Search results for: cleaning water
8319 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)
Authors: Amer Obaid Saud
Abstract:
Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.Keywords: Babylon governorate, Canadian version, water quality, Euphrates river
Procedia PDF Downloads 4008318 Water Supply and Demand Analysis for Ranchi City under Climate Change Using Water Evaluation and Planning System Model
Authors: Pappu Kumar, Ajai Singh, Anshuman Singh
Abstract:
There are different water user sectors such as rural, urban, mining, subsistence and commercial irrigated agriculture, commercial forestry, industry, power generation which are present in the catchment in Subarnarekha River Basin and Ranchi city. There is an inequity issue in the access to water. The development of the rural area, construction of new power generation plants, along with the population growth, the requirement of unmet water demand and the consideration of environmental flows, the revitalization of small-scale irrigation schemes is going to increase the water demands in almost all the water-stressed catchment. The WEAP Model was developed by the Stockholm Environment Institute (SEI) to enable evaluation of planning and management issues associated with water resources development. The WEAP model can be used for both urban and rural areas and can address a wide range of issues including sectoral demand analyses, water conservation, water rights and allocation priorities, river flow simulation, reservoir operation, ecosystem requirements and project cost-benefit analyses. This model is a tool for integrated water resource management and planning like, forecasting water demand, supply, inflows, outflows, water use, reuse, water quality, priority areas and Hydropower generation, In the present study, efforts have been made to access the utility of the WEAP model for water supply and demand analysis for Ranchi city. A detailed works have been carried out and it was tried to ascertain that the WEAP model used for generating different scenario of water requirement, which could help for the future planning of water. The water supplied to Ranchi city was mostly contributed by our study river, Hatiya reservoir and ground water. Data was collected from various agencies like PHE Ranchi, census data of 2011, Doranda reservoir and meteorology department etc. This collected and generated data was given as input to the WEAP model. The model generated the trends for discharge of our study river up to next 2050 and same time also generated scenarios calculating our demand and supplies for feature. The results generated from the model outputs predicting the water require 12 million litter. The results will help in drafting policies for future regarding water supplies and demands under changing climatic scenarios.Keywords: WEAP model, water demand analysis, Ranchi, scenarios
Procedia PDF Downloads 4198317 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments
Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi
Abstract:
The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging
Procedia PDF Downloads 2778316 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)
Procedia PDF Downloads 3858315 Bio-Nano Mask: Antivirus and Antimicrobial Mouth Mask Coating with Nano-TiO2 and Anthocyanin Utilization as an Effective Solution of High ARI Patients in Riau
Authors: Annisa Ulfah Pristya, Andi Setiawan
Abstract:
Indonesia placed in sixth rank total Acute Respiratory Infection (ARI) patient in the world and Riau as one of the province with the highest number of people with respiratory infection in Indonesia reached 37 thousand people. Usually society using a mask as prevention action. Unfortunately the commercial mouth mask only can work maximum for 4 hours and the pores are too large to filter out microorganisms and viruses carried by infectious droplets nucleated 1-5 μm. On the other hand, Indonesia is rich with Titanium dioxide (TiO2) and purple sweet potato anthocyanin pigment. Therefore, offered Bio-nano-mask which is a antimicrobial and antiviral mouth mask with Nano-TiO2 coating and purple sweet potato anthocyanins utilization as an effective solution to high ARI patients in Riau, which has the advantage of the mask surface can’t be attached by infectious droplets, self-cleaning and have anthocyanins biosensors that give visual response can be understood easily by the general public in the form of a mask color change from blue/purple to pink when acid levels increase. Acid level is an indicator of microorganisms accumulation in the mouth and surrounding areas. Bio-nano mask making process begins with the preparation (design, Nano-TiO2 liquid preparation, anthocyanins biosensors manufacture) and then superimposing the Nano-TiO2 on the outer surface of spunbond color using a sprayer, then superimposing anthocyanins biosensors film on the Meltdown surface, making bio nano-mask and it pack. Bio-nano mask has the advantage is effectively preventing pathogenic microorganisms and infectious droplets and has accumulated indicator microorganisms that color changes which easily observed by the common people though.Keywords: anthocyanins, ARI, nano-TiO2 liquid, self cleaning
Procedia PDF Downloads 5698314 The Potential Fresh Water Resources of Georgia and Sustainable Water Management
Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili
Abstract:
Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.Keywords: GIS, management, rivers, water resources
Procedia PDF Downloads 3728313 Correlates of Multiplicity of Risk Behavior among Injecting Drug Users in Three High HIV Prevalence States of India
Authors: Santosh Sharma
Abstract:
Background: Drug abuse, needle sharing, and risky sexual behaviour are often compounded to increase the risk of HIV transmission. Injecting Drug Users are at the duel risk of needle sharing and risky sexual Behaviour, becoming more vulnerable to STI and HIV. Thus, studying the interface of injecting drug use and risky sexual behaviour is important to curb the pace of HIV epidemic among IDUs. The aim of this study is to determine the factor associated with HIV among injecting drug users in three states of India. Materials and methods: This paper analyzes covariates of multiplicity of risk behavior among injecting drug users. Findings are based on data from Integrated Behavioral and Biological Assessment (IBBA) round 2, 2010. IBBA collects the information of IDUs from the six districts. IDUs were selected on the criteria of those who were 18 years or older, who injected addictive substances/drugs for non-medical purposes at least once in past six month. A total of 1,979 in round 2 were interviewed in the IBBA. The study employs quantitative techniques using standard statistical tools to achieve the above objectives. All results presented in this paper are unweighted univariate measures. Results: Among IDUs, average duration of injecting drugs is 5.2 years. Mean duration between first drug use to first injecting drugs among younger IDUs, belongs to 18-24 years is 2.6 years Needle cleaning practices is common with above two-fifths reporting its every time cleaning. Needle sharing is quite prevalent especially among younger IDUs. Further, IDUs practicing needle sharing exhibit pervasive multi-partner behavior. Condom use with commercial partners is almost 81 %, whereas with intimate partner it is 39 %. Coexistence of needle sharing and unprotected sex enhances STI prevalence (6.8 %), which is further pronounced among divorced/separated/widowed (9.4 %). Conclusion: Working towards risk reduction for IDUs must deal with multiplicity of risk. Interventions should deal with covariates of risk, addressing youth, and risky sexual behavior.Keywords: IDUs, HIV, STI, behaviour
Procedia PDF Downloads 2808312 Optimization of the Drinking Water Treatment Process Improvement of the Treated Water Quality by Using the Sludge Produced by the Water Treatment Plant
Authors: M. Derraz, M. Farhaoui
Abstract:
Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage Sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20, and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96%, and 99.47% respectively for low, medium and high turbidity levels.Keywords: coagulation process, coagulant dose, sludge reuse, turbidity removal
Procedia PDF Downloads 2388311 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis
Authors: Daniel Murrant, Andrew Quinn, Lee Chapman
Abstract:
A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources
Procedia PDF Downloads 2948310 Quantity, Quality and Water Productivity of Mulberry Leaf Influenced by Different Methods, Levels of Irrigation and Mulching in Eastern Dry Zone of Karnataka, India
Authors: Chengalappa Seenappa, Narayanappa Devkumar, Narayanappa Nagaraja
Abstract:
Mulberry leaf is the major economic component in sericulture and quality of leaf produced per unit area has a direct effect on quality of cocoon. Among all the agronomical inputs, irrigation water has highest impact on mulberry leaf quantity and quality. The water productivity in sericulture in the country is inadequate and inefficient though India has the largest irrigated area. There is a need of proper irrigation methods and conservation practices to ensure efficiency and economy in water use. Hence, this field experiment was conducted at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India during 2013 and 2014 to know the quantity, quality and water productivity of mulberry influenced by different methods, levels of irrigation and mulching in Eastern Dry Zone (EDZ) of Karnataka, India. The results revealed that the mulberry leaf quantity, quality and water productivity were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield, chlorophyll, relative water, protein content and water productivity (42857 kg ha-1 yr-1, 8.54, 65.80%, 22.27% and 364.41 kg hacm-1, respectively) than surface drip at 1.0 CPE (38809 kg ha-1 yr-1, 7.34, 62.76%, 17.75% and 264 10 kg hacm-1, respectively) and micro spray jet at 1.0 CPE (39931 kg ha-1 yr-1, 7.96, 63.50%, 19.00%, 35617 kg ha-1 yr-1 and 271.83 kg hacm-1, respectively). Mulching treatment recorded maximum leaf yield, chlorophyll, relative water, protein content and water productivity (38035 kg ha-1 yr-1, 7.12, 62.11%, 16.14% and 330 kg hacm-1, respectively) compared to without mulching. These results clearly indicated that subsurface drip irrigation at lower level of irrigation (0.8 CPE) and mulching increased the quantity, quality and water productivity of mulberry leaf than surface drip and micro spray jet irrigation at higher level of irrigation (1.0 CPE) by saving 20 per cent of water. Therefore, in the coming days subsurface drip irrigation in mulberry cultivation may be more appropriate to realise higher yield, quality and water productivity in EDZ of Karnataka, India.Keywords: subsurface drip irrigation, mulching, water productivity, mulberry
Procedia PDF Downloads 2698309 Study on Water Level Management Criteria of Reservoir Failure Alert System
Authors: B. Lee, B. H. Choi
Abstract:
The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS)Keywords: alert system, management criteria, reservoir failure, sensor
Procedia PDF Downloads 2018308 Alternative Systems of Drinking Water Supply Using Rainwater Harvesting for Small Rural Communities with Zero Greenhouse Emissions
Authors: Martin Mundo-Molina
Abstract:
In Mexico, there are many small rural communities with serious water supply deficiencies. In Chiapas, Mexico, there are 19,972 poor rural communities, 15,712 of which have fewer than 100 inhabitants. The lack of a constant water supply is most severe in the highlands of Chiapas where the population is made up mainly of indigenous groups. The communities are on mountainous terrain with a widely dispersed population. These characteristics combine to make the provision of public utilities, such as water, electricity and sewerage, difficult with conventional means. The introduction of alternative, low-cost technologies represents means of supplying water such as through fog and rain catchment with zero greenhouse emissions. In this paper is presented the rainwater harvesting system (RWS) constructed in Yalentay, Chiapas Mexico. The RWS is able to store 1.2 M liters of water to provide drinking water to small rural indigenous communities of 500 people in the drought stage. Inside the system of rainwater harvesting there isn't photosynthesis in order to conserve water for long periods. The natural filters of the system of rainwater harvesting guarantee the drinking water for using to the community. The combination of potability and low cost makes rain collection a viable alternative for rural areas, weather permitting. The Mexican Institute of Water Technology and Chiapas University constructed a rainwater harvesting system in Yalentay Chiapas, it consists of four parts: 1. Roof of aluminum, for collecting rainwater, 2. Underground-cistern, divided in two tanks, 3. Filters, to improve the water quality and 4. The system of rainwater harvesting dignified the lives of people in Yalentay, saves energy, prevents the emission of greenhouse gases into the atmosphere, conserves natural resources such as water and air.Keywords: appropriate technologies, climate change, greenhouse gases, rainwater harvesting
Procedia PDF Downloads 4078307 Environmental Pollution and Treatment Technology
Authors: R. Berrached, H. Ait Mahamed, A. Iddou
Abstract:
Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.Keywords: metallic hydroxydes, industrial dyes, purificatıon,
Procedia PDF Downloads 3258306 Tuning Cubic Equations of State for Supercritical Water Applications
Authors: Shyh Ming Chern
Abstract:
Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and, reasonable accuracy are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, They often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.Keywords: equation of state, EoS, supercritical water, SCW
Procedia PDF Downloads 5378305 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity
Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos
Abstract:
Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.Keywords: antarctic, bacteria, biosurfactants, hydrocarbons
Procedia PDF Downloads 2798304 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.Keywords: aquaculture effluent, phytoremediation, pollutant, water hyacinth
Procedia PDF Downloads 2758303 Biochemical Identification and Study of Antibiotic Resistance in Isolated Bacteria from WWTP TIMGAD
Authors: Abdessemed Zineb, Atia Yahia, Yeza Salima
Abstract:
Water is self-purified by activated sludge process which makes its uniqueness. The main goal is the microbial biocenosis study of the input and output water of the waste water treatment system plant Timgad. 89.47% of the identified biocenosis belongs to ɤ-Proteobacteria while the remaining 10.52 % is equally divided between α-Proteobacteria and β-Proteobacteria. The antibiotics susceptibility profiles reveal that over 30 % are wild strains while the penicillinases are often present (11.30-20 %) with also other profiles. This proportion is worrying that the water discharged join the Oued Soltez used for irrigation. This disadvantage involves the installation of a chlorination step.Keywords: activated sludge, biocenosis, antibiotics profiles, penicillinases, physic-chemical quality
Procedia PDF Downloads 3058302 Comparative Study of sLASER and PRESS Techniques in Magnetic Resonance Spectroscopy of Normal Brain
Authors: Shin Ku Kim, Yun Ah Oh, Eun Hee Seo, Chang Min Dae, Yun Jung Bae
Abstract:
Objectives: The commonly used PRESS technique in magnetic resonance spectroscopy (MRS) has a limitation of incomplete water suppression. The recently developed sLASER technique is known for its improved effectiveness in suppressing water signal. However, no prior study has compared both sequences in a normal human brain. In this study, we firstly aimed to compare the performances of both techniques in brain MRS. Materials and methods: From January 2023 to July 2023, thirty healthy participants (mean age 38 years, 17 male, 13 female) without underlying neurological diseases were enrolled in this study. All participants underwent single-voxel MRS using both PRESS and sLASER techniques on 3T MRI. Two regions-of-interest were allocated in the left medial thalamus and left parietal white matter (WM) by a single reader. The SpectroView Analysis (SW5, Philips, Netherlands) provided automatic measurements, including signal-to-noise ratio (SNR) and peak_height of water, N-acetylaspartate (NAA)-water/Choline (Cho)-water/Creatine (Cr)-water ratios, and NAA-Cr/Cho-Cr ratios. The measurements from PRESS and sLASER techniques were compared using paired T-tests and Bland-Altman methods, and the variability was assessed using coefficients of variation (CV). Results: SNR and peak_heights of the water were significantly lower with sLASER compared to PRESS (left medial thalamus, sLASER SNR/peak_height 2092±475/328±85 vs. PRESS 2811±549/440±105); left parietal WM, 5422±1016/872±196 vs. 7152±1305/1150±278; all, P<0.001, respectively). Accordingly, NAA-water/Cho-water/Cr-water ratios and NAA-Cr/Cho-Cr ratios were significantly higher with sLASER than with PRESS (all, P< 0.001, respectively). The variabilities of NAA-water/Cho-water/Cr-water ratios and Cho-Cr ratio in the left medial thalamus were lower with sLASER than with PRESS (CV, sLASER vs. PRESS, 19.9 vs. 58.1/19.8 vs. 54.7/20.5 vs. 43.9 and 11.5 vs. 16.2) Conclusion: The sLASER technique demonstrated enhanced background water suppression, resulting in increased signals and reduced variability in brain metabolite measurements of MRS. Therefore, sLASER could offer a more precise and stable method for identifying brain metabolites.Keywords: Magnetic resonance spectroscopy, Brain, sLASER, PRESS
Procedia PDF Downloads 468301 Obtaining the Hydraulic Concrete Resistant to the Aggressive Environment by Using Admixtures
Authors: N. Tabatadze
Abstract:
The research aim is to study the physical and mechanical characteristics of hydraulic concrete in the surface active environment. The specific goal is to obtain high strength and low deformable concrete based on nano additives, resistant to the aggressive environment. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa). Moreover, water absorption (W=0,59 % of admixture instead of W=1,41 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.Keywords: hydraulic concrete, alkali-silica reaction, water absorption, water-resistance
Procedia PDF Downloads 3508300 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids
Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim
Abstract:
In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water
Procedia PDF Downloads 2628299 Oil Water Treatment by Nutshell and Dates Pits
Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren
Abstract:
The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.Keywords: date pits, nutshell, oil water, TSS
Procedia PDF Downloads 1578298 Phenols and Manganese Removal from Landfill Leachate and Municipal Waste Water Using the Constructed Wetland
Authors: Amin Mojiri, Lou Ziyang
Abstract:
Constructed wetland (CW) is a reasonable method to treat waste water. Current study was carried out to co-treat landfill leachate and domestic waste water using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate to waste water mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate to waste water mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively.Keywords: constructed wetland, Manganese, phenols, Thypha domingensis
Procedia PDF Downloads 3228297 Efficiency on the Enteric Viral Removal in Four Potable Water Treatment Plants in Northeastern Colombia
Authors: Raquel Amanda Villamizar Gallardo, Oscar Orlando Ortíz Rodríguez
Abstract:
Enteric viruses are cosmopolitan agents present in several environments including water. These viruses can cause different diseases including gastroenteritis, hepatitis, conjunctivitis, respiratory problems among others. Although in Colombia there are not regulations concerning to routine viral analysis of drinking water, an enhanced understanding of viral pollution and resistance to treatments is desired in order to assure pure water to the population. Viral detection is often complex due to the need of specialized and time-consuming procedures. In addition, viruses are highly diluted in water which is a drawback from the analytical point of view. To this end, a fast and selective detection method for detection enteric viruses (i.e. Hepatitis A and Rotavirus) were applied. Micro- magnetic particles were functionalized with monoclonal antibodies anti-Hepatitis and anti-Rotavirus and they were used to capture, concentrate and separate whole viral particles in raw water and drinking water samples from four treatment plants identified as CAR-01, MON-02, POR-03, TON-04 and located in the Northeastern Colombia. Viruses were molecularly by using RT-PCR One Step Superscript III. Each plant was analyzed at the entry and exit points, in order to determine the initial presence and eventual reduction of Hepatitis A and Rotavirus after disinfection. The results revealed the presence of both enteric viruses in a 100 % of raw water analyzed in all plants. This represents a potential health hazard, especially for those people whose use this water for agricultural purposes. However, in drinking water analysis, enteric viruses was only positive in CAR-01, where was found the presence of Rotavirus. As a conclusion, the results confirm Rotavirus as the best indicator to evaluate the efficacy of potable treatment plant in eliminating viruses. CAR potable water plant should improve their disinfection process in order to remove efficiently enteric viruses.Keywords: drinking water, hepatitis A, rotavirus, virus removal
Procedia PDF Downloads 2338296 Purification of Bilge Water by Adsorption
Authors: Fatiha Atmani, Lamia Djellab, Nacera Yeddou Mezenner, Zohra Bensaadi
Abstract:
Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal.Keywords: adsorption, bilge water, eggshells and kinetics, equilibrium and kinetics
Procedia PDF Downloads 3558295 Multi Data Management Systems in a Cluster Randomized Trial in Poor Resource Setting: The Pneumococcal Vaccine Schedules Trial
Authors: Abdoullah Nyassi, Golam Sarwar, Sarra Baldeh, Mamadou S. K. Jallow, Bai Lamin Dondeh, Isaac Osei, Grant A. Mackenzie
Abstract:
A randomized controlled trial is the "gold standard" for evaluating the efficacy of an intervention. Large-scale, cluster-randomized trials are expensive and difficult to conduct, though. To guarantee the validity and generalizability of findings, high-quality, dependable, and accurate data management systems are necessary. Robust data management systems are crucial for optimizing and validating the quality, accuracy, and dependability of trial data. Regarding the difficulties of data gathering in clinical trials in low-resource areas, there is a scarcity of literature on this subject, which may raise concerns. Effective data management systems and implementation goals should be part of trial procedures. Publicizing the creative clinical data management techniques used in clinical trials should boost public confidence in the study's conclusions and encourage further replication. In the ongoing pneumococcal vaccine schedule study in rural Gambia, this report details the development and deployment of multi-data management systems and methodologies. We implemented six different data management, synchronization, and reporting systems using Microsoft Access, RedCap, SQL, Visual Basic, Ruby, and ASP.NET. Additionally, data synchronization tools were developed to integrate data from these systems into the central server for reporting systems. Clinician, lab, and field data validation systems and methodologies are the main topics of this report. Our process development efforts across all domains were driven by the complexity of research project data collected in real-time data, online reporting, data synchronization, and ways for cleaning and verifying data. Consequently, we effectively used multi-data management systems, demonstrating the value of creative approaches in enhancing the consistency, accuracy, and reporting of trial data in a poor resource setting.Keywords: data management, data collection, data cleaning, cluster-randomized trial
Procedia PDF Downloads 288294 Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator
Authors: Adrian Garrido Sanchis, Richard Pashley
Abstract:
The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L).Keywords: MS2 virus inactivation, water reuse, hot bubble column evaporator, water treatment
Procedia PDF Downloads 2118293 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria
Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi
Abstract:
In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1328292 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood
Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic
Abstract:
This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.Keywords: bonding energy, drying, isosters, oak, vacuum
Procedia PDF Downloads 2738291 In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana
Authors: R. O. B. Bitencourt, F. S. Farias, M. C. Freitas, C. J. R. Balduino, E.S. Mesquita, A. R. C. Corval, P. S. Gôlo, E. G. Pontes, V. R. E. P. Bittencourt, I. C. Angelo
Abstract:
Aedes aegypti larval survival rate was assessed after exposure to blastopores or conidia (mineral oil-in-water formulation or aqueous suspension) of Beauveria bassiana CG 479 propagules (blastospores or conidia). Here, mineral oil was used in the fungal formulation to control Aedes aegypti larvae. 1%, 0.5% or 0.1% mineral oil-in-water solutions were used to evaluate mineral oil toxicity for mosquito larvae. In the oil toxicity test, 0.1% mineral oil solution reduced only 4.5% larval survival; accordingly, this concentration was chosen for fungal oil-in-water formulations. Aqueous suspensions were prepared using 0.01% Tween 80® in sterile dechlorinated water. A. aegypti larvae (L2) were exposed in aqueous suspensions or mineral oil-in-water fungal formulations at 1×107 propagules mL-1; the survival rate (assessed daily, for 7 days) and the median survival time (S50) were calculated. Seven days after the treatment, mosquito larvae survival rates were 8.56%, 16.22%, 58%, and 42.56% after exposure to oil-in-water blastospores, oil-in-water conidia, blastospores aqueous suspension and conidia aqueous suspension (respectively). Larvae exposed to 0.01% Tween 80® had 100% survival rate and the ones treated with 0.1% mineral oil-in-water had 95.11% survival rate. Larvae treated with conidia (regardless the presence of oil) or treated with blastospores formulation had survival median time (S50) ranging from one to two days. S50 was not determined (ND) when larvae were exposed to blastospores aqueous suspension, 0.01% Tween 80® (aqueous control) or 0.1% mineral oil-in-water formulation (oil control). B. bassiana conidia and blastospores (mineral oil-in-water formulated or suspended in water) had potential to control A. aegypti mosquito larvae, despite mineral oil-in-water formulation yielded better results in comparison to aqueous suspensions. Here, B. bassiana CG 479 isolate is suggested as a potential biocontrol agent of A. aegypti mosquito larvae.Keywords: blastospores, formulation, mosquitoes, conidia
Procedia PDF Downloads 1888290 Exploration on Extraction of Coalbed Seam in Water Sensitive Reservoir by Combustion of Coal Seams
Authors: Liu Yinga, Bai Xingjiab
Abstract:
The conventional way to exploit coalbed methane is to drop reservoirs pressure through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. However, it has many limitations. In this paper, the recovery by conventional way is low, in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: temperature, pressure, superficial area, competitive adsorption, then given an example of water sensitive reservoir, results can be obtained that recovery is effectively improved through combustion of coal seam. At the same time, the suitability and efficiency of combustion of coal seam determine that it can be widely applied.Keywords: coalbed methane, drainage decompression, water-sensitive, combustion of coal seams, competitive adsorption
Procedia PDF Downloads 265