Search results for: microbial property
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2444

Search results for: microbial property

1844 Rotection of Old Grant Communal Properties of Minorities in Cantonment of Pakistan: Issues and Problems

Authors: Nayer Fardows, Zarash Nayer, Sarah Nayer Jaffar, Daud Nayer

Abstract:

This paper analyses the issues related to communal properties of minorities in the cantonment area of Pakistan allotted in the mid-eighteenth centuries by the British Government to facilitate soldiers. These properties were old grants on which churches, institutes, hospitals, and residences were built. The ownership of these properties remained with British Government, but after the creation of Pakistan, changes by putting Government of Pakistan as the landlord of the property disturbed the inheritors as they remained as, holder of occupancy. The government of Pakistan issued a policy in 1997 to convert the status of old grant properties to regular lease. However, heavy taxes and high court’s decisions made it difficult to solve the issue. The study was conducted on six old grant properties of Edwardes College Peshawar cantonment situated in Khyber Pakhtunkhwa, Pakistan. The paper is descriptive research with a qualitative approach collecting data through government rules, acts, ordinance and decisions of the high courts. The result leads to three aspects; 1) holder of occupancy status of old grant properties in cantonment is similar as allotment of other properties by the government, 2) imposition of heavy taxes on conversion of property from old grant to regular lease restricted inheritors to further construct or transfer, 3) imposition of higher courts ban on conversion of communal properties contradict government policy of conversion. The paper recommends the Government of Pakistan a solution to maintain the status quo for communal properties that fall within the old grant.

Keywords: British Government, communal properties, cantonment, old grant, institutions

Procedia PDF Downloads 123
1843 Nanopack: A Nanotechnology-Based Antimicrobial Packaging Solution for Extension of Shelf Life and Food Safety

Authors: Andy Sand, Naama Massad – Ivanir, Nadav Nitzan, Elisa Valderrama, Alfred Wegenberger, Koranit Shlosman, Rotem Shemesh, Ester Segal

Abstract:

Microbial spoilage of food products is of great concern in the food industry due to the direct impact on the shelf life of foods and the risk of foodborne illness. Therefore, food packaging may serve as a crucial contribution to keep the food fresh and suitable for consumption. Active packaging solutions that have the ability to inhibit the development of microorganism in food products attract a lot of interest, and many efforts have been made to engineer and assimilate such solutions on various food products. NanoPack is an EU-funded international project aiming to develop state-of-the-art antimicrobial packaging systems for perishable foods. The project is based on natural essential oils which possess significant antimicrobial activity against many bacteria, yeasts and molds. The essential oils are encapsulated in natural aluminosilicate clays, halloysite nanotubes (HNT's), that serves as a carrier for the volatile essential oils and enable their incorporation into polymer films. During the course of the project, several polyethylene films with diverse essential oils combinations were designed based on the characteristics of their target food products. The antimicrobial activity of the produced films was examined in vitro on a broad spectrum of microorganisms including gram-positive and gram-negative bacteria, aerobic and anaerobic bacteria, yeasts and molds. The films that showed promising in vitro results were successfully assimilated on in vivo active packaging of several food products such as cheese, bread, fruits and raw meat. The results of the in vivo analyses showed significant inhibition of the microbial spoilage, indicating the strong contribution of the NanoPack packaging solutions on the extension of shelf life and reduction of food waste caused by early spoilage throughout the supply chain.

Keywords: food safety, food packaging, essential oils, nanotechnology

Procedia PDF Downloads 117
1842 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar

Abstract:

The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property

Procedia PDF Downloads 155
1841 Extensions to Chen's Minimizing Equal Mass Paralellogram Solutions

Authors: Abdalla Manur, Daniel Offin, Alessandro Arsie

Abstract:

In this paper, we study the extension of the minimizing equal mass parallelogram solutions which was derived by Chen in 2001. Chen’s solution was minimizing for one quarter of the period [0; T], where numerical integration had been used in his proof. This paper focuses on extending the minimization property to intervals of time [0; 2T] and [0; 4T].

Keywords: action, Hamiltoian, N-body, symmetry

Procedia PDF Downloads 1668
1840 Microbial Load, Prevalence and Antibiotic Resistance of Microflora Isolated from the Ghanaian Paper Currency Note: A Potential Health Threat

Authors: Simon Nyarko

Abstract:

This study examined the microbial flora contamination of the Ghanaian paper currency notes and antibiotic resistance in Ejura Municipal, Ashanti Region, Ghana. This is a descriptive cross-sectional study designed to assess the profile of microflora contamination of the Ghanaian paper currency notes and antibiotic-resistant in the Ejura Municipality. The research was conducted in Ejura, a town in the Ejura Sekyeredumase Municipal of the Ashanti region of Ghana. 70 paper currency notes which were freshly collected from the bank, consisting of 15 pieces of GH ¢1, GH ¢2, and GH ¢5, 10 pieces of GH ¢10 and GH ¢20, and 5 pieces of GH ¢50, were randomly sampled from people by exchanging their money in usage with those freshly secured from the bank. The surfaces of each GH¢ note were gently swabbed and sent to the lab immediately in sterile Zip Bags and sealed, and tenfold serial dilution was inoculated on plate count agar (PCA), MacConkey agar (MCA), mannitol salt agar (MSA), and deoxycholate citrate agar (DCA). For bacterial identification, the study used appropriate laboratory and biochemical tests. The data was analyzed using SPSS-IBM version 20.0. It was found that 95.2 % of the 70 GH¢ notes tested positive for one or more bacterial isolates. On each GH¢ note, mean counts on PCA ranged from 3.0 cfu/ml ×105 to 4.8 cfu/ml ×105. Of 124 bacteria isolated. 36 (29.03 %), 32 (25.81%), 16 (12.90 %), 20 (16.13%), 13 (10.48 %), and 7 (5.66 %) were from GH¢1, GH¢2, GH¢10, GH¢5, GH¢20, and GH¢50, respectively. Bacterial isolates were Escherichia coli (25.81%), Staphylococcus aureus (18.55%), coagulase-negative Staphylococcus (15.32%), Klebsiella species (12.10%), Salmonella species (9.68%), Shigella species (8.06%), Pseudomonas aeruginosa (7.26%), and Proteus species (3.23%). Meat shops, commercial drivers, canteens, grocery stores, and vegetable shops contributed 25.81 %, 20.16 %, 19.35 %, 17.74 %, and 16.94 % of GH¢ notes, respectively. There was 100% resistance of the isolates to Erythromycin (ERY), and Cotrimoxazole (COT). Amikacin (AMK) was the most effective among the antibiotics as 75% of the isolates were susceptible to it. This study has demonstrated that the Ghanaian paper currency notes are heavily contaminated with potentially pathogenic bacteria that are highly resistant to the most widely used antibiotics and are a threat to public health.

Keywords: microflora, antibiotic resistance, staphylococcus aureus, culture media, multi-drug resistance

Procedia PDF Downloads 88
1839 Effect of B2O3 Addition on Sol-gel Synthesized 45S5 Bioglass

Authors: P. Dey, S. K. Pal

Abstract:

Ceramics or glass ceramics with the property of bone bonding at the nearby tissues and producing possible bone in growth are known to be bioactive. The most extensively used glass in this context is 45S5 which is a silica based bioglass mostly explored in the field of tissue engineering as scaffolds for bone repair. Nowadays, the borate based bioglass are being utilized in orthopedic area largely due to its superior bioactivity with the formation of bone bonding. An attempt has been made, in the present study, to observe the effect of B2O3 addition in 45S5 glass and perceive its consequences on the thermal, mechanical and biological properties. The B2O3 was added in 1, 2.5, and 5 wt% with simultaneous reduction in the silica content of the 45S5 composition. The borate based bioglass has been synthesized by the means of sol-gel route. The synthesized powders were then thermally analyzed by DSC-TG. The as synthesized powders were then calcined at 600ºC for 2hrs. The calcined powders were then pressed into pellets followed by sintering at 850ºC with a holding time of 2hrs. The phase analysis and the microstructural analysis of the as synthesized and calcined powder glass samples and the sintered glass samples were being carried out using XRD and FESEM respectively. The formation of hydroxyapatite layer was performed by immersing the sintered samples in the simulated body fluid (SBF) and mechanical property has been tested for the sintered samples by universal testing machine (UTM). The sintered samples showed the presence of sodium calcium silicate phase while the formation of hydroxyapaptite takes place for SBF immersed samples. The formation of hydroxyapatite is more pronounced in case of borated based glass samples instead of 45S5.

Keywords: 45S5 bioglass, bioactive, borate, hydroxyapatite, sol-gel synthesis

Procedia PDF Downloads 243
1838 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 217
1837 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 99
1836 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 50
1835 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features

Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed

Abstract:

Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.

Keywords: 3D printing, fluorescent, packaging, security

Procedia PDF Downloads 82
1834 Study on Preparation and Storage of Composite Vegetable Squash of Tomato, Pumpkin and Ginger

Authors: K. Premakumar, R. G. Lakmali, S. M. A. C. U. Senarathna

Abstract:

In the present world, production and consumption of fruit and vegetable beverages have increased owing to the healthy life style of the people. Therefore, a study was conducted to develop composite vegetable squash by incorporating nutritional, medicinal and organoleptic properties of tomato, pumpkin and ginger. Considering the finding of several preliminary studies, five formulations in different combinations tomato pumpkin were taken and their physico-chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content and total sugar and organoleptic parameters such as colour, aroma, taste, nature, overall acceptability were analyzed. Then the best sample was improved by using 1 % ginger (50% tomato+ 50% pumpkin+ 1% ginger). Best three formulations were selected for storage studied. The formulations were stored at 30 °C room temperature and 70-75% of RH for 12 weeks. Physicochemical parameters , organoleptic and microbial activity (total plate count, yeast and mold, E-coil) were analyzed during storage periods and protein content, fat content, ash were also analysed%.The study on the comparison of physico-chemical and sensory qualities of stored Squashes was done up to 12 weeks storage periods. The nutritional analysis of freshly prepared tomato pumpkin vegetable squash formulations showed increasing trend in titratable acidity, pH, total sugar, non -reducing sugar, total soluble solids and decreasing trend in ascorbic acid and reducing sugar with storage periods. The results of chemical analysis showed that, there were the significant different difference (p < 0.05) between tested formulations. Also, sensory analysis also showed that there were significant differences (p < 0.05) for organoleptic character characters between squash formulations. The highest overall acceptability was observed in formulation with 50% tomato+ 50% pumpkin+1% ginger and all the all the formulations were microbiologically safe for consumption. Based on the result of physico-chemical characteristics, sensory attributes and microbial test, the Composite Vegetable squash with 50% tomato+50% pumpkin+1% ginger was selected as best formulation and could be stored for 12 weeks without any significant changes in quality characteristics.

Keywords: nutritional analysis, formulations, sensory attributes, squash

Procedia PDF Downloads 182
1833 Microbial Effects of Iron Elution from Hematite into Seawater Mediated via Dissolved Organic Matter

Authors: Apichaya Aneksampant, Xuefei Tu, Masami Fukushima, Mitsuo Yamamoto

Abstract:

The restoration of seaweed beds recovery has been developed using a fertilization technique for supplying dissolved iron to barren coastal areas. The fertilizer is composed of iron oxides as a source of iron and compost as humic substance (HS) source, which can serve as chelator of iron to stabilize the dissolved species under oxic seawater condition. However, elution mechanisms of iron from iron oxide surfaces have not sufficiently elucidated. In particular, roles of microbial activities in the elution of iron from the fertilizer are not sufficiently understood. In the present study, a fertilizer (iron oxide/compost = 1/1, v/v) was incubated in a water tank at Mashike coast, Hokkaido Japan. Microorganisms in the 6-month fertilizer were isolated and identified as Exiguobacterium oxidotolerans sp. (T-2-2). The identified bacteria were inoculated to perform iron elution test in a postgate B medium, prepared in artificial seawater. Hematite was used as a model iron oxide and anthraquinone-2,7-disolfonate (AQDS) as a model for HSs. The elution test performed in presence and absence of bacteria inoculation. ICP-AES was used to analyze total iron and a colorimetric technique using ferrozine employed for the determination of ferrous ion. During the incubation period, sample contained hematite and T-2-2 in both presence and absence of AQDS continuously showed the iron elution and reached at the highest concentration after 9 days of incubation and then slightly decrease to stabilize within 20 days. Comparison to the sample without T-2-2, trace amount of iron was observed, suggesting that iron elution to seawater can be attributed to bacterial activities. The levels of total organic carbon (TOC) in the culture solution with hematite decreased. This may be to the adsorption of organic compound, AQDS, to hematite surfaces. The decrease in UV-vis absorption of AQDS in the culture solution also support the results of TOC that AQDS was adsorbed to hematite surfaces. AQDS can enhance the iron elution, while the adsorption of organic matter suppresses the iron elution from hematite.

Keywords: anthraquinone-2, 7-disolfonate, barren ground, E.oxidotolerans sp., hematite, humic substances, iron elution

Procedia PDF Downloads 363
1832 Kantian Epistemology in Examination of the Axiomatic Principles of Economics: The Synthetic a Priori in the Economic Structure of Society

Authors: Mirza Adil Ahmad Mughal

Abstract:

Transcendental analytics, in the critique of pure reason, combines space and time as conditions of the possibility of the phenomenon from the transcendental aesthetic with the pure magnitude-intuition notion. The property of continuity as a qualitative result of the additive magnitude brings the possibility of connecting with experience, even though only as a potential because of the a priori necessity from assumption, as syntheticity of the a priori task of a scientific method of philosophy given by Kant, which precludes the application of categories to something not empirically reducible to the content of such a category's corresponding and possible object. This continuity as the qualitative result of a priori constructed notion of magnitude lies as a fundamental assumption and property of, what in Microeconomic theory is called as, 'choice rules' which combine the potentially-empirical and practical budget-price pairs with preference relations. This latter result is the purest qualitative side of the choice rules', otherwise autonomously, quantitative nature. The theoretical, barring the empirical, nature of this qualitative result is a synthetic a priori truth, which, if at all, it should be, if the axiomatic structure of the economic theory is held to be correct. It has a potentially verifiable content as its possible object in the form of quantitative price-budget pairs. Yet, the object that serves the respective Kantian category is qualitative itself, which is utility. This article explores the validity of Kantian qualifications for this application of 'categories' to the economic structure of society.

Keywords: categories of understanding, continuity, convexity, psyche, revealed preferences, synthetic a priori

Procedia PDF Downloads 83
1831 Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator

Authors: Malory Beaujolais

Abstract:

Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 22
1830 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance

Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap

Abstract:

Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.

Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry

Procedia PDF Downloads 109
1829 Key Parameters for Controlling Swell of Expansive Soil-Hydraulic Cement Admixture

Authors: Aung Phyo Kyaw, Kuo Chieh Chao

Abstract:

Expansive soils are more complicated than normal soils, although the soil itself is not very complicated. When evaluating foundation performance on expansive soil, it is important to consider soil expansion. The primary focus of this study is on hydraulic cement and expansive soil mixtures, and the research aims to identify key parameters for controlling the swell of the expansive soil-hydraulic cement mixture. Treatment depths can be determined using hydraulic cement ratios of 4%, 8%, 12%, and 15% for treating expansive soil. To understand the effect of hydraulic cement percentages on the swelling of expansive soil-hydraulic admixture, performing the consolidation-swell test σ''ᶜˢ is crucial. This investigation primarily focuses on consolidation-swell tests σ''ᶜˢ, although the heave index Cₕ is also needed to determine total heave. The heave index can be measured using the percent swell in the specific inundation stress in both the consolidation-swell test and the constant-volume test swelling pressure. Obtaining the relationship between swelling pressure and σ''ᶜⱽ determined from the "constant volume test" is useful in predicting heave from a single oedometer test. The relationship between σ''ᶜˢ and σ''ᶜⱽ is based on experimental results of expansive soil behavior and facilitates heave prediction for each soil. In this method, the soil property "m" is used as a parameter, and common soil property tests include compaction, particle size distribution, and the Atterberg limit. The Electricity Generating Authority of Thailand (EGAT) provided the soil sample for this study, and all laboratory testing is performed according to American Society for Testing and Materials (ASTM) standards.

Keywords: expansive soil, swelling pressure, total heave, treatment depth

Procedia PDF Downloads 67
1828 The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses

Authors: JaeYoon Lee, Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues.

Keywords: hierarchical surface, lotus leaf, nano-etching, plasma treatment

Procedia PDF Downloads 360
1827 Effect of Ease of Doing Business to Economic Growth among Selected Countries in Asia

Authors: Teodorica G. Ani

Abstract:

Economic activity requires an encouraging regulatory environment and effective rules that are transparent and accessible to all. The World Bank has been publishing the annual Doing Business reports since 2004 to investigate the scope and manner of regulations that enhance business activity and those that constrain it. A streamlined business environment supporting the development of competitive small and medium enterprises (SMEs) may expand employment opportunities and improve the living conditions of low income households. Asia has emerged as one of the most attractive markets in the world. Economies in East Asia and the Pacific were among the most active in making it easier for local firms to do business. The study aimed to describe the ease of doing business and its effect to economic growth among selected economies in Asia for the year 2014. The study covered 29 economies in East Asia, Southeast Asia, South Asia and Middle Asia. Ease of doing business is measured by the Doing Business indicators (DBI) of the World Bank. The indicators cover ten aspects of the ease of doing business such as starting a business, dealing with construction permits, getting electricity, registering property, getting credit, protecting investors, paying taxes, trading across borders, enforcing contracts and resolving insolvency. In the study, Gross Domestic Product (GDP) was used as the proxy variable for economic growth. Descriptive research was the research design used. Graphical analysis was used to describe the income and doing business among selected economies. In addition, multiple regression was used to determine the effect of doing business to economic growth. The study presented the income among selected economies. The graph showed China has the highest income while Maldives produces the lowest and that observation were supported by gathered literatures. The study also presented the status of the ten indicators of doing business among selected economies. The graphs showed varying trends on how easy to start a business, deal with construction permits and to register property. Starting a business is easiest in Singapore followed by Hong Kong. The study found out that the variations in ease of doing business is explained by starting a business, dealing with construction permits and registering property. Moreover, an explanation of the regression result implies that a day increase in the average number of days it takes to complete a procedure will decrease the value of GDP in general. The research proposed inputs to policy which may increase the awareness of local government units of different economies on the simplification of the policies of the different components used in measuring doing business.

Keywords: doing business, economic growth, gross domestic product, Asia

Procedia PDF Downloads 361
1826 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas

Authors: Yen Chia-Ju, Cheng Ding-Ruei

Abstract:

This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.

Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment

Procedia PDF Downloads 422
1825 The Role of Establishing Zakat-Based Finance in Alleviating Poverty in the Muslim World

Authors: Khan Md. Abdus Subhan, Rabeya Bushra

Abstract:

The management of Intellectual Property (IP) in museums can be complex and challenging, as it requires balancing access and control. On the one hand, museums must ensure that they have balanced permissions to display works in their collections and make them accessible to the public. On the other hand, they must also protect the rights of creators and owners of works and ensure that they are not infringing on IP rights. Intellectual property has become an increasingly important aspect of museum operations in the digital age. Museums hold a vast array of cultural assets in their collections, many of which have significant value as IP assets. The balanced management of IP in museums can help generate additional revenue and promote cultural heritage while also protecting the rights of the museum and its collections. Digital technologies have greatly impacted the way museums manage IP, providing new opportunities for revenue generation through e-commerce and licensing while also presenting new challenges related to IP protection and management. Museums must take a comprehensive approach to IP management, leveraging digital technologies, protecting IP rights, and engaging in licensing and e-commerce activities to maximize income and the economy of countries through the strong management of cultural institutions. Overall, the balanced management of IP in museums is crucial for ensuring the sustainability of museum operations and for preserving cultural heritage for future generations. By taking a balanced approach to identifying museum IP assets, museums can generate revenues and secure their financial sustainability to ensure the long-term preservation of their cultural heritage. We can divide IP assets in museums into two kinds: collection IP and museum-generated IP. Certain museums become confused and lose sight of their mission when trying to leverage collections-based IP. This was the case at the German State Museum in Berlin when the museum made 100 replicas from the Nefertiti bust and wrote under the replicas all rights reserved to the Berlin Museum and issued a certificate to prevent any person or Institution from reproducing any replica from this bust. The implications of IP in museums are far-reaching and can have significant impacts on the preservation of cultural heritage, the dissemination of information, and the development of educational programs. As such, it is important for museums to have a comprehensive understanding of IP laws and regulations and to properly manage IP to avoid legal liability, damage to reputation, and loss of revenue. The research aims to highlight the importance and role of intellectual property in museums and provide some illustrative examples of this.

Keywords: zakat, economic development, Muslim world, poverty alleviation.

Procedia PDF Downloads 12
1824 Pilot Scale Investigation on the Removal of Pollutants from Secondary Effluent to Meet Botswana Irrigation Standards Using Roughing and Slow Sand Filters

Authors: Moatlhodi Wise Letshwenyo, Lesedi Lebogang

Abstract:

Botswana is an arid country that needs to start reusing wastewater as part of its water security plan. Pilot scale slow sand filtration in combination with roughing filter was investigated for the treatment of effluent from Botswana International University of Science and Technology to meet Botswana irrigation standards. The system was operated at hydraulic loading rates of 0.04 m/hr and 0.12 m/hr. The results show that the system was able to reduce turbidity from 262 Nephelometric Turbidity Units to a range between 18 and 0 Nephelometric Turbidity Units which was below 30 Nephelometric Turbidity Units threshold limit. The overall efficacy ranged between 61% and 100%. Suspended solids, Biochemical Oxygen Demand, and Chemical Oxygen Demand removal efficiency averaged 42.6%, 45.5%, and 77% respectively and all within irrigation standards. Other physio-chemical parameters were within irrigation standards except for bicarbonate ion which averaged 297.7±44 mg L-1 in the influent and 196.22±50 mg L-1 in the effluent which was above the limit of 92 mg L-1, therefore averaging a reduction of 34.1% by the system. Total coliforms, fecal coliforms, and Escherichia coli in the effluent were initially averaging 1.1 log counts, 0.5 log counts, and 1.3 log counts respectively compared to corresponding influent log counts of 3.4, 2.7 and 4.1, respectively. As time passed, it was observed that only roughing filter was able to reach reductions of 97.5%, 86% and 100% respectively for faecal coliforms, Escherichia coli, and total coliforms. These organism numbers were observed to have increased in slow sand filter effluent suggesting multiplication in the tank. Water quality index value of 22.79 for the physio-chemical parameters suggests that the effluent is of excellent quality and can be used for irrigation purposes. However, the water quality index value for the microbial parameters (1820) renders the quality unsuitable for irrigation. It is concluded that slow sand filtration in combination with roughing filter is a viable option for the treatment of secondary effluent for reuse purposes. However, further studies should be conducted especially for the removal of microbial parameters using the system.

Keywords: irrigation, slow sand filter, turbidity, wastewater reuse

Procedia PDF Downloads 135
1823 Remediation of Oil and Gas Exploration and Production (O&G E&P) Wastes Using Soil-Poultry Dropping Amendment

Authors: Ofonime U. M. John, Justina I. R. Udotong, Victor O. Nwaugo, Ime R. Udotong

Abstract:

Oily wastes from oil and gas exploration and production (O&G E&P) activities were remediated for twelve weeks using Soil-Poultry dropping amendment. Culture-dependent microbiological, chemical and enzymatic techniques were employed to assess the efficacy of remediation process. Microbiological activities of the remediated wastes showed increased hydrocarbonoclastic microbial populations with increased remediation time; 2.7±0.1 x 105cfu/g to 8.3 ± 0.04 x106cfu/g for hydrocarbon utilizing bacteria, 1.7 ± 0.2 x103cfu/g to 6.0 ± 0.01 x 104cfu/g for hydrocarbon utilizing fungi and 2.2 ± 0.1 x 102cfu/g to 6.7 ± 0.1 x 103cfu/g for hydrocarbon utilizing actinomycetes. Bacteria associated with the remediated wastes after the remediation period included the genera Bacillus, Psuedomonas, Beijerinckia, Acinetobacter, Alcaligenes and Serratia. Fungal isolates included species of Penicillium, Aspergillus and Cladosporium, while the Actinomycetes included species of Rhodococcus, Nocardia and Streptomyces. Slight fluctuations in pH values between 6.5± 0.2 and 7.1 ± 0.08 were recorded throughout the process, while total petroleum hydrocarbon (TPH) content decreased from 89, 900 ± 0.03mg/kg to 425 ± 0.1 mg/kg after twelve weeks of remediation. The polycyclic aromatic hydrocarbon (PAH) levels decreased with increased remediation time; naphthalene, flourene, pheneanthrene, anthracene, pyrene, chrysene and benzo(b)flouranthene showed decreased values < 0.01 after twelve weeks of remediation. Enzyme activities revealed increased dehydrogenase and urease activities with increased remediation time and decreased phenol oxidase activity with increased remediation period. There was a positive linear correlation between densities of hydrocarbonoclastic microbes and dehydrogenase activity. On the contrary, phenol oxidase and urease activities showed negative correlation with microbial population. Results of this study confirmed that remediation of oily wastes using soil-poultry dropping amendment can result in eco-friendly O&G E&P wastes. It also indicates that urease and phenol oxidase activities can be reliable indices/tools to monitor PAH levels and rates of petroleum hydrocarbon degradation.

Keywords: dehydrogenase activity, oily wastes, remediation, soil-poultry dropping amendment

Procedia PDF Downloads 297
1822 Nutritional Importance and Functional Properties of Baobab Leaves

Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola

Abstract:

The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.

Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range

Procedia PDF Downloads 46
1821 Characterizing Nasal Microbiota in COVID-19 Patients: Insights from Nanopore Technology and Comparative Analysis

Authors: David Pinzauti, Simon De Jaegher, Maria D'Aguano, Manuele Biazzo

Abstract:

The COVID-19 pandemic has left an indelible mark on global health, leading to a pressing need for understanding the intricate interactions between the virus and the human microbiome. This study focuses on characterizing the nasal microbiota of patients affected by COVID-19, with a specific emphasis on the comparison with unaffected individuals, to shed light on the crucial role of the microbiome in the development of this viral disease. To achieve this objective, Nanopore technology was employed to analyze the bacterial 16s rRNA full-length gene present in nasal swabs collected in Malta between January 2021 and August 2022. A comprehensive dataset consisting of 268 samples (126 SARS-negative samples and 142 SARS-positive samples) was subjected to a comparative analysis using an in-house, custom pipeline. The findings from this study revealed that individuals affected by COVID-19 possess a nasal microbiota that is significantly less diverse, as evidenced by lower α diversity, and is characterized by distinct microbial communities compared to unaffected individuals. The beta diversity analyses were carried out at different taxonomic resolutions. At the phylum level, Bacteroidota was found to be more prevalent in SARS-negative samples, suggesting a potential decrease during the course of viral infection. At the species level, the identification of several specific biomarkers further underscores the critical role of the nasal microbiota in COVID-19 pathogenesis. Notably, species such as Finegoldia magna, Moraxella catarrhalis, and others exhibited relative abundance in SARS-positive samples, potentially serving as significant indicators of the disease. This study presents valuable insights into the relationship between COVID-19 and the nasal microbiota. The identification of distinct microbial communities and potential biomarkers associated with the disease offers promising avenues for further research and therapeutic interventions aimed at enhancing public health outcomes in the context of COVID-19.

Keywords: COVID-19, nasal microbiota, nanopore technology, 16s rRNA gene, biomarkers

Procedia PDF Downloads 46
1820 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 112
1819 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 90
1818 The Role of Creative Entrepreneurship in the Development of Croatian Economy

Authors: Marko Kolakovic

Abstract:

Creative industries are an important sector of growth and development of knowledge economies. They have a positive impact on employment, economic growth, export and the quality of life in the areas where they are developed. Creative sectors include architecture, design, advertising, publishing, music, film, television and radio, video games, visual and performing arts and heritage. Following the positive trends of development of creative industries on the global and European level, this paper analyzes creative industries in general and specific characteristics of creative entrepreneurship. Special focus in this paper is put on the influence of the information communication technology on the development of new creative business models and protection of the intellectual property rights. One part of the paper is oriented on the analysis of the status of creative industries and creative entrepreneurship in Croatia. The main objective of the paper is by using the statistical analysis of creative industries in Croatia and information gained during the interviews with entrepreneurs, to make conclusions about potentials and development of creative industries in Croatia. Creative industries in Croatia are at the beginning of their development and growth strategy still does not exist at the national level. Statistical analysis pointed out that in 2015 creative enterprises made 9% of all enterprises in Croatia, employed 5,5% of employed people and their share in GDP was 4,01%. Croatian creative entrepreneurs are building competitive advantage using their creative resources and creating specific business models. The main obstacles they meet are lack of business experience and impossibility of focusing on the creative activities only. In their business, they use digital technologies and are focused on export. The conclusion is that creative industries in Croatia have development potential, but it is necessary to take adequate measures to use this potential in a right way.

Keywords: creative entrepreneurship, knowledge economy, business models, intellectual property

Procedia PDF Downloads 191
1817 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.

Keywords: ball milling, selective laser melting, surface roughness, titanium, wear

Procedia PDF Downloads 263
1816 Formal Ontology of Quality Space. Location, Subordination and Determination

Authors: Claudio Calosi, Damiano Costa, Paolo Natali

Abstract:

Determination is the relation that holds between certain kinds of properties, determinables – such as “being colored”, and others, determinates – such as “being red”. Subordination is the relation that holds between genus properties – such as “being an animal”, and others, species properties – such as “being human”'. It is widely held that Determination and Subordination share important similarities, yet also crucial differences. But what grounds such similarities and differences? This question is hardly ever addressed. The present paper provides the first step towards filling this gap in the literature. It argues that a locational theory of instantiation, roughly the view that to have a property is to occupy a location in quality space, holds the key for such an answer. More precisely, it argues that both principles of Determination and Subordination are just examples of more general principles of location. Consider Determination. The principle that everything that has a determinate has a determinable boils down to the claim that everything that has a precise location in quality space is in quality space – an eminently reasonable principle. The principle that nothing can have two determinates (at the same level of determination) boils down to the principle that nothing can be “multilocated” in quality space. In effect, the following provides a “translation table” between principles of location and determination: LOCATION DETERMINATION Functionality At Most One Determination Focus At Most One Determination & Requisite Determination* Exactness Requisite Determination* Super-Exactness Requisite Determination Exactitude Requisite Determination Converse-Exactness Determinable Inehritance This grounds the similarity between Determination and Subordination. What about the differences? The paper argues that the differences boil down to the mereological structure of the regions that are occupied in quality space, in particular whether they are simple or complex. The key technical detail is that Determination and Subordination induce a “set-theoretic rooted tree” structure over the domain of properties. Interestingly, the analysis also provides a possible justification for the Aristotelian claim that being is not a genus property – an argument that the paper develops in some detail.

Keywords: determinables/determinates, genus/species, location, Aristotle on being is not a genus

Procedia PDF Downloads 58
1815 Comparative Study of Antimicrobial Activity of Bacteriocin Producing Lactic Acid Bacteria from Fermented Batter of Green Gram And Bengal Gram Against Food-Borne Pathogens

Authors: Bandi Aruna

Abstract:

The increase of multidrug-resistant pathogens and the restriction on the use of antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are ribosomally synthesized antimicrobial peptides that are active against Gram-positive and Gram-negative bacteria. The bacteriocins from lactic acid bacteria represent an important application of these peptides as clinical drugs or as food biopreservatives. The present study describes the isolation of bacteriocin producing lactic acid bacteria (LAB) from fermented batter of green gram and bengal gram using Man, Rogosa and Sharpe (MRS) media. The bacteriocin produced by these organisms inhibited the growth of Staphylococcus aureus, Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, The isolates G1, G2 were isolated from green gram; B1 and B2 were isolated from fermented bengal gram batter. G1 and G2 were identified as Lactobacillus casie and B1 and B2 were identified as Streptococcus species. Antimicrobial activity of the bacteriocin produced by these strains was studied by agar well diffusion method. Bacteriocins produced by the Lactobacillus casie and Streptococcus secies retained their antagonistic property at pH of 5 and pH of 7. Exposure of bacteriocin to UV light for 4 min showed antibacterial activity. The antagonistic property was observed even at 100°C demonstrating stability at higher temperatures of the bacteriocin. The bacteriocins were stable for a period of 15 days at 27°C. The bacteriocins of G1, G2, and B2 exhibited highest antagonistic activity at pH of 5 and B1 at pH of 7. Therefore, the bacteriocins of the isolates may find important application in controlling the food-borne pathogens.

Keywords: Keywords: Antibacterial activity, Lactic acid bacteria, Bacteriocin

Procedia PDF Downloads 382