Search results for: measurement errors
2918 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4012917 Technological Enhancements in Supply Chain Management Post COVID-19
Authors: Miran Ismail
Abstract:
COVID-19 has caused widespread disruption in all economical sectors and industries around the world. The COVID-19 lockdown measures have resulted in production halts, restrictions on persons and goods movement, border closures, logistical constraints, and a slowdown in trade and economic activity. The main subject of this paper is to leverage technology to manage the supply chain effectively and efficiently through the usage of artificial intelligence. The research methodology is based on empirical data collected through a questionnaire survey. One of the approaches utilized is a case study of industrial organizations that face obstacles such as high operational costs, large inventory levels, a lack of well-established supplier relationships, human behavior, and system issues. The main contribution of this research to the body of knowledge is the empirical insights and on supply chain sustainability performance measurement. The results provide guidelines for the selection of advanced technologies to support supply chain processes and for the design of sustainable performance measurement systems.Keywords: information technology, artificial intelligence, supply chain management, industrial organizations
Procedia PDF Downloads 1242916 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS
Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala
Abstract:
Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)
Procedia PDF Downloads 4092915 Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber
Authors: Malinda Sabrina, F. Andree Yohanes, Khoerul Anwar
Abstract:
There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed.Keywords: aerodynamics noise, hemi-anechoic chamber, radiator cooling fan, sound pressure level
Procedia PDF Downloads 3322914 Collaboration During Planning and Reviewing in Writing: Effects on L2 Writing
Authors: Amal Sellami, Ahlem Ammar
Abstract:
Writing is acknowledged to be a cognitively demanding and complex task. Indeed, the writing process is composed of three iterative sub-processes, namely planning, translating (writing), and reviewing. Not only do second or foreign language learners need to write according to this process, but they also need to respect the norms and rules of language and writing in the text to-be-produced. Accordingly, researchers have suggested to approach writing as a collaborative task in order to al leviate its complexity. Consequently, collaboration has been implemented during the whole writing process or only during planning orreviewing. Researchers report that implementing collaboration during the whole process might be demanding in terms of time in comparison to individual writing tasks. Consequently, because of time constraints, teachers may avoid it. For this reason, it might be pedagogically more realistic to limit collaboration to one of the writing sub-processes(i.e., planning or reviewing). However, previous research implementing collaboration in planning or reviewing is limited and fails to explore the effects of the seconditionson the written text. Consequently, the present study examines the effects of collaboration in planning and collaboration in reviewing on the written text. To reach this objective, quantitative as well as qualitative methods are deployed to examine the written texts holistically and in terms of fluency, complexity, and accuracy. Participants of the study include 4 pairs in each group (n=8). They participated in two experimental conditions, which are: (1) collaborative planning followed by individual writing and individual reviewing and (2) individual planning followed by individual writing and collaborative reviewing. The comparative research findings indicate that while collaborative planning resulted in better overall text quality (precisely better content and organization ratings), better fluency, better complexity, and fewer lexical errors, collaborative reviewing produces better accuracy and less syntactical and mechanical errors. The discussion of the findings suggests the need to conduct more comparative research in order to further explore the effects of collaboration in planning or in reviewing. Pedagogical implications of the current study include advising teachers to choose between implementing collaboration in planning or in reviewing depending on their students’ need and what they need to improve.Keywords: collaboration, writing, collaborative planning, collaborative reviewing
Procedia PDF Downloads 992913 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units
Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu
Abstract:
There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor
Procedia PDF Downloads 1842912 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators
Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph
Abstract:
A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.Keywords: metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant
Procedia PDF Downloads 4122911 Influence of Improved Roughage Quality and Period of Meal Termination on Digesta Load in the Digestive Organs of Goats
Authors: Rasheed A. Adebayo, Mehluli M. Moyo, Ignatius V. Nsahlai
Abstract:
Ruminants are known to relish roughage for productivity but the effect of its quality on digesta load in rumen, omasum, abomasum and other distal organs of the digestive tract is yet unknown. Reticulorumen fill is a strong indicator for long-term control of intake in ruminants. As such, the measurement and prediction of digesta load in these compartments may be crucial to productivity in the ruminant industry. The current study aimed at determining the effect of (a) diet quality on digesta load in digestive organs of goats, and (b) period of meal termination on the reticulorumen fill and digesta load in other distal compartments of the digestive tract of goats. Goats were fed with urea-treated hay (UTH), urea-sprayed hay (USH) and non-treated hay (NTH). At the end of eight weeks of a feeding trial period, upon termination of a meal in the morning, afternoon or evening, all goats were slaughtered in random groups of three per day to measure reticulorumen fill and digesta loads in other distal compartments of the digestive tract. Both diet quality and period affected (P < 0.05) the measure of reticulorumen fill. However, reticulorumen fill in the evening was larger (P < 0.05) than afternoon, while afternoon was similar (P > 0.05) to morning. Also, diet quality affected (P < 0.05) the wet omasal digesta load, wet abomasum, dry abomasum and dry caecum digesta loads but did not affect (P > 0.05) both wet and dry digesta loads in other compartments of the digestive tract. Period of measurement did not affect (P > 0.05) the wet omasal digesta load, and both wet and dry digesta loads in other compartments of the digestive tract except wet abomasum digesta load (P < 0.05) and dry caecum digesta load (P < 0.05). Both wet and dry reticulorumen fill were correlated (P < 0.05) with omasum (r = 0.623) and (r = 0.723), respectively. In conclusion, reticulorumen fill of goats decreased by improving the roughage quality; and the period of meal termination and measurement of the fill is a key factor to the quantity of digesta load.Keywords: digesta, goats, meal termination, reticulo-rumen fill
Procedia PDF Downloads 3732910 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor
Authors: Niloofar Zebarjad
Abstract:
This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket
Procedia PDF Downloads 2942909 Leveraging Remote Assessments and Central Raters to Optimize Data Quality in Rare Neurodevelopmental Disorders Clinical Trials
Authors: Pamela Ventola, Laurel Bales, Sara Florczyk
Abstract:
Background: Fully remote or hybrid administration of clinical outcome measures in rare neurodevelopmental disorders trials is increasing due to the ongoing pandemic and recognition that remote assessments reduce the burden on families. Many assessments in rare neurodevelopmental disorders trials are complex; however, remote/hybrid trials readily allow for the use of centralized raters to administer and score the scales. The use of centralized raters has many benefits, including reducing site burden; however, a specific impact on data quality has not yet been determined. Purpose: The current study has two aims: a) evaluate differences in data quality between administration of a standardized clinical interview completed by centralized raters compared to those completed by site raters and b) evaluate improvement in accuracy of scoring standardized developmental assessments when scored centrally compared to when scored by site raters. Methods: For aim 1, the Vineland-3, a widely used measure of adaptive functioning, was administered by site raters (n= 52) participating in one of four rare disease trials. The measure was also administered as part of two additional trials that utilized central raters (n=7). Each rater completed a comprehensive training program on the assessment. Following completion of the training, each clinician completed a Vineland-3 with a mock caregiver. Administrations were recorded and reviewed by a neuropsychologist for administration and scoring accuracy. Raters were able to certify for the trials after demonstrating an accurate administration of the scale. For site raters, 25% of each rater’s in-study administrations were reviewed by a neuropsychologist for accuracy of administration and scoring. For central raters, the first two administrations and every 10th administration were reviewed. Aim 2 evaluated the added benefit of centralized scoring on the accuracy of scoring of the Bayley-3, a comprehensive developmental assessment widely used in rare neurodevelopmental disorders trials. Bayley-3 administrations across four rare disease trials were centrally scored. For all administrations, the site rater who administered the Bayley-3 scored the scale, and a centralized rater reviewed the video recordings of the administrations and also scored the scales to confirm accuracy. Results: For aim 1, site raters completed 138 Vineland-3 administrations. Of the138 administrations, 53 administrations were reviewed by a neuropsychologist. Four of the administrations had errors that compromised the validity of the assessment. The central raters completed 180 Vineland-3 administrations, 38 administrations were reviewed, and none had significant errors. For aim 2, 68 administrations of the Bayley-3 were reviewed and scored by both a site rater and a centralized rater. Of these administrations, 25 had errors in scoring that were corrected by the central rater. Conclusion: In rare neurodevelopmental disorders trials, sample sizes are often small, so data quality is critical. The use of central raters inherently decreases site burden, but it also decreases rater variance, as illustrated by the small team of central raters (n=7) needed to conduct all of the assessments (n=180) in these trials compared to the number of site raters (n=53) required for even fewer assessments (n=138). In addition, the use of central raters dramatically improves the quality of scoring the assessments.Keywords: neurodevelopmental disorders, clinical trials, rare disease, central raters, remote trials, decentralized trials
Procedia PDF Downloads 1722908 Changing Misconceptions in Heat Transfer: A Problem Based Learning Approach for Engineering Students
Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza
Abstract:
This work has the purpose of study and incorporate Problem Based Learning (PBL) for engineering students, through the analysis of several thermal images of dwellings located in different geographical points of the Region de los Ríos, Chile. The students analyze how heat is transferred in and out of the houses and how is the relation between heat transfer and climatic conditions that affect each zone. As a result of this activity students are able to acquire significant learning in the unit of heat and temperature, and manage to reverse previous conceptual errors related with energy, temperature and heat. In addition, student are able to generate prototype solutions to increase thermal efficiency using low cost materials. Students make public their results in a report using scientific writing standards and in a science fair open to the entire university community. The methodology used to measure previous Conceptual Errors has been applying diagnostic tests with everyday questions that involve concepts of heat, temperature, work and energy, before the unit. After the unit the same evaluation is done in order that themselves are able to evidence the evolution in the construction of knowledge. As a result, we found that in the initial test, 90% of the students showed deficiencies in the concepts previously mentioned, and in the subsequent test 47% showed deficiencies, these percent ages differ between students who carry out the course for the first time and those who have performed this course previously in a traditional way. The methodology used to measure Significant Learning has been by comparing results in subsequent courses of thermodynamics among students who have received problem based learning and those who have received traditional training. We have observe that learning becomes meaningful when applied to the daily lives of students promoting internalization of knowledge and understanding through critical thinking.Keywords: engineering students, heat flow, problem-based learning, thermal images
Procedia PDF Downloads 2312907 A Critical Review and Bibliometric Analysis on Measures of Achievement Motivation
Authors: Kanupriya Rawat, Aleksandra Błachnio, Paweł Izdebski
Abstract:
Achievement motivation, which drives a person to strive for success, is an important construct in sports psychology. This systematic review aims to analyze the methods of measuring achievement motivation used in previous studies published over the past four decades and to find out which method of measuring achievement motivation is the most prevalent and the most effective by thoroughly examining measures of achievement motivation used in each study and by evaluating most highly cited achievement motivation measures in sport. In order to understand this latent construct, thorough measurement is necessary, hence a critical evaluation of measurement tools is required. The literature search was conducted in the following databases: EBSCO, MEDLINE, APA PsychARTICLES, Academic Search Ultimate, Open Dissertations, ERIC, Science direct, Web of Science, as well as Wiley Online Library. A total of 26 articles met the inclusion criteria and were selected. From this review, it was found that the Achievement Goal Questionnaire- Sport (AGQ-Sport) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ) were used in most of the research, however, the average weighted impact factor of the Achievement Goal Questionnaire- Sport (AGQ-Sport) is the second highest and most relevant in terms of research articles related to the sport psychology discipline. Task and Ego Orientation in Sport Questionnaire (TEOSQ) is highly popular in cross-cultural adaptation but has the second last average IF among other scales due to the less impact factor of most of the publishing journals. All measures of achievement motivation have Cronbach’s alpha value of more than .70, which is acceptable. The advantages and limitations of each measurement tool are discussed, and the distinction between using implicit and explicit measures of achievement motivation is explained. Overall, both implicit and explicit measures of achievement motivation have different conceptualizations of achievement motivation and are applicable at either the contextual or situational level. The conceptualization and degree of applicability are perhaps the most crucial factors for researchers choosing a questionnaire, even though they differ in their development, reliability, and use.Keywords: achievement motivation, task and ego orientation, sports psychology, measures of achievement motivation
Procedia PDF Downloads 962906 A Contactless Capacitive Biosensor for Muscle Activity Measurement
Authors: Charn Loong Ng, Mamun Bin Ibne Reaz
Abstract:
As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.Keywords: contactless, capacitive, biosensor, electromyography
Procedia PDF Downloads 4502905 Dispersion-Less All Reflective Split and Delay Unit for Ultrafast Metrology
Authors: Akansha Tyagi, Mehar S. Sidhu, Ankur Mandal, Sanjay Kapoor, Sunil Dahiya, Jan M. Rost, Thomas Pfeifer, Kamal P. Singh
Abstract:
An all-reflective split and delay unit is designed for dispersion free measurement of broadband ultrashort pulses using a pair of reflective knife edge prism for splitting and recombining of the measuring pulse. It is based on symmetrical wavefront splitting of the measuring pulse having two separate arms to independently shape both split parts. We have validated our delay line with NIR –femtosecond pulse measurement centered at 800 nm using second harmonic-Interferometric frequency resolved optical gating (SH-IFROG). The delay line is compact, easy to align and provides attosecond stability and precision and thus make it more versatile for wide range of applications in ultrafast measurements. We envision that the present delay line will find applications in IR-IR controlling for high harmonic generation (HHG) and attosecond IR-XUV pump-probe measurements with solids and gases providing attosecond resolution and wide delay range.Keywords: HHG, nonlinear optics, pump-probe spectroscopy, ultrafast metrology
Procedia PDF Downloads 2002904 In-Situ Studies of Cyclohexane Oxidation Using Laser Raman Spectroscopy for the Refinement of Mechanism Based Kinetic Models
Authors: Christine Fräulin, Daniela Schurr, Hamed Shahidi Rad, Gerrit Waters, Günter Rinke, Roland Dittmeyer, Michael Nilles
Abstract:
The reaction mechanisms of many liquid-phase reactions in organic chemistry have not yet been sufficiently clarified. Process conditions of several hundred degrees celsius and pressures to ten megapascals complicate the sampling and the determination of kinetic data. Space resolved in-situ measurements promises new insights. A non-invasive in-situ measurement technique has the advantages that no sample preparation is necessary, there is no change in sample mixture before analysis and the sampling do no lead to interventions in the flow. Thus, the goal of our research was the development of a contact-free spatially resolved measurement technique for kinetic studies of liquid phase reaction under process conditions. Therefore we used laser Raman spectroscopy combined with an optical transparent microchannel reactor. To show the performance of the system we choose the oxidation of cyclohexane as sample reaction. Cyclohexane oxidation is an economically important process. The products are intermediates for caprolactam and adipic acid, which are starting materials for polyamide 6 and 6.6 production. To maintain high selectivities of 70 to 90 %, the reaction is performed in industry at a low conversion of about six percent. As Raman spectroscopy is usually very selective but not very sensitive the detection of the small product concentration in cyclohexane oxidation is quite challenging. To meet these requirements, an optical experimental setup was optimized to determine the concentrations by laser Raman spectroscopy with respect to good detection sensitivity. With this measurement technique space resolved kinetic studies of uncatalysed and homogeneous catalyzed cyclohexane oxidation were carried out to obtain details about the reaction mechanism.Keywords: in-situ laser raman spectroscopy, space resolved kinetic measurements, homogeneous catalysis, chemistry
Procedia PDF Downloads 3342903 Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement
Authors: Khaing Su Su Than, Hibino Yo
Abstract:
Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used.Keywords: HVSR, height-period relationship, microtremor, Myanmar earthquake, reinforced concrete structures
Procedia PDF Downloads 1562902 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector
Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini
Abstract:
Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products
Procedia PDF Downloads 1512901 Examining the Development of Complexity, Accuracy and Fluency in L2 Learners' Writing after L2 Instruction
Authors: Khaled Barkaoui
Abstract:
Research on second-language (L2) learning tends to focus on comparing students with different levels of proficiency at one point in time. However, to understand L2 development, we need more longitudinal research. In this study, we adopt a longitudinal approach to examine changes in three indicators of L2 ability, complexity, accuracy, and fluency (CAF), as reflected in the writing of L2 learners when writing on different tasks before and after a period L2 instruction. Each of 85 Chinese learners of English at three levels of English language proficiency responded to two writing tasks (independent and integrated) before and after nine months of English-language study in China. Each essay (N= 276) was analyzed in terms of numerous CAF indices using both computer coding and human rating: number of words written, number of errors per 100 words, ratings of error severity, global syntactic complexity (MLS), complexity by coordination (T/S), complexity by subordination (C/T), clausal complexity (MLC), phrasal complexity (NP density), syntactic variety, lexical density, lexical variation, lexical sophistication, and lexical bundles. Results were then compared statistically across tasks, L2 proficiency levels, and time. Overall, task type had significant effects on fluency and some syntactic complexity indices (complexity by coordination, structural variety, clausal complexity, phrase complexity) and lexical density, sophistication, and bundles, but not accuracy. L2 proficiency had significant effects on fluency, accuracy, and lexical variation, but not syntactic complexity. Finally, fluency, frequency of errors, but not accuracy ratings, syntactic complexity indices (clausal complexity, global complexity, complexity by subordination, phrase complexity, structural variety) and lexical complexity (lexical density, variation, and sophistication) exhibited significant changes after instruction, particularly for the independent task. We discuss the findings and their implications for assessment, instruction, and research on CAF in the context of L2 writing.Keywords: second language writing, Fluency, accuracy, complexity, longitudinal
Procedia PDF Downloads 1532900 Measurement and Evaluation of Outdoor Lighting Environment at Night in Residential Community in China: A Case Study of Hangzhou
Authors: Jiantao Weng, Yujie Zhao
Abstract:
With the improvement of living quality and demand for nighttime activities in China, the current situation of outdoor lighting environment at night needs to be assessed. Lighting environment at night plays an important role to guarantee night safety. Two typical residential communities in Hangzhou were selected. A comprehensive test method of outdoor lighting environment at night was established. The road, fitness area, landscape, playground and entrance were included. Field measurements and questionnaires were conducted in these two residential communities. The characteristics of residents’ habits and the subjective evaluation on different aspects of outdoor lighting environment at night were collected via questionnaire. A safety evaluation system on the outdoor lighting environment at night in the residential community was established. The results show that there is a big difference in illumination in different areas. The lighting uniformities of roads cannot meet the requirement of lighting standard in China. Residents pay more attention to the lighting environment of the fitness area and road than others. This study can provide guidance for the design and management of outdoor lighting environment at night.Keywords: residential community, lighting environment, night, field measurement
Procedia PDF Downloads 1622899 Ecological Ice Hockey Butterfly Motion Assessment Using Inertial Measurement Unit Capture System
Authors: Y. Zhang, J. Perez, S. Marnier
Abstract:
To date, no study on goaltending butterfly motion has been completed in real conditions, during an ice hockey game or training practice, to the author's best knowledge. This motion, performed to save score, is unnatural, intense, and repeated. The target of this research activity is to identify representative biomechanical criteria for this goaltender-specific movement pattern. Determining specific physical parameters may allow to will identify the risk of hip and groin injuries sustained by goaltenders. Four professional or academic goalies were instrumented during ice hockey training practices with five inertial measurement units. These devices were inserted in dedicated pockets located on each thigh and shank, and the fifth on the lumbar spine. A camera was also installed close to the ice to observe and record the goaltenders' activities, especially the butterfly motions, in order to synchronize the captured data and the behavior of the goaltender. Each data recorded began with a calibration of the inertial units and a calibration of the fully equipped goaltender on the ice. Three butterfly motions were recorded out of the training practice to define referential individual butterfly motions. Then, a data processing algorithm based on the Madgwick filter computed hip and knee joints joint range of motion as well as angular specific angular velocities. The developed algorithm software automatically identified and analyzed all the butterfly motions executed by the four different goaltenders. To date, it is still too early to show that the analyzed criteria are representative of the trauma generated by the butterfly motion as the research is only at its beginning. However, this descriptive research activity is promising in its ecological assessment, and once the criteria are found, the tools and protocols defined will allow the prevention of as many injuries as possible. It will thus be possible to build a specific training program for each goalie.Keywords: biomechanics, butterfly motion, human motion analysis, ice hockey, inertial measurement unit
Procedia PDF Downloads 1252898 Normal Weight Obesity among Female Students: BMI as a Non-Sufficient Tool for Obesity Assessment
Authors: Krzysztof Plesiewicz, Izabela Plesiewicz, Krzysztof Chiżyński, Marzenna Zielińska
Abstract:
Background: Obesity is an independent risk factor for cardiovascular diseases. There are several anthropometric parameters proposed to estimate the level of obesity, but until now there is no agreement which one is the best predictor of cardiometabolic risk. Scientists defined metabolically obese normal weight, who suffer from metabolic abnormalities, the same as obese individuals, and defined this syndrome as normal weight obesity (NWO). Aim of the study: The aim of our study was to determine the occurrence of overweight and obesity in a cohort of young, adult women, using standard and complementary methods of obesity assessment and to indicate those, who are at risk of obesity. The second aim of our study was to test additional methods of obesity assessment and proof that body mass index using alone is not sufficient parameter of obesity assessment. Materials and methods: 384 young women, aged 18-32, were enrolled into the study. Standard anthropometric parameters (waist to hips ratio (WTH), waist to height ratio (WTHR)) and two other methods of body fat percentage measurement (BFPM) were used in the study: electrical bioimpendance analysis (BIA) and skinfold measurement test by digital fat body mass clipper (SFM). Results: In the study group 5% and 7% of participants had waist to hips ratio and accordingly waist to height ratio values connected with visceral obesity. According to BMI 14% participants were overweight and obese. Using additional methods of body fat assessment, there were 54% and 43% of obese for BIA and SMF method. In the group of participants with normal BMI and underweight (not overweight, n =340) there were individuals with the level of BFPM above the upper limit, for the BIA 49% (n =164) and for the SFM 36 % (n=125). Statistical analysis revealed strong correlation between BIA and SFM methods. Conclusion: BMI using alone is not a sufficient parameter of obesity assessment. High percentage of young women with normal BMI values seem to be normal weight obese.Keywords: electrical bioimpedance, normal weight obesity, skin-fold measurement test, women
Procedia PDF Downloads 2742897 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.Keywords: stock market prediction, social moods, regression model, DJIA
Procedia PDF Downloads 5482896 A Game-Based Methodology to Discriminate Executive Function – a Pilot Study With Institutionalized Elderly People
Authors: Marlene Rosa, Susana Lopes
Abstract:
There are few studies that explore the potential of board games as a performance measure, despite it can be an interesting strategy in the context of frailty populations. In fact, board games are immersive strategies than can inhibit the pressure of being evaluated. This study aimed to test the ability of gamed-base strategies to assess executive function in elderly population. Sixteen old participants were included: 10 with affected executive functions (G1 – 85.30±6.00 yrs old; 10 male); 6 with executive functions with non-clinical important modifications (G2 - 76.30±5.19 yrs old; 6 male). Executive tests were assessed using the Frontal Assessment Battery (FAB), which is a quick-applicable cognitive screening test (score<12 means impairment). The board game used in this study was the TATI Hand Game, specifically for training rhythmic coordination of the upper limbs with multiple cognitive stimuli. This game features 1 table grid, 1 set of Single Game cards (to play with one hand); Double Game cards (to play simultaneously with two hands); 1 dice to plan Single Game mode; cards to plan the Double Game mode; 1 bell; 2 cups. Each participant played 3 single game cards, and the following data were collected: (i) variability in time during board game challenges (SD); (ii) number of errors; (iii) execution speed (sec). G1 demonstrated: high variability in execution time during board game challenges (G1 – 13.0s vs G2- 0.5s); a higher number of errors (1.40 vs 0.67); higher execution velocity (607.80s vs 281.83s). These results demonstrated the potential of implementing board games as a functional assessment strategy in geriatric care. Future studies might include larger samples and statistical methodologies to find cut-off values for impairment in executive functions during performance in TATI game.Keywords: board game, aging, executive function, evaluation
Procedia PDF Downloads 1422895 Ranking of Performance Measures of GSCM towards Sustainability: Using Analytic Hierarchy Process
Authors: Dixit Garg, S. Luthra, A. Haleem
Abstract:
During recent years, the natural environment has become a challenging topic that business organizations must consider due to the economic and ecological impacts and increasing awareness of environment protection among society. Organizations are trying to achieve the goals of improvement in environment, low cost, high quality, flexibility and more customer satisfaction. Performance measurement frameworks are very useful to monitor the performance of any organization. The basic goal of this paper is to identify performance measures and ranking of these performance measures of GSCM performance measurement towards sustainability framework. Five perspectives (Environment, Economic, Social, Operational and Cost performances) and nineteen performance measures of GSCM performance towards sustainability have been have been identified from extensive literature review. Analytical Hierarchy Process (AHP) technique has been utilized for ranking of these performance perspectives and measures. All pair comparisons in AHP have been made on the basis on the experts’ opinions (selected from academia and industry). Ranking of these performance perspectives and measures will help to understand the importance of environmental, economic, social, operational performances, and cost performances in the supply chain.Keywords: analytical hierarchy process, green supply chain management, performance measures, sustainability
Procedia PDF Downloads 5192894 Exploration of RFID in Healthcare: A Data Mining Approach
Authors: Shilpa Balan
Abstract:
Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.Keywords: RFID, data mining, data analysis, healthcare
Procedia PDF Downloads 2332893 Theoretical Exploration for the Impact of Accounting for Special Methods in Connectivity-Based Cohesion Measurement
Authors: Jehad Al Dallal
Abstract:
Class cohesion is a key object-oriented software quality attribute that is used to evaluate the degree of relatedness of class attributes and methods. Researchers have proposed several class cohesion measures. However, the effect of considering the special methods (i.e., constructors, destructors, and access and delegation methods) in cohesion calculation is not thoroughly theoretically studied for most of them. In this paper, we address this issue for three popular connectivity-based class cohesion measures. For each of the considered measures we theoretically study the impact of including or excluding special methods on the values that are obtained by applying the measure. This study is based on analyzing the definitions and formulas that are proposed for the measures. The results show that including/excluding special methods has a considerable effect on the obtained cohesion values and that this effect varies from one measure to another. For each of the three connectivity-based measures, the proposed theoretical study recommended excluding the special methods in cohesion measurement.Keywords: object-oriented class, software quality, class cohesion measure, class cohesion, special methods
Procedia PDF Downloads 2972892 Apollo Quality Program: The Essential Framework for Implementing Patient Safety
Authors: Anupam Sibal
Abstract:
Apollo Quality Program(AQP) was launched across the Apollo Group of Hospitals to address the four patient safety areas; Safety during Clinical Handovers, Medication Safety, Surgical Safety and the six International Patient Safety Goals(IPSGs) of JCI. A measurable, online, quality dashboard covering 20 process and outcome parameters was devised for monthly monitoring. The expected outcomes were also defined and categorized into green, yellow and red ranges. An audit methodology was also devised to check the processes for the measurable dashboard. Documented clinical handovers were introduced for the first time at many locations for in-house patient transfer, nursing-handover, and physician-handover. Prototype forms using the SBAR format were made. Patient-identifiers, read-back for verbal orders, safety of high-alert medications, site marking and time-outs and falls risk-assessment were introduced for all hospitals irrespective of accreditation status. Measurement of Surgical-Site-Infection (SSI) for 30 days postoperatively, was done. All hospitals now tracked the time of administration of antimicrobial prophylaxis before surgery. Situations with high risk of retention of foreign body were delineated and precautionary measures instituted. Audit of medications prescribed in the discharge summaries was made uniform. Formularies, prescription-audits and other means for reduction of medication errors were implemented. There is a marked increase in the compliance to processes and patient safety outcomes. Compliance to read-back for verbal orders rose from 86.83% in April’11 to 96.95% in June’15, to policy for high alert medications from 87.83% to 98.82%, to use of measures to prevent wrong-site, wrong-patient, wrong procedure surgery from 85.75% to 97.66%, to hand-washing from 69.18% to 92.54%, to antimicrobial prophylaxis within one hour before incision from 79.43% to 93.46%. Percentage of patients excluded from SSI calculation due to lack of follow-up for the requisite time frame decreased from 21.25% to 10.25%. The average AQP scores for all Apollo Hospitals improved from 62 in April’11 to 87.7 in Jun’15.Keywords: clinical handovers, international patient safety goals, medication safety, surgical safety
Procedia PDF Downloads 2562891 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail
Authors: A. Shebani, S. Iwnicki
Abstract:
Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer
Procedia PDF Downloads 3522890 Simplified Measurement of Occupational Energy Expenditure
Authors: J. Wicks
Abstract:
Aim: To develop a simple methodology to allow collected heart rate (HR) data from inexpensive wearable devices to be expressed in a suitable format (METs) to quantitate occupational (and recreational) activity. Introduction: Assessment of occupational activity is commonly done by utilizing questionnaires in combination with prescribed MET levels of a vast range of previously measured activities. However for any individual the intensity of performing a specific activity can vary significantly. Ideally objective measurement of individual activity is preferred. Though there are a wide range of HR recording devices there is a distinct lack methodology to allow processing of collected data to quantitate energy expenditure (EE). The HR index equation expresses METs in relation to relative HR i.e. the ratio of activity HR to resting HR. The use of this equation provides a simple utility for objective measurement of EE. Methods: During a typical occupational work period of approximately 8 hours HR data was recorded using a Polar RS 400 wrist monitor. Recorded data was downloaded to a Windows PC and non HR data was stripped from the ASCII file using ‘Notepad’. The HR data was exported to a spread sheet program and sorted by HR range into a histogram format. Three HRs were determined, namely a resting HR (the HR delimiting the lowest 30 minutes of recorded data), a mean HR and a peak HR (the HR delimiting the highest 30 minutes of recorded data). HR indices were calculated (mean index equals mean HR/rest HR and peak index equals peak HR/rest HR) with mean and peak indices being converted to METs using the HR index equation. Conclusion: Inexpensive HR recording devices can be utilized to make reasonable estimates of occupational (or recreational) EE suitable for large scale demographic screening by utilizing the HR index equation. The intrinsic value of the HR index equation is that it is independent of factors that influence absolute HR, namely fitness, smoking and beta-blockade.Keywords: energy expenditure, heart rate histograms, heart rate index, occupational activity
Procedia PDF Downloads 2962889 Evaluation of Thermal Comfort and Energy Consumption in Classroom
Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa
Abstract:
Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.Keywords: thermal comfort, PMV/PPD, air conditioner, TSV
Procedia PDF Downloads 33