Search results for: pre-stressed concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1899

Search results for: pre-stressed concrete

1299 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 450
1298 Hysteretic Behavior of the Precast Concrete Column with Head Splice Sleeve Connection

Authors: Seo Soo-Yeon, Kim Sang-Ku, Noh Sang-Hyun, Lee Ji-Eun, Kim Seol-Ki, Lim Jong-Wook

Abstract:

This paper presents a test result to find the structural capacity of Hollow-Precast Concrete (HPC) column with Head-Splice Sleeve (HSS) for the connection of bars under horizontal cyclic load. Two Half-scaled HPC column specimens were made with the consideration of construction process in site. The difference between the HPC specimens is the location of HSS for bar connection. The location of the first one is on the bottom slab or foundation while the other is above the bottom slab or foundation. Reinforced concrete (RC) column was also made for the comparison. In order to evaluate the hysteretic behavior of the specimens, horizontal cyclic load was applied to the top of specimen under constant axial load. From the test, it is confirmed that the HPC columns with HSS have enough structural capacity that can be emulated to RC column. This means that the HPC column with HSS can be used in the moment resisting frame system.

Keywords: structural capacity, hollow-precast concrete column, head-splice sleeve, horizontal cyclic load

Procedia PDF Downloads 373
1297 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading

Authors: W. Badla

Abstract:

A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.

Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions

Procedia PDF Downloads 534
1296 Creep Compliance Characteristics of Cement Dust Asphalt Concrete Mixtures

Authors: Ayman Othman, Tallat Abd el Wahed

Abstract:

The current research is directed towards studying the creep compliance characteristics of asphalt concrete mixtures modified with cement dust. This study can aid in assessing the permanent deformation potential of asphalt concrete mixtures. Cement dust was added to the mixture as mineral filler and compared with regular lime stone filler. A power law model was used to characterize the creep compliance behavior of the studied mixtures. Creep testing results have revealed that the creep compliance power law parameters have a strong relationship with mixture type. Testing results of the studied mixtures, as indicated by the creep compliance parameters revealed an enhancement in the creep resistance, Marshall stability, indirect tensile strength and compressive strength for cement dust mixtures as compared to mixtures with traditional lime stone filler. It is concluded that cement dust can be successfully used to decrease the potential of asphalt concrete mixture to permanent deformation and improve its mechanical properties. This is in addition to the environmental benefits that can be gained when using cement dust in asphalt paving technology.

Keywords: cement dust, asphalt concrete mixtures, creep compliance, Marshall stability, indirect tensile strength, compressive strength

Procedia PDF Downloads 427
1295 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading

Authors: Kwak, Hyo-Gyung, Gang, Han Gul

Abstract:

In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.

Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy

Procedia PDF Downloads 520
1294 Climate Change Effect on the Dynamic Modulus Property of Asphalt Concrete in Southern England Using UKCP09

Authors: David Idiata

Abstract:

This paper is directed at using the UKCP09 climate change projection tool to predict the effect of climate change on the dynamic modulus of asphalt concrete is Southern England knowing that there is a pressing challenge directly facing infrastructure in the urban cities in the world today due to climate change. Climate change causes change in the environment which in turn impacts on the long-term structural performance of structures. From the projection values obtained, it was discovered that as the temperature increases, the dynamic modulus reduces and this effect was more on the South West which have temperature range of 36.8 oC to 48.3 oC and dynamic modulus range of 2,212 MPa to 1256 MPa.

Keywords: dynamic modulus, asphalt concrete, UKCP09, Southern England

Procedia PDF Downloads 360
1293 Effect of Waste Foundry Slag and Alccofine on Durability Properties of High Strength Concrete

Authors: Devinder Sharma, Sanjay Sharma, Ajay Goyal, Ashish Kapoor

Abstract:

The present research paper discussed the durability properties of high strength concrete (HSC) using Foundry Slag(FD) as partial substitute for fine aggregates (FA) and Alccofine (AF) in addition to portland pozzolana (PPC) cement. Specimens of Concrete M100 grade with water/binder ratio 0.239, with Foundry Slag (FD) varying from 0 to 50% and with optimum quantity of AF(15%) were casted and tested for durability properties such as Water absorption, water permeability, resistance to sulphate attack, alkali attack and nitrate attack of HSC at the age of 7, 14, 28, 56 and 90 days. Substitution of fine aggregates (FA) with up to 45% of foundry slag(FD) content and cement with 15% substitution and addition of alccofine showed an excellent resistance against durability properties at all ages but showed a decrease in these properties with 50% of FD contents. Loss of weight in concrete samples due to sulphate attack, alkali attack and nitrate attack of HSC at the age of 365 days was compared with loss in compressive strength. Correlation between loss in weight and loss in compressive strength in all the tests was found to be excellent.

Keywords: alccofine, alkali attack, foundry slag, high strength concrete, nitrate attack, water absorption, water permeability

Procedia PDF Downloads 331
1292 Structural Behaviour of Concrete Energy Piles in Thermal Loadings

Authors: E. H. N. Gashti, M. Malaska, K. Kujala

Abstract:

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.

Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions

Procedia PDF Downloads 214
1291 Influence and Interaction of Temperature, H2S and pH on Concrete Sewer Pipe Corrosion

Authors: Anna Romanova, Mojtaba Mahmoodian, Morteza A. Alani

Abstract:

Concrete sewer pipes are known to suffer from a process of hydrogen sulfide gas induced sulfuric acid corrosion. This leads to premature pipe degradation, performance failure and collapses which in turn may lead to property and health damage. The above work reports on a field study undertaken in working sewer manholes where the parameters of effluent temperature and pH as well as ambient temperature and concentration of hydrogen sulfide were continuously measured over a period of two months. Early results suggest that effluent pH has no direct effect on hydrogen sulfide build up; on average the effluent temperature is 3.5°C greater than the ambient temperature inside the manhole and also it was observed that hydrogen sulfate concentration increases with increasing temperature.

Keywords: concrete corrosion, hydrogen sulfide gas, temperature, sewer pipe

Procedia PDF Downloads 572
1290 Using of Cavitational Disperser for Porous Ceramic and Concrete Material Preparation

Authors: Andrei Shishkin, Aleksandrs Korjakins, Viktors Mironovs

Abstract:

Present paper describes method of obtaining clay ceramic foam (CCF) and foam concrete (FC), by direct foaming with high speed mixer-disperser (HSMD). Three foaming agents (FA) are compared for the FC and CCF production: SCHÄUMUNGSMITTEL W 53 FLÜSSIG (Zschimmer & Schwarz Gmbh, Germany), SCF-1245 (Sika, test sample, Latvia) and FAB-12 (Elade, Latvija). CCF were obtained at 950, 1000°C, 1150°C and 1150°C firing temperature and have mechanical compressive strength 1.2, 2.55, and 4.3 MPa and porosity 79.4, 75.1, 71.6%, respectively. Obtained FC has 6-14 MPa compressive strength and porosity 44-55%. The goal of this work was the development of a sustainable and durable ceramic cellular structures using HSMD.

Keywords: ceramic foam, foam concrete, clay foam, open cell, close cell, direct foaming

Procedia PDF Downloads 808
1289 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials

Authors: Faruk Elaldi

Abstract:

There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.

Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced

Procedia PDF Downloads 184
1288 Properties of Preplaced Aggregate Concrete with Modified Binder

Authors: Kunal Krishna Das, Eddie S. S. Lam

Abstract:

Preplaced Aggregate Concrete (PAC) is produced by first placing the coarse aggregate into the formwork, followed by injection of grout to fill in the voids in between the coarse aggregates. In this study, tests were carried out to determine the effects of supplementary cementitious materials on the properties of PAC. Cement was partially replaced by ground granulated blast furnace slag (GGBS) and silica fume (SF) at different proportions. Grout properties were determined by the flow cone test and compressive strength test. Grout proportion was optimized statistically. It was applied to form PAC. Hardened properties of PAC, comprising compressive strength, splitting tensile strength, chloride-ion penetration and drying shrinkage, were evaluated. GGBS enhanced the flowability of the grout, whereas SF enhanced the strength of PAC. Both GGBS and SF improved the resistance to chloride-ion penetration with the drawback of increased drying shrinkage. Nevertheless, drying shrinkage was within the range to be classified as low shrinkage concrete.

Keywords: factorial design, ground granulated blast furnace slag, preplaced aggregate concrete, silica fume

Procedia PDF Downloads 134
1287 Determining Moment-Curvature Relationship of Reinforced Concrete Rectangular Shear Walls

Authors: Gokhan Dok, Hakan Ozturk, Aydin Demir

Abstract:

The behavior of reinforced concrete (RC) members is quite important in RC structures. When evaluating the performance of structures, the nonlinear properties are defined according to the cross sectional behavior of RC members. To be able to determine the behavior of RC members, its cross sectional behavior should be known well. The moment-curvature (MC) relationship is used to represent cross sectional behavior. The MC relationship of RC cross section can be best determined both experimentally and numerically. But, experimental study on RC members is very difficult. The aim of the study is to obtain the MC relationship of RC shear walls. Additionally, it is aimed to determine the parameters which affect MC relationship. While obtaining MC relationship of RC members, XTRACT which can represent robustly the MC relationship is used. Concrete quality, longitudinal and transverse reinforcing ratios, are selected as parameters which affect MC relationship. As a result of the study, curvature ductility and effective flexural stiffness are determined using this parameter. Effective flexural stiffness is compared with the values defined in design codes.

Keywords: moment-curvature, reinforced concrete, shear wall, numerical

Procedia PDF Downloads 285
1286 Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes

Authors: Erdoğan Özbay, Hakan T. Türker, Müzeyyen Balçıkanlı, Mohamed Lachemi

Abstract:

In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA.

Keywords: bond stress, compressive strength, elevated temperatures, fiber reinforced concrete, modulus of rapture

Procedia PDF Downloads 421
1285 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 217
1284 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading

Authors: Hadi Rouhi Belvirdi

Abstract:

Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.

Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance

Procedia PDF Downloads 9
1283 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block

Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali

Abstract:

In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.

Keywords: foamed concrete, oil palm ash, strength, interlocking block

Procedia PDF Downloads 264
1282 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations

Authors: Marisa Chrysochoou, James Mahoney, Kay Wille

Abstract:

Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.

Keywords: concrete, pyrrhotite, risk of failure, statistical analysis

Procedia PDF Downloads 68
1281 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks

Procedia PDF Downloads 185
1280 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: composite, columns, experimental, finite element, fully encased, strength

Procedia PDF Downloads 290
1279 Crack Width Evaluation for Flexural RC Members with Axial Tension

Authors: Sukrit Ghorai

Abstract:

Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools support the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user-friendly and ready to evolve for a greater spectrum of section sizes and materials.

Keywords: concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering

Procedia PDF Downloads 383
1278 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

A reliability-based methodology for the analysis assessment and evaluation of reinforced concrete structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for structural elements are verified by the results obtained from the deterministic methods. The analysis outcomes of reliability-based analysis are compared against the safety limits of the required reliability index β according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) related to the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the reinforced concrete elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: structural reliability, concrete structures, FORM, Monte Carlo simulation

Procedia PDF Downloads 518
1277 Damage in Cementitious Materials Exposed to Sodium Chloride Solution and Thermal Cycling: The Effect of Using Supplementary Cementitious Materials

Authors: Fadi Althoey, Yaghoob Farnam

Abstract:

Sodium chloride (NaCl) can interact with the tricalcium aluminate (C3A) and its hydrates in concrete matrix. This interaction can result in formation of a harmful chemical phase as the temperature changes. It is thought that this chemical phase is embroiled in the premature concrete deterioration in the cold regions. This work examines the potential formation of the harmful chemical phase in various pastes prepared by using different types of ordinary portland cement (OPC) and supplementary cementitious materials (SCMs). The quantification of the chemical phase was done by using a low temperature differential scanning calorimetry. The results showed that the chemical phase formation can be reduced by using Type V cement (low content of C3A). The use of SCMs showed different behaviors on the formation of the chemical phase. Slag and Class F fly ash can reduce the chemical phase by the dilution of cement whereas silica fume can reduce the amount of the chemical phase by dilution and pozzolanic activates. Interestingly, the use of Class C fly ash has a negative effect on concrete exposed to NaCl through increasing the formation of the chemical phase.

Keywords: concrete, damage, chemcial phase, NaCl, SCMs

Procedia PDF Downloads 143
1276 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm

Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz

Abstract:

Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.

Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations

Procedia PDF Downloads 135
1275 Investigating The Effects of Utilizing Different Curing Agents on High-Performance Concrete

Authors: Mostafa M. Ahmed, Kotaro Nose, Takashi Fujii, Toshiki Ayano

Abstract:

The Study shed the light on the effects of employing varied curing agents (No.1-No.6): bleeding water, and sprinkling water, aqueous basic silica compound, modified acrylic resin, the emulsion of solid wax and nonionic surfactant, and water-based paraffin wax, on the properties of high-performance concrete (HPC) in comparison with the cured specimens according to the standard curing at 20 ± 3°C (JIS A 0203:2019). The specimens cured in accordance with standard curing exhibit a better compressive strength and higher freeze-thaw resistance compared to most non-standard-cured samples.

Keywords: curing agents, high-performance concrete, compressive strength, cumulative scaling, freeze-thaw resistance

Procedia PDF Downloads 76
1274 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 438
1273 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid

Procedia PDF Downloads 306
1272 Improvement of Recycled Aggregate Concrete Properties by Controlling the Water Flow in the Interfacial Transition Zone

Authors: M. Eckert, M. Oliveira, A. Bettencourt Ribeiro

Abstract:

The intensive use of natural aggregate, near the towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and take up space for noblest purposes. The main problem of recycled aggregate lies in its high water absorption, what is due to the porosity of the materials which constitute this type of aggregate. When the aggregates are dry, water flows from the inside to the engaging cement paste matrix, and when they are saturated an inverse process occurs. This water flow breaks the aggregate-cement paste bonds and the greater water concentration, in the inter-facial transition zone, degrades the concrete properties in its fresh and hardened state. Based on the water absorption over time, it was optimized an staged mixing method, to regulate the said flow and manufacture recycled aggregate concrete with levels of work-ability, strength and shrinkage equivalent to those of conventional concrete.The physical, mechanical and geometrical properties of the aggregates where related to the properties of concrete in its fresh and hardened state. Three types of commercial recycled aggregates and two types of natural aggregates where evaluated. Six compositions with different percentages of recycled coarse aggregate where tested.

Keywords: recycled aggregate, water absorption, interfacial transition zone, compressive-strength, shrinkage

Procedia PDF Downloads 450
1271 Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method

Authors: Kang-Gyu Park, Sun-Jong Park, Hong Jae Yim, Hyo-Gyung Kwak

Abstract:

This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic non linearity parameter was obtained by amplitude-dependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic non linearity parameter and residual strength was proposed from each test result.

Keywords: nonlinear resonance vibration method, non linearity parameter, splitting tensile strength, micro damage, post-fire-curing, fire damaged concrete

Procedia PDF Downloads 269
1270 Development of Recycled-Modified Asphalt Using Basalt Aggregate

Authors: Dong Wook Lee, Seung Hyun Kim, Jeongho Oh

Abstract:

With the strengthened regulation on the mandatory use of recycled aggregate, development of construction materials using recycled aggregate has recently increased. This study aimed to secure the performance of asphalt concrete mixture by developing recycled-modified asphalt using recycled basalt aggregate from the Jeju area. The strength of the basalt aggregate from the Jeju area used in this study was similar to that of general aggregate, while the specific surface area was larger due to the development of pores. Modified asphalt was developed using a general aggregate-recycled aggregate ratio of 7:3, and the results indicated that the Marshall stability increased by 27% compared to that of asphalt concrete mixture using only general aggregate, and the flow values showed similar levels. Also, the indirect tensile strength increased by 79%, and the toughness increased by more than 100%. In addition, the TSR for examining moisture resistance was 0.95 indicating that the reduction in the indirect tensile strength due to moisture was very low (5% level), and the developed recycled-modified asphalt could satisfy all the quality standards of asphalt concrete mixture.

Keywords: asphalt concrete mixture, performance grade, recycled basalt aggregate, recycled-modified asphalt

Procedia PDF Downloads 358