Search results for: experimental theater
6742 Experimental Study of a Solar Still with Four Glass Cover
Authors: Zakaria Haddad, Azzedine Nahoui, Mohamed Salmi, Ali Djagham
Abstract:
Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still.Keywords: drinking water, four glass cover, production, solar distillation
Procedia PDF Downloads 1376741 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel
Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn
Abstract:
Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method
Procedia PDF Downloads 4806740 Experimental and Numerical Studies on Earthquake Shear Rupture Generation
Authors: Louis N. Y. Wong
Abstract:
En-echelon fractures are commonly found in rocks, which appear as a special set of regularly oriented and spaced fractures. By using both experimental and numerical approaches, this study investigates the interaction among them, and how this interaction finally contributes to the development of a shear rupture (fault), especially in brittle natural rocks. Firstly, uniaxial compression tests are conducted on marble specimens containing en-echelon flaws. The latter is cut by using the water abrasive jet into the rock specimens. The fracturing processes of these specimens leading to the formation of a fault are observed in detail by the use of a high speed camera. The influences of the flaw geometry on the production of tensile cracks and shear cracks, which in turn dictate the coalescence patterns of the entire set of en-echelon flaws are comprehensively studied. Secondly, a numerical study based on a recently developed contact model, flat-joint contact model using the discrete element method (DEM) is carried out to model the present laboratory experiments. The numerical results provide a quantitative assessment of the interaction of en-echelon flaws. Particularly, the evolution of the stress field, as well as the characteristics of new crack initiation, propagation and coalescence associated with the generation of an eventual shear rupture are studied in detail. The numerical results are found to agree well with the experimental results obtained in both microscopic and macroscopic observations.Keywords: discrete element method, en-echelon flaws, fault, marble
Procedia PDF Downloads 2556739 Effect of Fiber Orientation on Dynamic Properties of Carbon-Epoxy Composite Laminate under Flexural Vibration
Authors: Bahlouli Ahmed, Bentalab Nourdin, Nigrou Mourad
Abstract:
This study was aimed at investigating the effect of orientation fiber reinforced on dynamic properties of laminate composite FRP. An experimental investigation is implemented using an impulse technique. The various specimens are excited in free vibration by the use of bi-channel Analyzer. The experimental results are compared by model of finite element analysis using ANSYS. The results studies (natural frequencies measurements, vibration mode, dynamic modulus and damping ratio) show that the effects of significant parameters such as lay-up and stacking sequence, boundary conditions and excitation place of accelerometer. These results are critically examined and discussed. The accuracy of these results is demonstrated by comparing results with those available in the literature.Keywords: natural frequency, damping ratio, laminate composite, dynamic modulus
Procedia PDF Downloads 3606738 Durability Aspects of Recycled Aggregate Concrete: An Experimental Study
Authors: Smitha Yadav, Snehal Pathak
Abstract:
Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.Keywords: compressive strength, recycled aggregate, shrinkage, rapid chloride permeation test, modulus of elasticity, water permeability
Procedia PDF Downloads 3156737 Effects of Practical Activities on Performance among Biology Students in Zaria Education Zone, Kaduna State Nigeria
Authors: Abdullahi Garba
Abstract:
The study investigated the effects of practical activities on performance among biology students in Zaria education zone, Kaduna State, Nigeria. The population consists of 18 public schools in the Zaria Education Zone with a total number of 4,763 students. A random sample of 115 students was selected from the population in the study area. The study design was quasi-experimental, which adopted the pre-test, post-test experimental, and control group design. The experimental group was exposed to practical activities, while the control group was taught with the lecture method. A validated instrument, a biology performance test (BPT) with a reliability coefficient of 0.82, was used to gather data which were analyzed using a t-test and paired sample t-test. Two research questions and hypotheses guided the study. The hypotheses were tested at p≤0.05 level of significance. Findings revealed that: there was a significant difference in the academic performance of students exposed to practical activities compared to their counterparts; there was no significant difference in performance between male and female Biology students exposed to practical activities. The recommendation given was that practical activities should be encouraged in the teaching and learning of Biology for better understanding. The Federal and State Ministry of Education should sponsor biology teachers for training and retraining of teachers to improve the academic performance of students in the subject.Keywords: biology, practical, activity, performance
Procedia PDF Downloads 806736 Antiinflammatory and Antinociceptive of Hydro Alcoholic Tanacetum balsamita L. Extract
Authors: S. Nasri, G. H. Amin, A. Azimi
Abstract:
The use of herbs to treat disease is accompanied with the history of human life. This research is aimed to study the anti-inflammatory and antinociceptive effects of hydroalcoholic extract of aerial parts of "Tanacetum balsamita balsamita". In the experimental studies 144 male mice are used. In the inflammatory test, animals were divided into six groups: Control, positive control (receiving Dexamethason at dose of 15mg/kg), and four experimental groups receiving Tanacetum balsamita balsamita hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. Xylene was used to induce inflammation. Formalin was used to study the nociceptive effects. Animals were divided into six groups: control group, positive control group (receiving morphine) and four experimental groups receiving Tanacetum balsamita balsamita (Tb.) hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. I.p. injection of drugs or normal saline was performed 30 minutes before test. The data were analyzed by using one way Variance analysis and Tukey post-test. Aerial parts of Tanacetum balsamita balsamita hydroalcoholic extract decreased significantly inflammatory at dose of 200mg/kg (P<0/001) and caused a significant decrease and alleviated the nociception in both first and second phases at doses of 200mg/kg (p<0/001) and 100mg/kg (P<0/05). Tanacetum balsamita balsamita extract has the anti-inflammatory and anti-nociceptive effects which seems to be related with flavonoids especially Quercetin.Keywords: inflammation, nociception, hydroalcoholic extract, aerial parts of Tanacetum balsamita balsamita L.
Procedia PDF Downloads 1996735 Influence of Decolourisation Condition on the Physicochemical Properties of Shea (Vitellaria paradoxa Gaertner F) Butter
Authors: Ahmed Mohammed Mohagir, Ahmat-Charfadine Mahamat, Nde Divine Bup, Richard Kamga, César Kapseu
Abstract:
In this investigation, kinetics studies of adsorption of colour material of shea butter showed a peak at the wavelength 440 nm and the equilibrium time was found to be 30 min. Response surface methodology applying Doehlert experimental design was used to investigate decolourisation parameters of crude shea butter. The decolourisation process was significantly influenced by three independent parameters: contact time, decolourisation temperature and adsorbent dose. The responses of the process were oil loss, acid value, peroxide value and colour index. Response surface plots were successfully made to visualise the effect of the independent parameters on the responses of the process.Keywords: decolourisation, doehlert experimental design, physicochemical characterisation, RSM, shea butter
Procedia PDF Downloads 4156734 Turbine Engine Performance Experimental Tests of Subscale UAV
Authors: Haluk Altay, Bilal Yücel, Berkcan Ulcay, Yücel Aydın
Abstract:
In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine.Keywords: jet engine, UAV, experimental test, loadcell, thrust, fuel consumption
Procedia PDF Downloads 806733 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor
Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday
Abstract:
This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor
Procedia PDF Downloads 866732 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions
Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez
Abstract:
In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.Keywords: hard disk drive, energy harvesting, voice coil motor, energy harvester, gait motions
Procedia PDF Downloads 3506731 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe
Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman
Abstract:
This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field
Procedia PDF Downloads 2636730 An Empirical Study on the Integration of Listening and Speaking Activities with Writing Instruction for Middles School English Language Learners
Authors: Xueyan Hu, Liwen Chen, Weilin He, Sujie Peng
Abstract:
Writing is an important but challenging skill For English language learners. Due to the small amount of time allocated for writing classes at schools, students have relatively few opportunities to practice writing in the classroom. While the practice of integrating listening and speaking activates with writing instruction has been used for adult English language learners, its application for young English learners has seldom been examined due to the challenge of listening and speaking activities for young English language learners. The study attempted to integrating integrating listening and speaking activities with writing instruction for middle school English language learners so as to improving their writing achievements and writing abilities in terms of the word use, coherence, and complexity in their writings. Guided by Gagne's information processing learning theory and memetics, this study conducted a 8-week writing instruction with an experimental class (n=44) and a control class (n=48) . Students in the experimental class participated in a series of listening and retelling activities about a writing sample the teacher used for writing instruction during each period of writing class. Students in the control class were taught traditionally with teachers’ direction instruction using the writing sample. Using the ANCOVA analysis of the scores of students’ writing, word-use, Chinese-English translation and the text structure, this study showed that the experimental writing instruction can significantly improve students’ writing performance. Compared with the students in the control class, the students in experimental class had significant better performance in word use and complexity in their essays. This study provides useful enlightenment for the teaching of English writing for middle school English language learners. Teachers can skillfully use information technology to integrate listening, speaking, and writing teaching, considering students’ language input and output. Teachers need to select suitable and excellent composition templates for students to ensure their high-quality language input.Keywords: wring instruction, retelling, English language learners, listening and speaking
Procedia PDF Downloads 826729 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 1326728 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force
Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak
Abstract:
In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity
Procedia PDF Downloads 2396727 Cable Diameter Effect on the Contact Temperature of Power Automotive Connector
Authors: Amine Beloufa, Mohamed Amirat
Abstract:
In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected.Keywords: contact temperature, experimental test, finite element, power automotive connector
Procedia PDF Downloads 2636726 Innovative Approaches to Formal Education: Effect of Online Cooperative Learning Embedded Blended Learning on Student's Academic Achievement and Attitude
Authors: Mohsin Javed
Abstract:
School Education department is usually criticized for utilizing quite low or fewer academic days due to many reasons like extreme weather conditions, sudden holidays, summer vocations, pandemics and, terrorism etc. The purpose of the experimental study was to determine the efficacy of online cooperative learning (OCL) integrated in the rotation model of blended learning. The effects on academic achievement of students and students' attitude about OCL embedded learning were assessed. By using a posttest only control group design, sixty-two first-year students were randomly allocated to either the experimental (30) or control (32) group. The control group received face to face classes for six sessions per week, while the experimental group had three OCL and three formal sessions per week under rotation model. Students' perceptions of OCL were evaluated using a survey questionnaire. Data was analyzed by independent sample t test and one sample t test. According to findings, the intervention greatly improved the state of the dependent variables. The results demonstrate that OCL can be successfully implemented in formal education using a blended learning rotation approach. Higher secondary institutions are advised to use this model in situations like Covid 19, smog, unexpected holidays, instructor absence from class due to increased responsibilities, and summer vacations.Keywords: blended learning, online cooperative learning, rotation model of blended learning, supplementing
Procedia PDF Downloads 596725 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams
Authors: Woo-Young Jung, Minho Kwon
Abstract:
Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete
Procedia PDF Downloads 3516724 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes
Authors: M. J. San José, S. Alvarez, R. López
Abstract:
In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.Keywords: biomass wastes, thermal combustion, conical spouted beds, vineyard wastes
Procedia PDF Downloads 1996723 Hydrogen Production Using Solar Energy
Authors: I. M. Sakr, Ali M. Abdelsalam, K. A. Ibrahim, W. A. El-Askary
Abstract:
This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the rate of hydrogen production increases using the polymeric membrane installed between the electrodes. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. Smaller gaps between the pair of electrodes are demonstrated to produce higher rates of hydrogen with higher system efficiency.Keywords: hydrogen production, water electrolysis, solar energy, concentration
Procedia PDF Downloads 3786722 Calibration of the Discrete Element Method Using a Large Shear Box
Authors: C. J. Coetzee, E. Horn
Abstract:
One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out
Procedia PDF Downloads 2916721 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives
Authors: Z. Bayat
Abstract:
A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.Keywords: DFT, adamantane, QSAR, Kovat
Procedia PDF Downloads 3666720 Distributed Real-time Framework for Experimental Multi Aerial Robotic Systems
Authors: Samuel Knox, Verdon Crann, Peyman Amiri, William Crowther
Abstract:
There exists a shortage of open-source firmware for allowing researchers to focus on implementing high-level planning and control strategies for multi aerial robotic systems in simulation and experiment. Within this body of work, practical firmware is presented, which performs all supplementary tasks, including communications, pre and post-experiment procedures, and emergency safety measures. This allows researchers to implement high-level planning and control algorithms for path planning, traffic management, flight formation and swarming of aerial robots. The framework is built in Python using the MAVSDK library, which is compatible with flight controllers running PX4 firmware and onboard computers based on Linux. Communication is performed using Wi-Fi and the MQTT protocol, currently implemented using a centralized broker. Finally, a graphical user interface (GUI) has been developed to send general commands and monitor the agents. This framework enables researchers to prepare customized planning and control algorithms in a modular manner. Studies can be performed experimentally and in simulation using PX4 software in the loop (SITL) and the Gazebo simulator. An example experimental use case of the framework is presented using novel distributed planning and control strategies. The demonstration is performed using off-the-shelf components and minimal setup.Keywords: aerial robotics, distributed framework, experimental, planning and control
Procedia PDF Downloads 1126719 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6436718 זכור (Remember): An Analysis of Art as a Reflection of Sexual and Gendered Violence against Jewish Women during the Pogroms (1919-1920S) And the Nazi Era (1933-1943)
Authors: Isabella B. Davidman
Abstract:
Violence used against Jewish women in both the Eastern European pogroms and during the Nazi era was specifically gendered, targeting their female identity and dignity of womanhood. Not only did these acts of gendered violence dehumanize Jewish women, but they also hurt the Jewish community as a whole. The devastating sexual violence that women endured during the pogroms and the Nazi era caused profound trauma. Out of shame and fear, silence about women’s experiences of sexual abuse manifests in forms that words cannot translate. Women have turned to art and other means of storytelling to convey their female experiences in visual and non-verbal ways. Therefore, this paper aims to address the historical accounts of gendered violence against Jewish women during the pogroms and Nazi era, as well as art that reflects upon the female experience, in order to understand the emotional impact resulting from these events. To analyze the artwork, a feminist analysis was used to understand the intersection of gender with the other systems of inequality, such as systemic anti-semitism, in women’s lives; this ultimately explained the ways in which cultural productions undermine and reinforce the political and social oppression of women by exploring how art confronts the exploitation of women's bodies. By analyzing the art in the context of specific acts of violence, such as public rape, as a strategic weapon, we are able to understand women’s experiences and how these experiences, in turn, challenged their womanhood. Additionally, these atrocities, which often occurred in the public space, were dismissed and forgotten due to the social stigma of rape. In this sense, the experiences of women in pogroms and the Nazi era were both highly unacknowledged and forgotten. Therefore, the art that was produced during those time periods, as well as those after those events, gives voice to the profound silence on the narratives of Jewish women. Sexual violence is a weapon of war used to cause physical and psychological destruction, not only as a product of war. In both the early twentieth-century pogroms and the Holocaust, the sexual violence that Jewish women endured was fundamentally the same: the rape of Jewish women became a focal target in the theater of violence– women were not raped because they were women, but specifically, because they were Jewish women. Although the events of the pogroms and the Holocaust are in the past, the art that serves as testimony to the experience of Jewish women remains an everlasting reminder of the gendered violence that occurred. Even though covert expressions, such as an embroidered image of a bird eating an apple, the artwork gives voice to the many silenced victims of sexualized and gendered violence.Keywords: gendered violence, holocaust, Nazi era, pogroms
Procedia PDF Downloads 1046717 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar
Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules
Procedia PDF Downloads 2776716 Towards a Sustainable High Population Density Urban Intertextuality – Program Re-Configuration Integrated Urban Design Study in Hangzhou, China
Abstract:
By the end of 2014, China has an urban population of 749 million, reaching the urbanization rate of 54.77%. Dense and vertical urban structure has become a common choice for China and most of the densely populated Asian countries for sustainable development. This paper focuses on the most conspicuous urban change period in China, from 2000 to 2010, during which China's population shifted the fastest from rural region to cities. On one hand, the 200 million nationwide "new citizen" along with the 456 million "old citizen" explored in the new-century city for new urban lifestyle and livable built environment; On the other hand, however, large-scale rapid urban constructions are confined to the methods of traditional two-dimensional architectural thinking. Human-oriented design and system thinking have been missing in this intricate postmodern urban condition. This phenomenon, especially the gap and spark between the solid, huge urban physical system and the rich, subtle everyday urban life, will be studied in depth: How the 20th-century high-rise residential building "spontaneously" turned into an old but expensive multi-functional high-rise complex in the 21st century city center; how 21st century new/late 20th century old public buildings with the same function integrated their different architectural forms into the new / old city center? Finally the paper studies cases in Hangzhou: 1) Function Evolve–downtown high-rise residential building “International Garden” and “Zhongshan Garden” (1999). 2) Form Compare–Hangzhou Theater (1998) vs Hangzhou Grand Theatre (2004), Hangzhou City Railway Station (1999) vs Hangzhou East Railway Station (2013). The research aims at the exploring the essence of city from the building form dispel and urban program re-configuration approach, gaining a better consideration of human behavior through compact urban design effort for improving urban intertextuality, searching for a sustainable development path in the crucial time of urban population explosion in China.Keywords: architecture form dispel, compact urban design, urban intertextuality, urban program re-configuration
Procedia PDF Downloads 4976715 Efficacy of Self-Assessment Metacognitive Strategy on Academic Performance Among Upper Basic Students in Ankpa, Kogi State, Nigeria
Authors: Daodu Joshua Rotimi
Abstract:
This study investigated the Efficacy of Self-Assessment Metacognitive Strategy on Academic performance in Energy Concepts among Upper Basic Science Students in Ankpa, Kogi State, Nigeria. The research design adopted for the study was a Quasi-experimental control group design which employed a pretest, posttest of the experimental and control groups. The population of the study consisted of one hundred and twenty-four (124) JSSII Students; sixty-five (65) for the experimental group and (59) for the control group. The instrument used for the study was the Energy Concept Performance Test (ECPT), with a reliability coefficient of 0.80. Two research questions were answered using descriptive statistics of mean and standard deviation, while two hypotheses were tested using a t-test at P≤0.05 level of significance. The findings of the study revealed that the use of the Self-Assessment Metacognitive Strategy has a positive effect on students’ performance in energy concepts among upper Basic Science Students leading to high academic performance; also, there is no significant difference in the mean Academic Performance scores between Male and Female students taught Energy Concept using Self-Assessment Metacognitive Strategy. Based on the research findings, recommendations were made, which include that Secondary school teachers should be encouraged the use Self-Assessment Metacognitive strategy so as to make the learning process attractive, interactive and enriching to the learners.Keywords: metacognition, self-assessment, performance, efficacy
Procedia PDF Downloads 1236714 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 3896713 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion
Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan
Abstract:
In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion
Procedia PDF Downloads 218