Search results for: feed processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4775

Search results for: feed processing

4175 Effect of Replacing Maize with Acha Offal in Broiler Chicken Diets on Performance, Haematology and Serum Biochemicals

Authors: Sudik S. D., Raymon J. B., Maidala A., Lawan A., Bagudu I. A.

Abstract:

An experiment was conducted with 240 Abor Acre broilers to determine the effect of replacing maize with acha offal (Digitaria exilis) on performance, haematology, and serum biochemical. Chicks were allotted to six diets (T1, T2, T3, T4, T5, and T6) with acha offal (AO) at 0.0%, 5.0%, 7.5%, 10.0%, 12.5% and 15.0% respectively as replacement of maize with 4 replicates consisting of 10 birds per replicate in a completely randomized design. They were allowed ad libitum accessed to feed and water throughout a 42 days experiment. The results showed that at the starter phase, only feed conversion ratio (FCR) was significantly affected (p < 0.05). Chicks fed T5 had best FCR more than those fed T1 while those fed T2, T3, T4, and T6 had similar FCR comparable with T1. At the finisher stage, final weight (FW), total weight change (TWC), average daily gain (ADG), and FCR were significantly affected (p < 0.05). Chickens fed T3, T4, T5, and T6 had similar FW, TWC, and ADG and higher than those fed T1; those fed T2 had similar FW, TWG, and DWG with T1. Chickens fed T6 had best FCR, followed by those fed T3, T4, and T5, while those T2 had worse FCR similar with those fed T1. Eviscerated weight was significantly affected (p < 0.05) by treatment. Birds fed T4, T5, and T6 had higher eviscerated weight followed by T3 while those fed T2 had least eviscerated weight comparable with those fed T1. The entire organs (Gizzard, heart, kidneys, liver, lungs, pancreas, and proventriculus) were not significantly affected (p > 0.05) by treatments. Packed cell volume (PCV) and red blood cell (RBC) were significantly (p < 0.05) affected by treatment. Birds fed T4, T5, and T6 had higher and similar PCV and RBC with those fed T1 while those fed T2 and T3 had lower PCV and RBC. The entire serum metabolites were not significantly affected (p > 0.05) by treatments. In conclusion, acha offal can replace maize in starter and finisher broilers’ diets at 12.5% and 15.0%, respectively, without an adverse effect.

Keywords: broiler, acha offal, maize, performance, eviscerated, haematology, serum

Procedia PDF Downloads 152
4174 Automatic Processing of Trauma-Related Visual Stimuli in Female Patients Suffering From Post-Traumatic Stress Disorder after Interpersonal Traumatization

Authors: Theresa Slump, Paula Neumeister, Katharina Feldker, Carina Y. Heitmann, Thomas Straube

Abstract:

A characteristic feature of post-traumatic stress disorder (PTSD) is the automatic processing of disorder-specific stimuli that expresses itself in intrusive symptoms such as intense physical and psychological reactions to trauma-associated stimuli. That automatic processing plays an essential role in the development and maintenance of symptoms. The aim of our study was, therefore, to investigate the behavioral and neural correlates of automatic processing of trauma-related stimuli in PTSD. Although interpersonal traumatization is a form of traumatization that often occurs, it has not yet been sufficiently studied. That is why, in our study, we focused on patients suffering from interpersonal traumatization. While previous imaging studies on PTSD mainly used faces, words, or generally negative visual stimuli, our study presented complex trauma-related and neutral visual scenes. We examined 19 female subjects suffering from PTSD and examined 19 healthy women as a control group. All subjects did a geometric comparison task while lying in a functional-magnetic-resonance-imaging (fMRI) scanner. Trauma-related scenes and neutral visual scenes that were not relevant to the task were presented while the subjects were doing the task. Regarding the behavioral level, there were not any significant differences between the task performance of the two groups. Regarding the neural level, the PTSD patients showed significant hyperactivation of the hippocampus for task-irrelevant trauma-related stimuli versus neutral stimuli when compared with healthy control subjects. Connectivity analyses revealed altered connectivity between the hippocampus and other anxiety-related areas in PTSD patients, too. Overall, those findings suggest that fear-related areas are involved in PTSD patients' processing of trauma-related stimuli even if the stimuli that were used in the study were task-irrelevant.

Keywords: post-traumatic stress disorder, automatic processing, hippocampus, functional magnetic resonance imaging

Procedia PDF Downloads 198
4173 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: gendered grammar, misogynistic language, natural language processing, neural networks

Procedia PDF Downloads 120
4172 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 180
4171 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels

Authors: Martin Elstner

Abstract:

Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.

Keywords: bioanalytics, hydrogels, information processing, microvalve

Procedia PDF Downloads 309
4170 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 237
4169 Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal

Authors: Rana Bilal, Faiz-Ul-Hassan, Moazzam Jameel

Abstract:

There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.

Keywords: egg quality, immunity, layers, performance

Procedia PDF Downloads 233
4168 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 57
4167 Neural Rendering Applied to Confocal Microscopy Images

Authors: Daniel Li

Abstract:

We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.

Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing

Procedia PDF Downloads 658
4166 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 466
4165 Effect of Many Levels of Undegradable Protein on Performance, Blood Parameters, Colostrum Composition and Lamb Birth Weight in Pregnant Ewes

Authors: Maria Magdy Danial Riad

Abstract:

The objective of this study was to investigate the effect of different protein sources with different degradability ratios during late gestation of ewes on colostrum composition and its IgG concentration, body weight change of dams, and birth weight of their lambs. Objectives: 35 multiparous native crossbred ewes (BW= 59±2.5kg) were randomly allocated to five dietary treatments (7 ewes / treatment) for 2 months prior to lambing. Methods: Experimental diets were isonitrogenous (12.27% CP) and isocaloric (2.22 Mcal ME/kg DM). In diet I (the control), solvent extract soybeans (SESM 33% RUP of CP), II feed grade urea (FGU 31% RUP), III slow release urea (SRU 31% RUP). As sources of undegradable protein, extruded expeller SBM-EESM 40 (37% RUP) and extruded expeller SBM-EESM 60 (41% RUP) were used in groups IV and V, respectively. Results showed no significant effect on feed intake, crude protein (CP), metabolizable energy (ME), and body condition score (BCS). Ewes fed the 37% RUP diet gained more (p<0.05) weight compared with ewes fed the 31% RUP diet (5.62 vs. 2.5kg). Ewes in EESM 60 had the highest levels of fat, protein, total solid, solid not fat, and immunoglobulin and the lowest in urea N content (P< 0.05) in colostrum during the first 24hrs after lambing. Conclusions: Protein source and RUP levels in ewes’ diets had no significant effect (P< 0.05) on lambs’ birth weight and ewes' blood biochemical parameters. Increasing the RUP content of diet during late gestation resulted in an increase in colostrum constituents and its IgG level but had no effect on ewes’ performance and their lambs’ outcome.

Keywords: colostrum, ewes, lambs output, pregnancy, undegradable protein

Procedia PDF Downloads 50
4164 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 224
4163 Xylanase Impact beyond Performance: A Prebiotic Approach in Laying Hens

Authors: Veerle Van Hoeck, Ingrid Somers, Dany Morisset

Abstract:

Anti-nutritional factors such as non-starch polysaccharides (NSP) are present in viscous cereals used to feed poultry. Therefore, exogenous carbohydrases are commonly added to monogastric feed to degrade these NSP. Our hypothesis is that xylanase not only improves laying hen performance and digestibility but also induces a significant shift in microbial composition within the intestinal tract and, thereby, can cause a prebiotic effect. In this context, a better understanding of whether and how the chicken gut flora can be modulated by xylanase is needed. To do so, in the herein laying hen study, the effects of dietary supplementation of xylanase on performance, digestibility, and cecal microbiome were evaluated. A total of 96 HiSex laying hens was used in this experiment (3 diets and 16 replicates of 2 hens). Xylanase was added to the diets at concentrations of 0, 45,000 (15 g/t XygestTM HT) and 90,000 U/kg (30 g/t Xygest HT). The diets were based on wheat (~55 %), soybean, and sunflower meal. The lowest dosage, 45,000 U/kg, significantly increased average egg weight and improved feed efficiency compared to the control treatment (p < 0.05). Egg quality parameters were significantly improved in the experiment in response to the xylanase addition. For example, during the last 28 days of the trial, the 45,000 U/kg and the 90,000 U/kg treatments exhibited an increase in Haugh units and albumin heights (p < 0.05). Compared with the control, organic matter digestibility and N retention were drastically improved in the 45,000 U/kg treatment group, which implies better nutrient digestibility at this lowest recommended dosage compared to the control (p < 0.05). Furthermore, gross energy and crude fat digestibility were improved significantly for birds fed 90,000 U/kg group compared to the control. Importantly, 16S rRNA gene analysis revealed that xylanase at 45,000 U/kg dosages can exert a prebiotic effect. This conclusion was drawn based on studying the sequence variation in the 16S rRNA gene in order to characterize diverse microbial communities of the cecal content. A significant increase in beneficial bacteria (Lactobacilli spp and Enterococcus casseliflavus) was documented when adding 45,000 U/kg xylanase to the diet of laying hens. In conclusion, dietary supplementation of xylanase, even at the lowest dose of (45,000 U/kg), significantly improved laying hen performance and digestibility. Furthermore, it is generally accepted that a proper bacterial balance between the number of beneficial bacteria and pathogenic bacteria in the intestine is vital for the host. It seems that the xylanase enzyme is able to modulate the laying hen microbiome beneficially and thus exerts a prebiotic effect. This microbiome plasticity in response to the xylanase provides an attractive target for stimulating intestinal health.

Keywords: laying hen, prebiotic, XygestTM HT, xylanase

Procedia PDF Downloads 128
4162 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic

Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony

Abstract:

The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.

Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight

Procedia PDF Downloads 74
4161 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms

Authors: Samantha Rix

Abstract:

The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.

Keywords: cognitive processing, language learners, language proficiency, learning strategies

Procedia PDF Downloads 475
4160 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang

Abstract:

Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Keywords: antitrypsin, gamma anti-nutritional components, phytic acid, radiation

Procedia PDF Downloads 343
4159 Sustainable Development: Soil Conservation with Cultivation of Cassava (Manihot esculenta) Based on Local Wisdom

Authors: Adiyasa Muda Zannatan

Abstract:

Cassava (Manihot esculenta) is a plant originating from Brazil. Cassava plants categorized as sixth major food in the world after wheat, rice, corn and potatoes. It has been cultivated on hilly land for 97 years since 1918 at Cireundeu village, West Java Province, Indonesia. Cireundeu traditional village located in the mountain valleys and has a hilly slope up to 38%. Cassava is used as the primary food in that area. Uniquely, Cassava productivity is stable and continues until now. The assessment of soil quality is taking soil samples in the area and analysis the soil in laboratory. The result of analysis that soil in the area is not degraded because it has optimum nutrient, organic matter, and high value of cation exchange capacity in soil even though it has been cultivated in scarp with high slope. Commonly, soil on scarp with high slope has a high rate erosion and poor nutrient. It proved that cassava is able to be an alternative technique of soil conservation in the areas that have a high slope. Beside that, cassava can be utilized as a plant food, feed, fertilizer, and energy. With the utilization of Cassava, the target of Sustainable Development Goals (SDG's) will be achieved with consideration three important components include economy, social, and environment. In economy, Cassava can to be the commercial product like processed food, feed, and alternative energy. In social, it will increase social welfare and will be hereditary. And for environment, Cassava prevents soil from erosion and keeps soil quality.

Keywords: Cassava, local wisdom, conservation, soil quality, sustainable

Procedia PDF Downloads 297
4158 Analyzing the Risk Based Approach in General Data Protection Regulation: Basic Challenges Connected with Adapting the Regulation

Authors: Natalia Kalinowska

Abstract:

The adoption of the General Data Protection Regulation, (GDPR) finished the four-year work of the European Commission in this area in the European Union. Considering far-reaching changes, which will be applied by GDPR, the European legislator envisaged two-year transitional period. Member states and companies have to prepare for a new regulation until 25 of May 2018. The idea, which becomes a new look at an attitude to data protection in the European Union is risk-based approach. So far, as a result of implementation of Directive 95/46/WE, in many European countries (including Poland) there have been adopted very particular regulations, specifying technical and organisational security measures e.g. Polish implementing rules indicate even how long password should be. According to the new approach from May 2018, controllers and processors will be obliged to apply security measures adequate to level of risk associated with specific data processing. The risk in GDPR should be interpreted as the likelihood of a breach of the rights and freedoms of the data subject. According to Recital 76, the likelihood and severity of the risk to the rights and freedoms of the data subject should be determined by reference to the nature, scope, context and purposes of the processing. GDPR does not indicate security measures which should be applied – in recitals there are only examples such as anonymization or encryption. It depends on a controller’s decision what type of security measures controller considered as sufficient and he will be responsible if these measures are not sufficient or if his identification of risk level is incorrect. Data protection regulation indicates few levels of risk. Recital 76 indicates risk and high risk, but some lawyers think, that there is one more category – low risk/now risk. Low risk/now risk data processing is a situation when it is unlikely to result in a risk to the rights and freedoms of natural persons. GDPR mentions types of data processing when a controller does not have to evaluate level of risk because it has been classified as „high risk” processing e.g. processing on a large scale of special categories of data, processing with using new technologies. The methodology will include analysis of legal regulations e.g. GDPR, the Polish Act on the Protection of personal data. Moreover: ICO Guidelines and articles concerning risk based approach in GDPR. The main conclusion is that an appropriate risk assessment is a key to keeping data safe and avoiding financial penalties. On the one hand, this approach seems to be more equitable, not only for controllers or processors but also for data subjects, but on the other hand, it increases controllers’ uncertainties in the assessment which could have a direct impact on incorrect data protection and potential responsibility for infringement of regulation.

Keywords: general data protection regulation, personal data protection, privacy protection, risk based approach

Procedia PDF Downloads 252
4157 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO

Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky

Abstract:

The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.

Keywords: aeronautics, big data, data processing, machine learning, S1000D

Procedia PDF Downloads 156
4156 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov

Abstract:

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes.

Keywords: iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing

Procedia PDF Downloads 486
4155 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 222
4154 Species Diversity of Coleoptera (Insecta: Coleoptera) Damaging Saxaul (Chenopodiáceae: Haloxylon spp.) in the Deserts Area of South-East Kazakhstan

Authors: B. Mombayeva

Abstract:

In the deserts area of south east of Kazakhstan, 16 species of Coleoptera from 6 families and 12 genus of insects damaging Saxaul have been revealed. The vast number of species belong to the Cerambycidae familyCapricorn Beetle (4 species) and Hemlock Borer of Melanophila genus and 3 species of weevils and flea-beetles, and 1 species of coctsinelids and carrion beetle. Some of them cause appreciable harm, and sometimes very heavy damageto saxaul. According to food specialization they are divided into polyphages and - oligophages. According to the confinement to saxaul parts, registered beetles insects mainly feed on generative parts (11 species) and leaves (5 species). 9 species from them feed on roots, leaves and generative organs. They are scarablike beetle’s larvae (Apatophysismongolica Semenov., Tursmenigenavarentzovi Melg., Phytoecia (Opsilla) coerulescens Scopoli., Apatophysismongolica Semenov.), Jewel beetles (Julodis (s. Str.) Variolaris (Pallas), Sphenoptera (s. Str.) cuprina Motschulsky, S. (s. str.) exarata (Fischer), SphenopterapotaniniJak.) and some weevil (Barisartemisiae Hbst.). The larvae eat the roots and the imago - generative organs. Their feeding noticeably has its effect on the condition of saxaul. Beetles also slightlygnaw vegetative organs of plants. Among the harmful species the desert Capricorn Beetle Julodisvariolaris (Pallas) deserved attention. Its larvae live in the soil and cause harm to the roots of Saxaul and other pasture plants. In addition, the larvae of Sphenopterapotanini, S.punctatissima colonize the roots, trunk and branches of Haloxylon. In the spring Saxaul flowers are much damaged by Ladybeetle Bulaealichatchovi.

Keywords: saxaul, coleoptera, insecta, haloxylon

Procedia PDF Downloads 256
4153 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality

Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye

Abstract:

When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.

Keywords: word embeddings, k-mer embedding, dimensionality reduction

Procedia PDF Downloads 137
4152 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 173
4151 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 161
4150 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar

Abstract:

The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 331
4149 Effect of L-Dopa on Performance and Carcass Characteristics in Broiler Chickens

Authors: B. R. O. Omidiwura, A. F. Agboola, E. A. Iyayi

Abstract:

Pure form of L-Dopa is used to enhance muscular development, fat breakdown and suppress Parkinson disease in humans. However, the L-Dopa in mucuna seed, when present with other antinutritional factors, causes nutritional disorders in monogastric animals. Information on the utilisation of pure L-Dopa in monogastric animals is scanty. Therefore, effect of L-Dopa on growth performance and carcass characteristics in broiler chickens was investigated. Two hundred and forty one-day-old chicks were allotted to six treatments, which consisted of a positive control (PC) with standard energy (3100Kcal/Kg) and negative control (NC) with high energy (3500Kcal/Kg). The rest 4 diets were NC+0.1, NC+0.2, NC+0.3 and NC+0.4% L-Dopa, respectively. All treatments had 4 replicates in a completely randomized design. Body weight gain, final weight, feed intake, dressed weight and carcass characteristics were determined. Body weight gain and final weight of birds fed PC were 1791.0 and 1830.0g, NC+0.1% L-Dopa were 1827.7 and 1866.7g and NC+0.2% L-Dopa were 1871.9 and 1910.9g respectively, and the feed intake of PC (3231.5g), were better than other treatments. The dressed weight at 1375.0g and 1357.1g of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than other treatments. Also, the thigh (202.5g and 194.9g) and the breast meat (413.8g and 410.8g) of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than birds fed other treatments. The drum stick of birds fed NC+0.1% L-Dopa (220.5g) was observed to be better than birds on other diets. Meat to bone ratio and relative organ weights were not affected across treatments. L-Dopa extract, at levels tested, had no detrimental effect on broilers, rather better bird performance and carcass characteristics were observed especially at 0.1% and 0.2% L-Dopa inclusion rates. Therefore, 0.2% inclusion is recommended in diets of broiler chickens for improved performance and carcass characteristics.

Keywords: broilers, carcass characteristics, l-dopa, performance

Procedia PDF Downloads 309
4148 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear

Procedia PDF Downloads 298
4147 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 13
4146 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 237