conducted using CiteSpace Software, it was possible to identify past trends and possible future directions in measuring aerosol-bound water. This work, in fact, doesn’t aim at reviewing the existing literature in the related topic but is an in-depth bibliometric analysis exploring existing gaps and new frontiers in the topic of PM-bound water. To assess the major scientific areas related to PM-bound water and clearly define which among those are the most active topics we checked Web of Science databases from 1996 till 2018. We give an answer to the questions: which authors, countries, institutions and aerosol journals to the greatest degree influenced PM-bound water research? Obtained results indicate that the paper with the greatest citation burst was Tang In and Munklewitz H.R. 'water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance', 1994. The largest number of articles in this specific field was published in atmospheric chemistry and physics. An absolute leader in the quantity of publications among all research institutions is the National Aeronautics Space Administration (NASA). Meteorology and atmospheric sciences is a category with the most studies in this field. A very small number of studies on PM-bound water conduct a quantitative measurement of its presence in ambient particles or its origin. Most articles rather point PM-bound water as an artifact in organic carbon and ions measurements without any chemical analysis of its contents. This scientometric study presents the current and most actual literature regarding particulate bound water.Keywords: systematic review, aerosol-bound water, PM-bound water, CiteSpace, knowledge domain
Procedia PDF Downloads 122