Search results for: ecological efficiency
7274 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector
Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy
Abstract:
Energy is required in almost every aspect of human activities and development of any nation in this world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and Matlab Simulink of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on the thermal and electrical efficiency.Keywords: renewable energy, hybrid PV/T system, sensitivity analysis, ecological sciences
Procedia PDF Downloads 2957273 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes
Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush
Abstract:
Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing
Procedia PDF Downloads 2277272 A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems
Authors: Eze R. Onukwugha
Abstract:
The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency.Keywords: wastewater, aspect ratio, cyanide-inhibited wastewater, modeling
Procedia PDF Downloads 847271 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 2317270 Feasibilities for Recovering of Precious Metals from Printed Circuit Board Waste
Authors: Simona Ziukaite, Remigijus Ivanauskas, Gintaras Denafas
Abstract:
Market development of electrical and electronic equipment and a short life cycle is driven by the increasing waste streams. Gold Au, copper Cu, silver Ag and palladium Pd can be found on printed circuit board. These metals make up the largest value of printed circuit board. Therefore, the printed circuit boards scrap is valuable as potential raw material for precious metals recovery. A comparison of Cu, Au, Ag, Pd recovery from waste printed circuit techniques was selected metals leaching of chemical reagents. The study was conducted using the selected multistage technique for Au, Cu, Ag, Pd recovery of printed circuit board. In the first and second metals leaching stages, as the elution reagent, 2M H2SO4 and H2O2 (35%) was used. In the third stage, leaching of precious metals used solution of 20 g/l of thiourea and 6 g/l of Fe2 (SO4)3. Verify the efficiency of the method was carried out the metals leaching test with aqua regia. Based on the experimental study, the leaching efficiency, using the preferred methodology, 60 % of Au and 85,5 % of Cu dissolution was achieved. Metals leaching efficiency after waste mechanical crushing and thermal treatment have been increased by 1,7 times (40 %) for copper, 1,6 times (37 %) for gold and 1,8 times (44 %) for silver. It was noticed that, the Au amount in old (> 20 years) waste is 17 times more, Cu amount - 4 times more, and Ag - 2 times more than in the new (< 1 years) waste. Palladium in the new printed circuit board waste has not been found, however, it was established that from 1 t of old printed circuit board waste can be recovered 1,064 g of Pd (leaching with aqua regia). It was found that from 1 t of old printed circuit board waste can be recovered 1,064 g of Ag. Precious metals recovery in Lithuania was estimated in this study. Given the amounts of generated printed circuit board waste, the limits for recovery of precious metals were identified.Keywords: leaching efficiency, limits for recovery, precious metals recovery, printed circuit board waste
Procedia PDF Downloads 3997269 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods
Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar
Abstract:
Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.Keywords: bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman
Procedia PDF Downloads 2007268 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas
Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders
Abstract:
A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing
Procedia PDF Downloads 2167267 Avian Ecological Status in the Gadaïne Eco-Complex (Batna, NE Algeria)
Authors: Marref Cherine, Bezzala Adel, Houhamdimoussa
Abstract:
Wetlands represent ecosystems of great importance through their ecological and socio-economic functions and biological diversity, even if they are most threatened by anthropization. This study aimed to contribute to the creation of an inventory of bird species in the Gadaïne eco-complex (Batna, Algeria) from 2019 to 2021. Counts were carried out from 8:00 to 19:00 using a telescope (20 × 60) and a pair of binoculars (10 × 50) and by employing absolute and relative methods. Birds were categorized by phenology, habitat, biogeography, and diet. A total of 80 species in 58 genera and 19 families were observed. Migratory birds were dominant (38%) phenologically, and the birds of Palearctic origin dominated (26.25%) biogeographically. Invertivorous and carnivorous species were the most common (35%). Ecologically, the majority of species were waterbirds (73.75%), which are protected in Algeria. This study highlights the need for the preservation of ecosystem components and the enhancement of biological resources of protected, rare, and key species. We observed 43797 individuals of Marmaronetta angustirostris during our study and reported the nesting of Podiceps nigricollis, Porphyrio porphyrio, and Tadorna ferruginea. For this reason, it is recommended to propose the area as a Ramsar site.Keywords: biodiversity, avifauna, ecological status, wetlands
Procedia PDF Downloads 677266 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes
Abstract:
Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process
Procedia PDF Downloads 757265 Alternative Ways to Measure Impacts of Dam Closure to the Structure of Fish Communities of a Neotropical River
Authors: Ana Carolina Lima, Carlos Sérgio Agostinho, Amadeu M. V. M. Soares, Kieran A. Monaghan
Abstract:
Neotropical freshwaters host some of the most biodiverse ecosystems in the world and are among the most threatened by habitat alterations. The high number of species and lack of basic ecological knowledge provides a major obstacle to understanding the effects of environmental change. We assessed the impact of dam closure on the fish communities of a neotropical river by applying simple descriptions of community organizations: Species Abundance Distribution (SAD) and Abundance Biomass Comparison (ABC) curves. Fish data were collected during three distinct time periods (one year before, one year after and five years after closure), at eight sites located downstream of the dam, in the reservoir and reservoir transition zone and upstream of the regulated flow. Dam closure was associated with changes in the structural and functional organization of fish communities at all sites. Species richness tended to increase immediately after dam closure while evenness decreased. Changes in taxonomic structure were accompanied by a change in the distribution of biomass with the proportionate contribution by smaller individuals significantly increased relative to larger individuals. Five years on, richness had fallen to below pre-closure levels at all sites, while the comparative stability of the transformed habitats was reflected by biomass-abundance distribution patterns that approximated pre-disturbance ratios. Despite initial generality, respective sites demonstrated distinct ecological responses that were related to the environmental characteristics of their transformed habitats. This simplistic analysis provides a sensitive and informative assessment of ecological conditions that highlights the impact to ecosystem process and ecological networks and has particular value in regions where detailed ecological knowledge precludes the application of traditional bioassessment methods.Keywords: ABC curves, SADs, biodiversity, damming, tropical fish
Procedia PDF Downloads 3907264 Resilient Leadership: An Analysis for Challenges, Transformation and Improvement of Organizational Climate in Gastronomic Companies
Authors: Margarita Santi Becerra Santiago
Abstract:
The following document addresses the descriptive analysis under the qualitative approach of resilient leadership that allows us to know the importance of the application of a new leadership model to face the new challenges within the gastronomic companies in Mexico. Likewise, to know the main factors that influence resilient leaders and companies to develop new skills to elaborate strategies that contribute to overcoming adversities and managing change. Adversities in a company always exist and challenge us to move and apply our knowledge to be competitive as well as to strengthen our work team through motivation to achieve efficiency and develop in a good organizational climate.Keywords: challenges, efficiency, leadership, resilience skills
Procedia PDF Downloads 807263 Non-parametric Linear Technique for Measuring the Efficiency of Winter Road Maintenance in the Arctic Area
Authors: Mahshid Hatamzad, Geanette Polanco
Abstract:
Improving the performance of Winter Road Maintenance (WRM) can increase the traffic safety and reduce the cost as well as environmental impacts. This study evaluates the efficiency of WRM technique, named salting, in the Arctic area by using Data Envelopment Analysis (DEA), which is a non-parametric linear method to measure the efficiencies of decision-making units (DMUs) based on handling multiple inputs and multiple outputs at the same time that their associated weights are not known. Here, roads are considered as DMUs for which the efficiency must be determined. The three input variables considered are traffic flow, road area and WRM cost. In addition, the two output variables included are level of safety in the roads and environment impacts resulted from WRM, which is also considered as an uncontrollable factor in the second scenario. The results show the performance of DMUs from the most efficient WRM to the inefficient/least efficient one and this information provides decision makers with technical support and the required suggested improvements for inefficient WRM, in order to achieve a cost-effective WRM and a safe road transportation during wintertime in the Arctic areas.Keywords: environmental impacts, DEA, risk and safety, WRM
Procedia PDF Downloads 1237262 Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells
Authors: Vallisree Sivathanu, Kumaraswamidhas Lakshmi Annamalai, Trupti Ranjan Lenka
Abstract:
We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%.Keywords: CBTSSe, silicon, tandem, solar cell, device modeling, current losses, photon losses
Procedia PDF Downloads 1227261 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 347260 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 3197259 Cultivating Social-Ecological Resilience, Harvesting Biocultural Resistance in Southern Andes
Authors: Constanza Monterrubio-Solis, Jose Tomas Ibarra
Abstract:
The fertile interdependence of social-ecological systems reveals itself in the interactions between native forests and seeds, home gardens, kitchens, foraging activities, local knowledge, and food practices, creating particular flavors and food meanings as part of cultural identities within territories. Resilience in local-food systems, from a relational perspective, can be understood as the balance between persistence and adaptability to change. Food growing, preparation, and consumption are constantly changing and adapting as expressions of agency of female and male indigenous peoples and peasants. This paper explores local food systems’ expressions of resilience in the la Araucanía region of Chile, namely: diversity, redundancy, buffer capacity, modularity, self-organization, governance, learning, equity, and decision-making. Applying ethnographic research methods (participant observation, focus groups, and semi-structured interviews), this work reflects on the experience developed through work with Mapuche women cultivating home gardens in the region since 2012; it looks to material and symbolic elements of resilience in the local indigenous food systems. Local food systems show indeed indicators of social-ecological resilience. The biocultural memory is expressed in affection to particular flavors and recipes, the cultural importance of seeds and reciprocity networks, as well as an accurate knowledge about the indicators of the seasons and weather, which have allowed local food systems to thrive with a strong cultural foundation. Furthermore, these elements turn into biocultural resistance in the face of the current institutional pressures for rural specialization, processes of cultural assimilation such as agroecosystems and diet homogenization, as well as structural threats towards the diversity and freedom of native seeds. Thus, the resilience-resistance dynamic shown by the social-ecological systems of the southern Andes is daily expressed in the local food systems and flavors and is key for diverse and culturally sound social-ecological health.Keywords: biocultural heritage, indigenous food systems, social-ecological resilience, southern Andes
Procedia PDF Downloads 1427258 Effectiveness of Cognitive and Supportive-Expressive Group Therapies on Self-Efficiency and Life Style in MS Patients
Authors: Kamran Yazdanbakhsh, Somayeh Mahmoudi
Abstract:
Multiple sclerosis is the most common chronic disease of the central nervous system associated with demyelination of neurons and several demyelinated parts of the disease encompasses throughout the white matter and affects the sensory and motor function. This study compared the effectiveness of two methods of cognitive therapy and supportive-expressive therapy on the efficacy and quality of life in MS patients. This is an experimental project which has used developed group pretest - posttest and follow-up with 3 groups. The study included all patients with multiple sclerosis in 2013 that were members of the MS Society of Iran in Tehran. The sample included 45 patients with MS that were selected volunteerily of members of the MS society of Iran and randomly divided into three groups and pretest, posttest, and follow-up (three months) for the three groups had been done.The dimensions of quality of life in patients with multiple sclerosis scale, and general self-efficiency scale of Schwarzer and Jerusalem was used for collecting data. The results showed that there was a significant difference between the mean of quality of life scores at pretest, posttest, and follow-up of the experimental groups. There was no significant difference between the mean of quality of life of the experimental groups which means that both groups were effective and had the same effect. There was no significant difference between the mean of self-efficiency scores in control and experimental group in pretest, posttest and follow-up. Thus, by using cognitive and supportive-expressive group therapy we can improve quality of life in MS patients and make great strides in their mental health.Keywords: cognitive group therapy, life style, MS, self-efficiency, supportive-expressive group therapy
Procedia PDF Downloads 4887257 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges
Authors: Michel Moliere
Abstract:
In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.Keywords: energy transition, gas turbines, decarbonization, power generation
Procedia PDF Downloads 2137256 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage
Authors: Taiheng Zhang, Hongbin Zhao
Abstract:
Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids
Procedia PDF Downloads 1277255 Graduate School of Biotechnology and Bioengineering/ YuanZe University
Authors: Sankhanil Das, Arunava Dasgupta, Keya Mitra
Abstract:
This paper investigates the relationship between natural ecological systems and modern urban morphology. Over years, ecological conditions represented by natural resources such as natural landforms, systems of water, urban geography and land covers have been a significant driving factor of how settlements have formed, expanded and functioned. These have played a pivotal role in formation of the community character and the cultural identity of the urban spaces, and have steered cultural behavior within these settings. Such cultural behaviors have been instrumental in transforming mere spaces to places with meaning and symbolism. The natural process of city formation is principally founded upon the idea of balance and harmony, mostly in a subconscious manner. Reimaging such processes of natural evolution, this paper systematically builds a development model that generates a balance between environment and development, with specific focus on the Urban-Rural fringe areas in the Temple Town of Puri, in Eastern India. Puri represents a unique cross section of ecological landscape, cultural practices and religious symbolism with a very rich history and a vibrant heritage. While the city centre gets more and more crowded by tourists and pilgrims to accommodate related businesses, the original residents of Puri relocate to move towards the urban peripheral areas for better living conditions, gradually converting agricultural lands into non agricultural uses. This rapid spread into the rural hinterland is devoid of any connection with the rich cultural identity of Puri. These past four decades of ‘development’ has been at the cost of 810 Hectares of ecological Lake systems in the region. Invaluable ecological resources at urban rural edges are often viewed as hindrances to development and conceptualized as taking away from the image of the city. This paper attempts to understand the language of development over years on existing natural resources through topo-analysis and proposes a sustainable approach of development using different planning tools, with ecological resources as the pivotal factor of development.Keywords: livability, sustainable development, urbanization, urban-rural edge
Procedia PDF Downloads 1907254 Working Capital Efficiency and Firm Profitability: Nigeria and Kenya
Authors: Lucian J. Pitt
Abstract:
The primary purpose of this study is to understand the differences in the relationship between working capital management efficiency, working capital investment decisions and working capital finance decisions and the profitability of firms within the context of two African developing economies, Kenya and Nigeria. The study finds that there is a significant difference in the relationship between the firm’s profitability and the working capital variables which suggests different challenges for working capital management in each of these countries.Keywords: working capital management, working capital investment, working capital finance, profitability, cash conversion cycle
Procedia PDF Downloads 3627253 Cleaner Production Framework for an Beverage Manufacturing Company
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study explores to improve the resource efficiency, waste water reduction and to reduce losses of raw materials in a beverage making industry. A number of cleaner production technologies were put across in this work. It was also noted that cleaner production technology practices are not only desirable from the environmental point of view, but they also make good economic sense, in their contribution to the bottom line by conserving resources like energy, raw materials and manpower, improving yield as well as reducing treatment/disposal costs. This work is a resource in promoting adoption and implementation of CP in other industries for sustainable development.Keywords: resource efficiency, beverages, reduce losses, cleaner production, energy, yield
Procedia PDF Downloads 4197252 Ecological and Health Risk Assessment of the Heavy Metal Contaminant in Surface Soils around Effurun Market
Authors: A. O. Ogunkeyede, D. Amuchi, A. A. Adebayo
Abstract:
Heavy metal contaminations in soil have received great attention. Anthropogenic activities such as vehicular emission, industrial activities and constructions have resulted in elevated concentration of heavy metals in the surface soils. The metal particles can be free from the surface soil when they are disturbed and re-entrained in air, which necessitated the need to investigate surface soil at market environment where adults and children are present on daily basis. This study assesses concentration of heavy metal pollution, ecological and health risk factors in surface soil at Effurun market. 8 samples were collected at household material (EMH), fish (EMFs), fish and commodities (EMF-C), Abattoir (EMA 1 & 2), fruit sections (EMF 1 & 2) and lastly main road (EMMR). The samples were digested and analyzed in triplicate for contents of Lead (Pb), Nickel (Ni), Cadmium (Cd) and Copper (Cu). The mean concentration of the Pb mg/kg (112.27 ± 1.12) and Cu mg/kg (156.14 ± 1.10) were highest in the abattoir section (EMA 1). The mean concentrations of the heavy metal were then used to calculate the ecological and health risk for people within the market. Pb contamination at EMMR, EMF 2, EMFs were moderately while Pb shows considerable contamination at EMH, EMA 1, EMA 2 and EMF-C sections of the Effurun market. The ecological risk factor varies between low to moderate pollution for Pb and EMA 1 has the highest potential ecological risk that falls within moderate pollution. The hazard quotient results show that dermal exposure pathway is the possible means of heavy metal exposure to the traders while ingestion is the least sources of exposure to adult. The ingestion suggested that children around the EMA 1 have the highest possible exposure to children due to hand-to-mouth and object-to-mouth behaviour. The results further show that adults at the EMA1 will have the highest exposure to Pb due to inhalation during burning of cow with tyre that contained Pb and Cu. The carcinogenic risk values of most sections were higher than acceptable values, while Ni at EMMR, EMF 1 & 2, EMFs and EMF-C sections that were below the acceptable values. The cancer risk for inhalation exposure pathway for Pb (1.01E+17) shows a significant level of contamination than all the other sections of the market. It suggested that the people working at the Abattoir were very prone to cancer risk.Keywords: carcinogenic, ecological, heavy metal, risk
Procedia PDF Downloads 1507251 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques
Authors: Edwin Javier Cortes, Surupa Shaw
Abstract:
In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.Keywords: flow control, efficiency, passive control, active control
Procedia PDF Downloads 747250 The Rule of Architectural Firms in Enhancing Building Energy Efficiency in Emerging Countries: Processes and Tools Evaluation of Architectural Firms in Egypt
Authors: Mahmoud F. Mohamadin, Ahmed Abdel Malek, Wessam Said
Abstract:
Achieving energy efficient architecture in general, and in emerging countries in particular, is a challenging process that requires the contribution of various governmental, institutional, and individual entities. The rule of architectural design is essential in this process as it is considered as one of the earliest steps on the road to sustainability. Architectural firms have a moral and professional responsibility to respond to these challenges and deliver buildings that consume less energy. This study aims to evaluate the design processes and tools in practice of Egyptian architectural firms based on a limited survey to investigate if their processes and methods can lead to projects that meet the Egyptian Code of Energy Efficiency Improvement. A case study of twenty architectural firms in Cairo was selected and categorized according to their scale; large-scale, medium-scale, and small-scale. A questionnaire was designed and distributed to the firms, and personal meetings with the firms’ representatives took place. The questionnaire answered three main points; the design processes adopted, the usage of performance-based simulation tools, and the usage of BIM tools for energy efficiency purposes. The results of the study revealed that only little percentage of the large-scale firms have clear strategies for building energy efficiency in their building design, however the application is limited to certain project types, or according to the client request. On the other hand, the percentage of medium-scale firms is much less, and it is almost absent in the small-scale ones. This demonstrates the urgent need of enhancing the awareness of the Egyptian architectural design community of the great importance of implementing these methods starting from the early stages of the building design. Finally, the study proposed recommendations for such firms to be able to create a healthy built environment and improve the quality of life in emerging countries.Keywords: architectural firms, emerging countries, energy efficiency, performance-based simulation tools
Procedia PDF Downloads 2867249 Comparative Analysis of Ranunculus muricatus and Typha latifolia as Wetland Plants Applied for Domestic Wastewater Treatment in a Mesocosm Scale Study
Authors: Sadia Aziz, Mahwish Ali, Safia Ahmed
Abstract:
Comparing other methods of waste water treatment, constructed wetlands are one of the most fascinating practices because being a natural process they are eco-friendly have low construction and maintenance cost and have considerable capability of wastewater treatment. The current research was focused mainly on comparison of Ranunculus muricatus and Typha latifolia as wetland plants for domestic wastewater treatment by designing and constructing efficient pilot scale HSSF mesocosms. Parameters like COD, BOD5, PO4, SO4, NO3, NO2, and pathogenic indicator microbes were studied continuously with successive treatments. Treatment efficiency of the system increases with passage of time and with increase in temperature. Efficiency of T. latifolia planted setups in open environment was fairly good for parameters like COD and BOD5 which was showing up to 82.5% for COD and 82.6% for BOD5 while DO was increased up to 125%. Efficiency of R. muricatus vegetated setup was also good but lowers than that of T. latifolia planted showing 80.95% removal of COD and BOD5. Ranunculus muricatus was found effective in reducing bacterial count in wastewater. Both macrophytes were found promising in wastewater treatment.Keywords: wastewater treatment, wetland, mesocosms study, wetland plants
Procedia PDF Downloads 3137248 Implementation of Efficiency and Energy Conservation Concept in Office Building as an Effort to Achieve Green Office Building Case Studies Office Building in Jakarta
Authors: Jarwa Prasetya Sih Handoko
Abstract:
The issue of energy crisis for big cities in Indonesia are issues raised in line with the development of the city is rapidly increasing. Various attempts were made by the government in overcoming problems of energy needs in Indonesia. In addition to the efforts of the government required the efforts made by the public to solve this problem. The concept of green building in the design of the building with efforts to use energy efficiently can be one of the efforts that can be applied to solve this problem. Jakarta is capital and the one of the major cities in Indonesia with high economic growth. This leads to increased demand for office space for the people. So that the construction of office buildings in big cities like Jakarta very numerous. Office building is one of the buildings that require large energy consumption. As a building that could potentially require huge amounts of energy, the design should consider the use of energy to help provide solutions to problems of energy crisis in Indonesia. The concept of energy efficient is one of the concepts addressed in an effort to use energy in buildings to save energy needs of the building operations. Therefore, it is necessary to have a study that explores the application of the concept of energy efficiency and conservation in office buildings in Jakarta. In this study using two (2) buildings case study that Sequis Center Building and Sampoerna Strategic Square. Both are office buildings in Jakarta have earned the Green Building Certificate of Green Building Council Indonesia (GBCI). The study used literature review methods to address issues raised earlier. Whether it's related to a literature review on the study of office buildings and green building. With this paper is expected to be obtained on the application of the concept of energy efficiency and conservation in office buildings that have earned recognition as a green building by GBCI. The result could be a reference to the architect in designing the next office buildings, especially related to the concept of energy use in buildings. From this study, it can be concluded that the concept of energy efficiency and conservation in the design of office buildings can be applied to its orientation, the openings, the use shade in buildings, vegetation and building material selection and efficient use of water. So that it can reduce energy requirements needed to meet the needs of the building user activity. So the concept of energy efficiency and conservation in office buildings can be one of the efforts to realize the Green Office Building. Recommendations from this study is that the design of office buildings should be able to apply the concept of energy utilization in the design office. This is to meet the energy needs of the office buildings in an effort to realize the Green Building.Keywords: energy crisis, energy efficiency, energy conservation, green building, office building
Procedia PDF Downloads 3147247 The Impact of Human Intervention on Net Primary Productivity for the South-Central Zone of Chile
Authors: Yannay Casas-Ledon, Cinthya A. Andrade, Camila E. Salazar, Mauricio Aguayo
Abstract:
The sustainable management of available natural resources is a crucial question for policy-makers, economists, and the research community. Among several, land constitutes one of the most critical resources, which is being intensively appropriated by human activities producing ecological stresses and reducing ecosystem services. In this context, net primary production (NPP) has been considered as a feasible proxy indicator for estimating the impacts of human interventions on land-uses intensity. Accordingly, the human appropriation of NPP (HANPP) was calculated for the south-central regions of Chile between 2007 and 2014. The HANPP was defined as the difference between the potential NPP of the naturally produced vegetation (NPP0, i.e., the vegetation that would exist without any human interferences) and the NPP remaining in the field after harvest (NPPeco), expressed in gC/m² yr. Other NPP flows taken into account in HANPP estimation were the harvested (NPPh) and the losses of NPP through land conversion (NPPluc). The ArcGIS 10.4 software was used for assessing the spatial and temporal HANPP changes. The differentiation of HANPP as % of NPP0 was estimated by each landcover type taken in 2007 and 2014 as the reference years. The spatial results depicted a negative impact on land use efficiency during 2007 and 2014, showing negative HANPP changes for the whole region. The harvest and biomass losses through land conversion components are the leading causes of loss of land-use efficiency. Furthermore, the study depicted higher HANPP in 2014 than in 2007, representing 50% of NPP0 for all landcover classes concerning 2007. This performance was mainly related to the higher volume of harvested biomass for agriculture. In consequence, the cropland depicted the high HANPP followed by plantation. This performance highlights the strong positive correlation between the economic activities developed into the region. This finding constitutes the base for a better understanding of the main driving force influencing biomass productivity and a powerful metric for supporting the sustainable management of land use.Keywords: human appropriation, land-use changes, land-use impact, net primary productivity
Procedia PDF Downloads 1457246 Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems
Authors: L. Ashok Kumar, N. Sujith Kumar
Abstract:
Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.Keywords: grid-connected, photovoltaic (PV) systems, transformerless inverter, stray capacitance, common-mode, leakage current, pulse width modulation (PWM)
Procedia PDF Downloads 5057245 Overview of Smart Grid Applications in Turkey
Authors: Onur Elma, Giray E. Kıral, Ugur S. Selamoğuları, Mehmet Uzunoğlu, Bulent Vural
Abstract:
Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given.Keywords: energy efficiency, smart grids, smart home, applications
Procedia PDF Downloads 501