Search results for: iron and aluminum coagulants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1564

Search results for: iron and aluminum coagulants

964 Application of Moringa Oleifer Seed in Removing Colloids from Turbid Wastewater

Authors: Zemmouri Hassiba, Lounici Hakim, Mameri Nabil

Abstract:

Dried crushed seeds of Moringa oleifera contain an effective soluble protein; a natural cationic polyelectrolyte which causes coagulation. The present study aims to investigate the performance of Moringa oleifera seed extract as natural coagulant in clarification of secondary wastewater treatment highly charged in colloidal. A series of Jar tests was undertaken using raw wastewater providing from secondary decanter of Reghaia municipal wastewater treatment plant (MWWTP) located in East of Algiers, Algeria. Coagulation flocculation performance of Moringa oleifera was evaluated through supernatant residual turbidity. Various influence parameters namely Moringa oleifera dosage and pH have been considered. Tests on Reghaia wastewater, having 129 NTU of initial turbidity, showed a removal of 69.45% of residual turbidity with only 1.5 mg/l of Moringa oleifera. This sufficient removal capability encourages the use of this bioflocculant for treatment of turbid waters. Based on this result, the coagulant seed extract of Moringa oleifera is better suited to clarify municipal wastewater by removing turbidity. Indeed, Moringa oleifera which is a natural resource available locally (South of Algeria) coupled to the non-toxicity, biocompatibility and biodegradability, may be a very interesting alternative to the conventional coagulants used so far.

Keywords: coagulation flocculation, colloids, moringa oleifera, secondary wastewater

Procedia PDF Downloads 293
963 Produce Large Surface Area Activated Carbon from Biomass for Water Treatment

Authors: Rashad Al-Gaashani

Abstract:

The physicochemical activation method was used to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomass wastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis was used to evaluate the AC samples. AC produced from date seeds has a wide range of pores available, including micro- and nano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metals iron (III) and copper (II) ions were removed from wastewater using the AC produced using a batch adsorption technique. The AC produced from date seeds biomass wastes shows high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, and pH on the removal of heavy metals was studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 59
962 Iron and/or Titanium Containing Microporous Silico-Alumino-Phosphates as a Photocatalyst for Hydrogen Production by Water Splitting

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis, the Silicoaluminophosphates materials have proved their efficiency as a good adsorbent and catalyst in several environmental and energetic applications. In this work, the photocatalytic hydrogen production from water splitting reactions has been conducted under visible radiations in the presence of a series of iron and/or titanium-containing microporous silico-alumino-phosphates materials synthesized by hydrothermal method, using triethylamine as an organic structuring agent to obtain the AFI structure type. These photo-catalysts were then characterized by various physicochemical methods to determine their structural, textural and morphological properties such as X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with X rays microanalysis, nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), and X-rays photoelectron spectroscopy (XPS) and the analysis revealed that these materials have significant photocatalytic properties. The hydrogen production process has been followed by photoelectrochemical characterization (PEC). The results showed that hydrogen is the only gas produced, and the reaction takes place in the conduction band where water is reduced to hydrogen. The electron recombination has also been avoided, as holes are entrapped using hole scavengers. In addition, these catalysts have been shown to remain stable during reuse for up to five cycles.

Keywords: photocatalysis, SAPO-5, hydrothermal synthesis, hydrogen production

Procedia PDF Downloads 44
961 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4 ˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving

Procedia PDF Downloads 313
960 Effect of Magnesium Inoculation on the Microstructure and Mechanical Properties of a Spheroidal Cast Iron Knuckle: A Focus on the Steering Arm

Authors: Steven Mavhungu, Didier Nyembwe, Daniel Sekotlong

Abstract:

The steering knuckle is an integral component of the suspension and stability control system of modern vehicles. Good mechanical properties with an emphasis on the fatigue properties are essential for this component as it is subjected to cyclical load of significant magnitude during service. These properties are a function of the microstructure achieved in the component during the various manufacturing processes including forging and casting. The strut mount of the knuckle is required to meet specified microstructure and mechanical properties. However, in line with the recent trend of stringent quality requirements of cast components, Original Equipment Manufacturers (OEMs) have had to extend the specifications to other sections of the knuckle. This paper evaluates the effect of cored wire inoculation on the microstructure and mechanical properties of the steering arm of a typical spheroidal cast iron component. The investigation shows that the use of a cored wire having higher rare earth content formulation could possibly lead to a homogeneous matrix containing consistent graphite nodule morphology. However, this was found not to be the condition for better mechanical properties along the knuckle arm in line with required specifications. The findings in this paper contribute to a better understanding of steering knuckle properties to allow its production for safer automobile applications.

Keywords: inoculation, magnesium cored wire, spheroidal graphie, steering knuckle

Procedia PDF Downloads 204
959 Effects of Excess-Iron Stress on Symbiotic Nitrogen Fixation Efficiency of Yardlong-Bean Plants

Authors: Hong Li, Tingxian Li, Xudong Wang, Qinghuo Lin

Abstract:

Excess-iron (Fe) stresses involved in legume symbiotic nitrogen fixation are not understood. Our objectives were to investigate the tolerance of yardlong-bean plants to soil excess-Fe stress and antagonistic effects of organic amendments and rhizobial inoculants on plant root nodulation and stem ureide formation. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 5.3±0.4) and highly variable in Fe concentrations(596±79 mg/kg). The treatments were arranged in a split-plot design with three blocks. The treatment effects were significant on root nodulation, stem ureide, amino acids, plant N/Fe accumulation and bean yields (P<0.05). The yardlong-bean stem allantoin, amino acids and nitrate concentrations and relative ureide % declined with high soil Fe concentrations (>300 mg/kg). It was concluded that the co-variance of excess Fe stress could inhibit legume symbiotic N fixation efficiency. Organic amendments and rhizobial inoculants could help improve crop tolerance to excess Fe stress.

Keywords: atmospheric N fixation, root nodulation, soil Fe co-variance, stem ureide, yardlong-bean plants

Procedia PDF Downloads 256
958 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 129
957 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films

Authors: Padmalochan Panda, R. Ramaseshan

Abstract:

Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.

Keywords: ellipsometry, GIXRD, hardness, XAS

Procedia PDF Downloads 95
956 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments

Procedia PDF Downloads 135
955 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar

Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery procedures

Keywords: K-feldspar, grinding, automated mineralogy, impurity, leaching

Procedia PDF Downloads 59
954 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 151
953 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen

Abstract:

The activation volume of 6082T6 aluminum is investigated at different temperatures on grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress of grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate of grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increased and decreased with the testing temperature. It was revealed that, increased in strain rate sensitivity led to decrease in activation volume whereas increased in activation volume led to decrease in strain rate sensitivity.

Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume

Procedia PDF Downloads 234
952 Efficiency of Different Types of Addition onto the Hydration Kinetics of Portland Cement

Authors: Marine Regnier, Pascal Bost, Matthieu Horgnies

Abstract:

Some of the problems to be solved for the concrete industry are linked to the use of low-reactivity cement, the hardening of concrete under cold-weather and the manufacture of pre-casted concrete without costly heating step. The development of these applications needs to accelerate the hydration kinetics, in order to decrease the setting time and to obtain significant compressive strengths as soon as possible. The mechanisms enhancing the hydration kinetics of alite or Portland cement (e.g. the creation of nucleation sites) were already studied in literature (e.g. by using distinct additions such as titanium dioxide nanoparticles, calcium carbonate fillers, water-soluble polymers, C-S-H, etc.). However, the goal of this study was to establish a clear ranking of the efficiency of several types of additions by using a robust and reproducible methodology based on isothermal calorimetry (performed at 20°C). The cement was a CEM I 52.5N PM-ES (Blaine fineness of 455 m²/kg). To ensure the reproducibility of the experiments and avoid any decrease of the reactivity before use, the cement was stored in waterproof and sealed bags to avoid any contact with moisture and carbon dioxide. The experiments were performed on Portland cement pastes by using a water-to-cement ratio of 0.45, and incorporating different compounds (industrially available or laboratory-synthesized) that were selected according to their main composition and their specific surface area (SSA, calculated using the Brunauer-Emmett-Teller (BET) model and nitrogen adsorption isotherms performed at 77K). The intrinsic effects of (i) dry powders (e.g. fumed silica, activated charcoal, nano-precipitates of calcium carbonate, afwillite germs, nanoparticles of iron and iron oxides , etc.), and (ii) aqueous solutions (e.g. containing calcium chloride, hydrated Portland cement or Master X-SEED 100, etc.) were investigated. The influence of the amount of addition, calculated relatively to the dry extract of each addition compared to cement (and by conserving the same water-to-cement ratio) was also studied. The results demonstrated that the X-SEED®, the hydrated calcium nitrate, the calcium chloride (and, at a minor level, a solution of hydrated Portland cement) were able to accelerate the hydration kinetics of Portland cement, even at low concentration (e.g. 1%wt. of dry extract compared to cement). By using higher rates of additions, the fumed silica, the precipitated calcium carbonate and the titanium dioxide can also accelerate the hydration. In the case of the nano-precipitates of calcium carbonate, a correlation was established between the SSA and the accelerating effect. On the contrary, the nanoparticles of iron or iron oxides, the activated charcoal and the dried crystallised hydrates did not show any accelerating effect. Future experiments will be scheduled to establish the ranking of these additions, in terms of accelerating effect, by using low-reactivity cements and other water to cement ratios.

Keywords: acceleration, hydration kinetics, isothermal calorimetry, Portland cement

Procedia PDF Downloads 238
951 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking

Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed

Abstract:

Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.

Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy

Procedia PDF Downloads 308
950 The Potential of Extending the Shelf Life of Meat by Encapsulation with Red Clay

Authors: Onuoha Ogbonnaya Gideon, Ishaq Hafsah Yusuf

Abstract:

Introduction: Meat is a perishable food of good nutrition. Meat ranks among the most significant, nutritious, and favored food items available to most locals. It is a good source of protein (17-19%), depending on sources, and contains appreciable amounts of fat and moisture. However, it has a very short shelf life due mainly to its high moisture, fat, and other nutrient contents. Meat spoilage can result from microbial proliferation as well as inherent enzymes in the meat tissues. Bacteria contamination and permeability to both oxygen and water vapor are major concerns associated with spoilage of meat and its storage. Packaging is fundamental in the preservation and presentation of food. Red clay is a very common substance; hydrous aluminum phyllosilicate, sometimes with varying amounts of iron, magnesium, alkali metals, alkaline earth, and cation formed from sedimentary rocks. Furthermore, red clay is an extremely absorbent material and develops plasticity when wet due to the molecular film of water surrounding the clay particles but can become hard, impervious, brittle, and non-brittle and non-plastic when dry. In developing countries, the high cost of refrigeration technologies and most other methods of preserving meat are exorbitant and thus can be substituted with the less expensive and readily available red clay for the preservation of meat. Methodology: 1000g of lean meat was diced into cubes of 10g each. The sample was then divided into four groups labelled raw meat (RMC); raw in 10% brine solution (RMB), boiled meat (BMC), and fried meat (FMC). It was then encapsulated with 2mm thick red clay and then heated in a muffle furnace at a temperature of 600OC for 30min. The samples were kept on a bench top for 30 days, and a storage study was carried out. Results: Our findings showed a decrease in value during storage for the physiochemical properties of all the sample; pH values decreased [RMC (7.05-7.6), RMB (8.46-7.0), BMC (6.0-5.0), FMC (4.08-3.9)]; free fatty acid content decreased with storage time [RMC (32.6%-31%), RMB (30.2%-28.6%), BMC (30.5%-27.4%), FMC (25.6%-23.8%)]; total soluble solid value decreased [RMC16.20-15.07, RMB (17.22-16.04), BMC (17.05-15.54), FMC (15.3-14.9)]. Conclusion: This result shows that encapsulation with red clay reduced all the values analyzed and thus has the potential to extend the shelf life of stored meat.

Keywords: red clay, encapsulating, shelf life, physicochemical properties, lean meat

Procedia PDF Downloads 86
949 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures

Procedia PDF Downloads 435
948 Life Cycle Assessment of a Parabolic Solar Cooker

Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize

Abstract:

Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.

Keywords: life cycle assessement, solar concentration, cooking, sustainability

Procedia PDF Downloads 153
947 Effect of Micaceous Iron Oxide and Nanocrystalline Al on the Electrochemical Behavior of Aliphatic Amine Cured Epoxy Coating

Authors: Asiful H. Seikh, Jabair A. Mohammed, Ubair A. Samad, Mohammad A. Alam, Saeed M. Al-Zahrani, El-Sayed M. Sherif

Abstract:

Three coating formulations were fabricated by incorporating different percentages of MIO (micaceous iron oxide ) (1, 2, and wt%) with ball-milled nanocrystalline Al (2 wt%) particles, which was optimized earlier. These coatings were characterized by means of different methods, namely, SEM, TGA, pendulum hardness, scratch test, and nano-indentation. The EIS measurements were carried out to report the effect of adding MIO powder in fabricated coatings on their corrosion behavior in 3.5 wt% NaCl solutions. In order to report the effect of immersion time on the corrosion and degradation of the prepared coatings, the EIS data were also acquired after various exposure periods of time, i.e., 1 h, 7 d, 14 d, 21 d, and 30 d in the test chloride solution. It has been found that the obtained EIS data for the fabricated coatings proved that the presence of 2% MIO provided the highest corrosion resistance amongst all coatings and that effect was recorded after all immersion periods of time. But, the MIO-incorporated coatings have less corrosion resistance than Al based epoxy coatings. It was also shown that with prolonged immersion, the resistance to corrosion declined after 7d, then with a longer period of immersion, i.e. 14 d, 21 d, and 30 d increases the resistance to corrosion by forming oxide products on the coatings surface. The results obtained from both mechanical and electrochemical testing confirmed that the fabricated coating with 2 wt% Al exhibited better hardness and higher resistance to corrosion as compared to coatings with 1 wt% Al and 3 wt% Al.

Keywords: epoxy coatings, nanomaterials, corrosion resistance, EIS, nanoindentation

Procedia PDF Downloads 38
946 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 524
945 A Study of Basic and Reactive Dyes Removal from Synthetic and Industrial Wastewater by Electrocoagulation Process

Authors: Almaz Negash, Dessie Tibebe, Marye Mulugeta, Yezbie Kassa

Abstract:

Large-scale textile industries use large amounts of toxic chemicals, which are very hazardous to human health and environmental sustainability. In this study, the removal of various dyes from effluents of textile industries using the electrocoagulation process was investigated. The studied dyes were Reactive Red 120 (RR-120), Basic Blue 3 (BB-3), and Basic Red 46 (BR-46), which were found in samples collected from effluents of three major textile factories in the Amhara region, Ethiopia. For maximum removal, the dye BB-3 required an acidic pH 3, RR120 basic pH 11, while BR-46 neutral pH 7 conditions. BB-3 required a longer treatment time of 80 min than BR46 and RR-120, which required 30 and 40 min, respectively. The best removal efficiency of 99.5%, 93.5%, and 96.3% was achieved for BR-46, BB-3, and RR-120, respectively, from synthetic wastewater containing 10 mg L1of each dye at an applied potential of 10 V. The method was applied to real textile wastewaters and 73.0 to 99.5% removal of the dyes was achieved, Indicating Electrocoagulation can be used as a simple, and reliable method for the treatment of real wastewater from textile industries. It is used as a potentially viable and inexpensive tool for the treatment of textile dyes. Analysis of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope, and Fourier Transform Infrared Spectroscopy revealed the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) found in the sludge. The amorphous phase was also found in the floc. Textile industry owners should be aware of the impact of the discharge of effluents on the Ecosystem and should use the investigated electrocoagulation method for effluent treatment before discharging into the environment.

Keywords: electrocoagulation, aluminum electrodes, Basic Blue 3, Basic Red 46, Reactive Red 120, textile industry, wastewater

Procedia PDF Downloads 30
944 Geochemical Study of Claystone from Nunukan Island, North Kalimantan of Indonesia

Authors: Mutiara Effendi

Abstract:

Nunukan Island is located on North Kalimantan of Indonesia. The region is one of Indonesia’s cross-border with Malaysia. In conjunction with its strategic geographic location, its potential as the new oil and gas resources has brought many researchers to do their studies here. The research area consists of claystone which criss-crossed with quarts sandstone. There are also rocks claystone-grained which are the weathering product of basaltic volcanic rocks. In some places, there are argillic clays which are the hydrothermal-altered product of Sei Apok ancient volcano. Geochemical study was established to learn the origin of the claystones, whether it came from weathering, hydrothermal alteration, or both. The samples used in this research are fresh rock, weathering rocks, hydrothermally-altered rock, and claystones. Chemical compositions of each sample were determined and their relations was studied. The studies encompass major and minor elements analysis using X-Ray Fluoresence (XRF) method and trace elements analysis, specifically rare earth elements, using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) method. The results were plotted on certain graphics to learn about the trend and the relations of each sample and element. Any changes in chemical compositions, like increase and decrease of elements or species, was analysed to learn about geological phenomenon that happens during the formation of claystones. The result of this study shows that claystones of Nunukan Island have relation with volcanic rocks of its surrounding area. Its chemical composition profile corresponds to weathering product of volcanic rocks rather than hydrothermally-altered product. The general profile also resembles claystone minerals of illite or montmorillonite, especially in the existence of aluminum, iron, potassium, and magnesium. Both minerals are formed in basic condition and commonly happen to shales. It is consistent with the fact that claystone was found mixing with shales and silt to clay grained mudstones in field exploration. Even though the general profile is much alike, the amount of each elements is not precisely the same as theoretically claystone mineral compositions because the mineral have not formed completely yet.

Keywords: claystone, geochemistry, ICP-MS, XRF

Procedia PDF Downloads 220
943 Performance Assessment of Recycled Alum Sludge in the Treatment of Textile Industry Effluent in South Africa

Authors: Tony Ngoy Mbodi, Christophe Muanda

Abstract:

Textile industry is considered as one of the most polluting sectors in terms of effluent volume of discharge and wastewater composition, such as dye, which represents an environmental hazard when discharged without any proper treatment. A study was conducted to investigate the capability of the use of recycled alum sludge (RAS) as an alternative treatment for the reduction of colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH adjustment from dye based synthetic textile industry wastewater. The coagulation/flocculation process was studied for coagulants of Alum:RAS ratio of, 1:1, 2:1, 1:2 and 0:1. Experiments on treating the synthetic wastewater using membrane filtration and adsorption with corn cobs were also conducted. Results from the coagulation experiment were compared to those from adsorption with corn cobs and membrane filtration experiments conducted on the same synthetic wastewater. The results of the RAS experiments were also evaluated against standard guidelines for industrial effluents treated for discharge purposes in order to establish its level of compliance. Based on current results, it can be concluded that reusing the alum sludge as a low-cost material pretreatment method into the coagulation/flocculation process can offer some advantages such as high removal efficiency for disperse dye and economic savings on overall treatment of the industry wastewater.

Keywords: alum, coagulation/flocculation, dye, recycled alum sludge, textile wastewater

Procedia PDF Downloads 323
942 Dielectric Study of Lead-Free Double Perovskite Structured Polycrystalline BaFe0.5Nb0.5O3 Material

Authors: Vijay Khopkar, Balaram Sahoo

Abstract:

Material with high value of dielectric constant has application in the electronics devices. Existing lead based materials have issues such as toxicity and problem with synthesis procedure. Double perovskite structured barium iron niobate (BaFe0.5Nb0.5O3, BFN) is the lead-free material, showing a high value of dielectric constant. Origin of high value of the dielectric constant in BFN is not clear. We studied the dielectric behavior of polycrystalline BFN sample over wide temperature and frequency range. A BFN sample synthesis by conventional solid states reaction method and phase pure dens pellet was used for dielectric study. The SEM and TEM study shows the presence of grain and grain boundary region. The dielectric measurement was done between frequency range of 40 Hz to 5 MHz and temperature between 20 K to 500 K. At 500 K temperature and lower frequency, there observed high value of dielectric constant which decreases with increase in frequency. The dipolar relaxation follows non-Debye type polarization with relaxation straight of 3560 at room temperature (300 K). Activation energy calculated from the dielectric and modulus formalism found to be 17.26 meV and 2.74 meV corresponds to the energy required for the motion of Fe3+ and Nb5+ ions within the oxygen octahedra. Our study shows that BFN is the order disorder type ferroelectric material.

Keywords: barium iron niobate, dielectric, ferroelectric, non-Debye

Procedia PDF Downloads 120
941 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge

Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz

Abstract:

Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.

Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity

Procedia PDF Downloads 117
940 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection

Authors: Sami Khan, Kripa Varanasi

Abstract:

Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.

Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces

Procedia PDF Downloads 116
939 Double Beta Decay Experiments in Novi Sad

Authors: Nataša Todorović, Jovana Nikolov

Abstract:

Despite the great interest in β⁻β⁻ decay, β⁺β⁺ decays are rarely investigated due to the low probability of detecting these processes with available low-level equipment. If β⁺β⁺, β⁺EC, or ECEC decay occurs in a thin sample of a material, the positrons will be stopped and annihilated inside the material, leading to the emission of two or four coincidence gamma photons energy of 511 keV. The paper presents the results of measurements of double beta decay of ⁶⁴Zn, ⁵⁰Cr, and ⁵⁴Fe isotopes. In the first experiment, 511-keV gamma rays originating from the annihilation of positrons in natural zinc were measured by a coincidence technique to obtain a non-zero value for the (0ν+2ν) half-life. In the second experiment, the result of measuring double beta decay of ⁵⁰Cr is presented, which suggests a result other than zero at 95% CL and gives the lowest limit for the half-life of this process. In the third experiment, neutrino-less ECEC decay of ⁵⁴Fe was examined. Under the decay theory, gamma rays are emitted whose energy does not coincide with the energies of gamma rays emitted by nuclei from known discrete excited states. Iron shield of an internal volume of 1 m³ and thickness of 25 cm served as a source for measuring the (0ν+2ν) process in ⁵⁴Fe, whose yield in natural iron is 5.4%. We obtain the lower limit for the half-life for ⁵⁴Fe: T(0ν, K, K)>4.4x10²⁰ yr, T(0ν, K, L)>4.1x10²⁰ yr, and T(0ν, L, L)>5.0x10²⁰ yr. For ⁵⁰Cr limit for the half-life is T(0ν+2ν)>1.3(6)x10¹⁸ yr, and for ⁶⁴Zn T(0ν+2ν, ECβ+)=1.1(0.9)x10⁹ years.

Keywords: neutrinoless double beta decay, half-life, ⁶⁴Zn, ⁵⁰Cr, and, ⁵⁴Fe

Procedia PDF Downloads 90
938 Device for Reversible Hydrogen Isotope Storage with Aluminum Oxide Ceramic Case

Authors: Igor P. Maximkin, Arkady A. Yukhimchuk, Victor V. Baluev, Igor L. Malkov, Rafael K. Musyaev, Damir T. Sitdikov, Alexey V. Buchirin, Vasily V. Tikhonov

Abstract:

Minimization of tritium diffusion leakage when developing devices handling tritium-containing media is key problems whose solution will at least allow essential enhancement of radiation safety and minimization of diffusion losses of expensive tritium. One of the ways to solve this problem is to use Al₂O₃ high-strength non-porous ceramics as a structural material of the bed body. This alumina ceramics offers high strength characteristics, but its main advantages are low hydrogen permeability (as against the used structural material) and high dielectric properties. The latter enables direct induction heating of an hydride-forming metal without essential heating of the pressure and containment vessel. The use of alumina ceramics and induction heating allows: - essential reduction of tritium extraction time; - several orders reduction of tritium diffusion leakage; - more complete extraction of tritium from metal hydrides due to its higher heating up to melting in the event of final disposal of the device. The paper presents computational and experimental results for the tritium bed designed to absorb 6 liters of tritium. Titanium was used as hydrogen isotope sorbent. Results of hydrogen realize kinetic from hydride-forming metal, strength and cyclic service life tests are reported. Recommendations are also provided for the practical use of the given bed type.

Keywords: aluminum oxide ceramic, hydrogen pressure, hydrogen isotope storage, titanium hydride

Procedia PDF Downloads 384
937 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 28
936 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 231
935 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure

Authors: B. Hekner, J. Myalski, P. Wrzesniowski

Abstract:

This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.

Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application

Procedia PDF Downloads 99