Search results for: materials extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8675

Search results for: materials extraction

8075 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 384
8074 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 56
8073 Pharmacognostic, Phytochemical and Antibacterial Activity of Beaumontia Randiflora

Authors: Narmeen Mehmood

Abstract:

The current study was conducted to evaluate the pharmacognostic parameters, phytochemical analysis and antibacterial activity of the plant. Microscopic studies were carried out to determine various Pharmacognostic parameters. Section cutting of the leaf was also done. The study of the ariel parts of Beaumontia grandiflora resulted in the identification of fatty acids mixture and unsaponifiable matters. For the separation of various constituents of the plant, successive solvent extraction was carried out in a laboratory. Material and Methods: The study was carried out with all three extracts of Beaumontia grandiflora i.e. Petroleum ether, Chloroform and Methanol. For the separation of various constituents of the plant, successive solvent extraction was carried out in the laboratory. Raw data containing the measured zones of inhibition in mm was tabulated. Results: The microscopic studies showed the presence of Upper epidermis in surface view, Part of Lamina in section view, cortical parenchyma in longitudinal view, Parenchyma with collapsed tissues, Parenchyma Cells, Epidermal cells with a part of covering trichome, starch granules, reticulated thickened vessels, Transverse Section of leaf of Beaumontia grandiflora showed Upper Epidermis, Lower Epidermis, Hairs, Vascular Bundles, Parenchyma. Phytochemical analysis of leaves of Beaumontia grandiflora indicates that Alkaloids are present. There is a possibility of the presence of some bioactive components in the crude extracts due to which it shows strong activity. Petroleum ether extract shows a greater zone of inhibition at low concentrations. Conclusion: The alkaloids possess good antibacterial activity so the presence of alkaloids may be responsible for the antibacterial activity observed in the crude organic extract of Beaumontia grandiflora.

Keywords: successive solvent extraction, zone of inhibitions., microscopy, phytochemical analysis

Procedia PDF Downloads 22
8072 Designing Elevations by Photocatalysis of Precast Concrete Materials, in Reducing Energy Consumption of Buildings: Case Study of Tabriz

Authors: Mahsa Faramarzi Asli, Mina Sarabi

Abstract:

The important issues that are addressed in most advanced industrial countries in recent decades, discussion of minimizing heat losses through the buildings. And the most influential parameters in the calculation of building energy consumption, is heat exchange, which takes place between the interior and outer space. One of the solutions to reduce heat loss is using materials with low thermal conductivity. The purpose of this article, is the effect of using some frontages with nano-concrete photo catalytic precast materials for reducing energy consumption in buildings. For this purpose, estimating the energy dissipation through the facade built with nano-concrete photo catalytic precast materials on a sample building in Tabriz city by BCS 19 software ( topic 19 simulation) is done and the results demonstrate reduce heat loss through the facade nano- concrete.

Keywords: nano materials, optimize energy consumption, themal, stability

Procedia PDF Downloads 564
8071 Mixed Alumina-Silicate Materials for Groundwater Remediation

Authors: Ziyad Abunada, Abir Al-tabbaa

Abstract:

The current work is investigating the effectiveness of combined mixed materials mainly modified bentonites and organoclay in treating contaminated groundwater. Sodium bentonite was manufactured with a quaternary amine surfactant, dimethyl ammonium chloride to produce organoclay (OC). Inorgano-organo bentonite (IOB) was produced by intercalating alkylbenzyd-methyl-ammonium chloride surfactant into sodium bentonite and pillared with chlorohydrol pillaring agent. The materials efficiency was tested for both TEX compounds from model-contaminated water and a mixture of organic contaminants found in groundwater samples collected from a contaminated site in the United Kingdom. The sorption data was fitted well to both Langmuir and Freundlich adsorption models reflecting the double sorption model where the correlation coefficient was greater than 0.89 for all materials. The mixed materials showed higher sorptive capacity than individual material with a preference order of X> E> T and a maximum sorptive capacity of 21.8 mg/g was reported for IOB-OC materials for o-xylene. The mixed materials showed at least two times higher affinity towards a mixture of organic contaminants in groundwater samples. Other experimental parameters such as pH and contact time were also investigated. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics.

Keywords: modified bentobite, groundwater, adsorption, contaminats

Procedia PDF Downloads 225
8070 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet

Procedia PDF Downloads 332
8069 Using Vocabulary Instructional Materials in Improving the Grade Four Students' Learning in Science

Authors: Shirly May Balais

Abstract:

This study aims to evaluate the effects of vocabulary instruction in improving the students’ learning in science. The teacher-researcher utilized the vocabulary instructional materials in enriching the science vocabulary of grade four learners. The students were also given an achievement test to determine the effects of vocabulary instructional materials. The assessment indicated that students had shown improvement in comprehension and science literacy. This also helps the students to grasp, understand, and communicate appropriate science concepts and the integration of imagery makes learning science fun. In this research, descriptive qualitative methods and observation interviews were used to describe the effects of using vocabulary instructional materials in improving the science vocabulary of grade four learners. The students’ perceptions were studied, analyzed, and interpreted qualitatively.

Keywords: instruction, learning, science, vocabulary

Procedia PDF Downloads 199
8068 Innovating Electronics Engineering for Smart Materials Marketing

Authors: Muhammad Awais Kiani

Abstract:

The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.

Keywords: electronics engineering, smart materials, marketing, power management

Procedia PDF Downloads 59
8067 Utilization of Chrysanthemum Flowers in Textile Dyeing: Chemical and Phenolic Analysis of Dyes and Fabrics

Authors: Muhammad Ahmad

Abstract:

In this research, Chrysanthemum (morifolium) flowers are used as a natural dye to reduce synthetic dyes and take a step toward sustainability in the fashion industry. The aqueous extraction method is utilized for natural dye extraction and then applied to silk and cotton fabric samples. The color of the dye extracted from dried chrysanthemum flowers is originally a shade of rich green, but after being washed with detergent, it turns to a shade of yellow. Traditional salt and vinegar are used as a natural mordant to fix the dye color. This study also includes a phenolic and chemical analysis of the natural dye (Chrysanthemum flowers) and the textiles (cotton and silk). Compared to cotton fabric, silk fabric has far superior chemical qualities to use in natural dyeing. The results of this study show that the Chrysanthemum flower offers a variety of colors when treated with detergent, without detergent, and with mordants. Chrysanthemum flowers have long been used in other fields, such as medicine; therefore, it is time to start using them in the fashion industry as a natural dye to lessen the harm that synthetic dyes cause.

Keywords: natural dyes, Chrysanthemum flower, sustainability, textile fabrics, chemical and phenolic analysis

Procedia PDF Downloads 21
8066 Research on Hangzhou Commercial Center System Based on Point of Interest Data

Authors: Chen Wang, Qiuxiao Chen

Abstract:

With the advent of the information age and the era of big data, urban planning research is no longer satisfied with the analysis and application of traditional data. Because of the limitations of traditional urban commercial center system research, big data provides new opportunities for urban research. Therefore, based on the quantitative evaluation method of big data, the commercial center system of the main city of Hangzhou is analyzed and evaluated, and the scale and hierarchical structure characteristics of the urban commercial center system are studied. In order to make up for the shortcomings of the existing POI extraction method, it proposes a POI extraction method based on adaptive adjustment of search window, which can accurately and efficiently extract the POI data of commercial business in the main city of Hangzhou. Through the visualization and nuclear density analysis of the extracted Point of Interest (POI) data, the current situation of the commercial center system in the main city of Hangzhou is evaluated. Then it compares with the commercial center system structure of 'Hangzhou City Master Plan (2001-2020)', analyzes the problems existing in the planned urban commercial center system, and provides corresponding suggestions and optimization strategy for the optimization of the planning of Hangzhou commercial center system. Then get the following conclusions: The status quo of the commercial center system in the main city of Hangzhou presents a first-level main center, a two-level main center, three third-level sub-centers, and multiple community-level business centers. Generally speaking, the construction of the main center in the commercial center system is basically up to standard, and there is still a big gap in the construction of the sub-center and the regional-level commercial center, further construction is needed. Therefore, it proposes an optimized hierarchical functional system, organizes commercial centers in an orderly manner; strengthens the central radiation to drive surrounding areas; implements the construction guidance of the center, effectively promotes the development of group formation and further improves the commercial center system structure of the main city of Hangzhou.

Keywords: business center system, business format, main city of Hangzhou, POI extraction method

Procedia PDF Downloads 140
8065 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development

Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng

Abstract:

Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.

Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics

Procedia PDF Downloads 170
8064 Biodegradation of Cellulosic Materials by Marine Fungi Isolated from South Corniche of Jeddah, Saudi Arabia

Authors: Fuad Ameen, Mohamed Moslem, Sarfaraz Hadi

Abstract:

Twenty-eight fungal isolates belonging to 12 genera were derived from debris, sediment and water samples collected from Avicennia marina stands 25km south of Jeddah city on the Red Sea coast of Saudi Arabia. Eight of these isolates were found to be able to grow in association cellulosic waste materials under in vitro conditions in the absence of any carbon source. Isolates were further tested for their potential to degrade paper and clothes wastes by co-cultivation under aeration on a rotary shaker. These fungi accumulated significantly higher biomass, produced ligninolytic and cellulase enzymes, and liberated larger volumes of CO2. These observations indicated that the selected isolates were able to break down and consume the waste materials.

Keywords: biodegradation, enzyme activity, waste materials, mangrove

Procedia PDF Downloads 567
8063 Antioxidant Properties of Rice Bran Oil Using Various Heat Treatments

Authors: Supakan Rattanakon, Jakkrapan Boonpimon, Akkaragiat Bhuangsaeng, Aphiwat Ratriphruek

Abstract:

Rice bran oil (RBO) has been found to lower the level of serum cholesterol, has antioxidant and anti-carcinogenic property, and attenuate allergic inflammation. These properties of RBO are due to antioxidant compositions, especially, phenolic compounds. The higher amount of these active compounds in RBO, the greater value of RBO is. Thermal process of rice bran before solvent RBO extraction has been found to have a higher phenolic contents. Therefore, the purpose of this study is to using different heating methods on rice bran before the solvent extraction. Then, % yield of RBO, total phenolic content (TPC), and antioxidant property of two white Thai rice; KDML105 and RD6 were determined. The Folin-Ciocalteu colorimetric assay was used to determine TPC and scavenging of free radicals (DPPH) was used to determine antioxidant property expressed as EC50. The result showed that thermal process did not increase % yield of RBO but increase the TPC with 1.41 mg gallic acid equivalent (GAEmg-1). The highest TPC was found in KDML105 by using sonicator. The highest antioxidant activity was found in RD6 using autoclave. The EC50 of RBO was 0.04 mg/mL. Further study should be performed on different pretreatments to increase the TPC and antioxidant property.

Keywords: antioxidant, rice bran oil, total phenol content, white rice

Procedia PDF Downloads 253
8062 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources

Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger

Abstract:

Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.

Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity

Procedia PDF Downloads 154
8061 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 668
8060 Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture

Authors: Mohamed T. El-Hawary, Carsten Koenke, Amr M. El-Nemr, Nagy F. Hanna

Abstract:

Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete.

Keywords: coarse aggregate replacement, economical designs, green concrete, marble aggregates, sustainability, waste management

Procedia PDF Downloads 148
8059 Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating

Authors: Gizachew Belay Adugna

Abstract:

Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.

Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency

Procedia PDF Downloads 71
8058 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data

Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian

Abstract:

This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.

Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment

Procedia PDF Downloads 21
8057 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: speech recognition, acoustic features, mel frequency, cepstral coefficients

Procedia PDF Downloads 259
8056 Usage of Palm Oil Industrial Wastes as Construction Materials

Authors: Mohammad Momeenul Islam, U. Johnson Alengaram, Mohd Zamin Jumaat, Iftekhair Ibnul Bashar

Abstract:

Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work.

Keywords: construction materials, oil palm shells (OPS), palm oil fuel ash (POFA), aggregates

Procedia PDF Downloads 355
8055 Efficacy of Sparganium stoloniferum–Derived Compound in the Treatment of Acne Vulgaris: A Pilot Study

Authors: Wanvipa Thongborisute, Punyaphat Sirithanabadeekul, Pichit Suvanprakorn, Anan Jiraviroon

Abstract:

Background: Acne vulgaris is one of the most common dermatologic problems, and can have a significant psychological and physical effect on patients. Propionibacterium acnes' roles in acne vulgaris involve the activation of toll-like receptor 4 (TLR4), and toll-like receptor 2 (TLR2) pathways. By activating these pathways, inflammatory events of acne lesions, comedogenesis and sebaceous lipogenesis can occur. Currently, there are several topical agents commonly use in treating acne vulgaris that are known to have an effect on TLRs, such as retinoic acid and adapalene, but these drugs still have some irritating effects. At present, there is an alarming increase in rate of bacterial resistance due to irrational used of antibiotics both orally and topically. For this reason, acne treatments should contain bioactive molecules targeting at the site of action for the most effective therapeutic effect with the least side effects. Sparganium stoloniferumis a Chinese aquatic herb containing a compound called Sparstolonin B (SsnB), which has been reported to selectively blocks Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4)-mediated inflammatory signals. Therefore, this topical TLR2 and TLR4 antagonist, in a form of Sparganium stoloniferum-derived compound containing SsnB, should give a benefit in reducing inflammation of acne vulgaris lesions and providing an alternative treatments for patients with this condition. Materials and Methods: The objectives of this randomized double blinded split faced placebo controlled trial is to study the safety and efficacy of the Sparganium stoloniferum-derived compound. 32 volunteered patients with mild to moderate degree of acne vulgaris according to global acne grading system were included in the study. After being informed and consented the subjects were given 2 topical treatments for acne vulgaris, one being topical 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) and the other, placebo. The subjects were asked to apply each treatment to either half of the face daily morning and night by randomization for 8 weeks, and come in for a weekly follow up. For each visit, the patients went through a procedure of lesion counting, including comedones, papules, nodules, pustules, and cystic lesions. Results: During 8 weeks of experimentation, the result shows a reduction in total lesions number between the placebo and the treatment side show statistical significance starting at week 4, where the 95% confidence interval begin to no longer overlap, and shows a trend of continuing to be further apart. The decrease in the amount of total lesions between week 0 and week 8 of the placebo side shows no statistical significant at P value >0.05. While the decrease in the amount of total lesions of acne vulgaris of the treatment side comparing between week 0 and week 8 shows statistical significant at P value <0.001. Conclusion: The data demonstrates that 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) is more effective in treating acne vulgaris comparing to topical placebo in treating acne vulgaris, by showing significant reduction in the total numbers of acne lesions. Therefore, this topical Sparganium stoloniferum extraction could become a potential alternative treatment for acne vulgaris.

Keywords: acne vulgaris, sparganium stoloniferum, sparstolonin B, toll-like receptor 2, toll-like receptor 4

Procedia PDF Downloads 187
8054 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling

Authors: Ahmad Odeh

Abstract:

Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.

Keywords: BIM, lifecycle energy assessment, building automation, energy conservation

Procedia PDF Downloads 189
8053 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 139
8052 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong

Abstract:

The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 149
8051 Functionalized Ultra-Soft Rubber for Soft Robotics Application

Authors: Shib Shankar Banerjeea, Andreas Ferya, Gert Heinricha, Amit Das

Abstract:

Recently, the growing need for the development of soft robots consisting of highly deformable and compliance materials emerge from the serious limitations of conventional service robots. However, one of the main challenges of soft robotics is to develop such compliance materials, which facilitates the design of soft robotic structures and, simultaneously, controls the soft-body systems, like soft artificial muscles. Generally, silicone or acrylic-based elastomer composites are used for soft robotics. However, mechanical performance and long-term reliabilities of the functional parts (sensors, actuators, main body) of the robot made from these composite materials are inferior. This work will present the development and characterization of robust super-soft programmable elastomeric materials from crosslinked natural rubber that can serve as touch and strain sensors for soft robotic arms with very high elastic properties and strain, while the modulus is altered in the kilopascal range. Our results suggest that such soft natural programmable elastomers can be promising materials and can replace conventional silicone-based elastomer for soft robotics applications.

Keywords: elastomers, soft materials, natural rubber, sensors

Procedia PDF Downloads 155
8050 Bending Test Characteristics for Splicing of Thermoplastic Polymer Using Hot Gas Welding

Authors: Prantasi Harmi Tjahjanti, Iswanto Iswanto, Edi Widodo, Sholeh Pamuji

Abstract:

Materials of the thermoplastic polymer when they break is usually thrown away, or is recycled which requires a long process. The purpose of this study is to splice the broken thermoplastic polymer using hot gas welding with different variations of welding wire/electrodes. Materials of thermoplastic polymer used are Polyethylene (PE), Polypropylene (PP), and Polyvinyl chloride (PVC) by using welding wire like the three materials. The method is carried out by using hot gas welding; there are two materials that cannot be connected, namely PE with PVC welding wire, and PP with PVC welding wire. The permeable liquid penetrant test is PP with PE welding wire, and PVC with PE welding wire. The best bending test result with the longest elongation is PE with PE welding wire with a bending test value of 179.03 kgf/mm². The microstructure was all described in Scanning Electron Microscopy (SEM) observations.

Keywords: thermoplastic polymers, bending test, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), hot gas welding, bending test

Procedia PDF Downloads 202
8049 Engineering Review of Recycled Concrete Production for Structural and Non-Structural Applications (Green Concrete)

Authors: Hadi Rouhi Belvirdi

Abstract:

With the increasing demand for sustainable development, recycled materials are receiving more attention in construction projects. To promote sustainable development, this review article evaluates the feasibility of using recycled concrete in construction projects from an economic and environmental perspective. The results show that making concrete using recycled concrete is a suitable strategy for sustainable development. A complete examination of the physical and chemical properties of these recycled materials also provides important information about their suitability for use in the construction industry. Most of the studies do not show surprising results of the compressive or bending strength of these materials, and only the aspect of sustainable development of these materials is of interest. Their application can be investigated more in masonry and joinery works, but among them, some studies sometimes obtained more compressive and bending strength than the control sample, which can be used in concrete structures. Most of the cases introduced and discussed in this study can be implemented and help the country and the people of Iran preserve the environment and discuss sustainable development.

Keywords: environmental recycling, sustainable development, recycled materials, construction management

Procedia PDF Downloads 27
8048 Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials

Authors: Memet Vezir Kahraman, Ferhat Sen

Abstract:

This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries.

Keywords: antimicrobial food packaging, cationic hydroxyethyl cellulose, polyelectrolyte, sodium alginate

Procedia PDF Downloads 160
8047 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
8046 Phytochemical Screening, and Antimicrobial Evaluation of Bioactive Compounds from Red Millipede (Trigoniulus corallinus)

Authors: Y. B. Idris, M. Sirajo, L. G. Hassan, T. Izuagie, T. Muktar, I. Lawal, A. U. Abubakar

Abstract:

This study investigates the extraction, phytochemical composition, and antimicrobial activity of bioactive compounds from red millipedes using three different solvents: n-Hexane, Chloroform, and Methanol. The largest yield was obtained from the methanol extract, which had percentage yields of 0.8%, 2.2%, and 5.6%, respectively. Terpenoids and sterols were found in all extracts according to preliminary zoochemical screening, but only the methanol extract included saponins and phenols. With a maximum zone of inhibition of 9 mm at 1000 µg/ml, antimicrobial susceptibility tests revealed that the methanol extract had the strongest antibacterial activity, especially against Escherichia coli and Staphylococcus aureus. Significant activity was also shown by the n-hexane extract, although the chloroform extract had only mild antibacterial activity. Tests for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) verified that the methanol extract was more effective than the other extracts, particularly against S. aureus and S. typhi. None of the extracts, nonetheless, showed any discernible antifungal action. The potential of red millipede extracts, especially those based on methanol, as a source of antimicrobial chemicals for use in the future is highlighted by this work.

Keywords: millipedes, defensive extraction, antibacterial, antifungal, antimicrobial, minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC)

Procedia PDF Downloads 12