Search results for: agricultural ecosystems
1896 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production
Authors: Jason West
Abstract:
Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems
Procedia PDF Downloads 771895 Effects of Conversion of Indigenous Forest to Plantation Forest on the Diversity of Macro-Fungi in Kereita Forest, Kikuyu Escarpment, Kenya
Authors: Susan Mwai, Mary Muchane, Peter Wachira, Sheila Okoth, Muchai Muchane, Halima Saado
Abstract:
Tropical forests harbor a wide range of biodiversity and rich macro-fungi diversity compared to the temperate regions in the World. However, biodiversity is facing the threat of extinction following the rate of forest loss taking place before proper study and documentation of macrofungi is achieved. The present study was undertaken to determine the effect of converting indigenous habitat to plantation forest on macrofungi diversity. To achieve the objective of this study, an inventory focusing on macro-fungi diversity was conducted within Kereita block in Kikuyu Escarpment forest which is on the southern side of Aberdare mountain range. The macrofungi diversity was conducted in the indigenous forest and in more than 15 year old Patula plantation forest , during the wet (long rain season, December 2014) and dry (Short rain season, May, 2015). In each forest type, 15 permanent (20m x 20m) sampling plots distributed across three (3) forest blocks were used. Both field and laboratory methods involved recording abundance of fruiting bodies, taxonomic identity of species and analysis of diversity indices and measures in terms of species richness, density and diversity. R statistical program was used to analyze for species diversity and Canoco 4.5 software for species composition. A total number of 76 genera in 28 families and 224 species were encountered in both forest types. The most represented taxa belonged to the Agaricaceae (16%), Polyporaceae (12%), Marasmiaceae, Mycenaceae (7%) families respectively. Most of the recorded macro-fungi were saprophytic, mostly colonizing the litter 38% and wood 34% based substrates, which was followed by soil organic dwelling species (17%). Ecto-mycorrhiza fungi (5%) and parasitic fungi (2%) were the least encountered. The data established that indigenous forests (native ecosystems) hosts a wide range of macrofungi assemblage in terms of density (2.6 individual fruit bodies / m2), species richness (8.3 species / plot) and species diversity (1.49/ plot level) compared to the plantation forest. The Conversion of native forest to plantation forest also interfered with species composition though did not alter species diversity. Seasonality was also shown to significantly affect the diversity of macro-fungi and 61% of the total species being present during the wet season. Based on the present findings, forested ecosystems in Kenya hold diverse macro-fungi community which warrants conservation measures.Keywords: diversity, Indigenous forest, macro-fungi, plantation forest, season
Procedia PDF Downloads 2141894 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets
Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.
Abstract:
The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction
Procedia PDF Downloads 1171893 The 2017 Summer Campaign for Night Sky Brightness Measurements on the Tuscan Coast
Authors: Andrea Giacomelli, Luciano Massetti, Elena Maggi, Antonio Raschi
Abstract:
The presentation will report the activities managed during the Summer of 2017 by a team composed by staff from a University Department, a National Research Council Institute, and an outreach NGO, collecting measurements of night sky brightness and other information on artificial lighting, in order to characterize light pollution issues on portions of the Tuscan coast, in Central Italy. These activities combine measurements collected by the principal scientists, citizen science observations led by students, and outreach events targeting a broad audience. This campaign aggregates the efforts of three actors: the BuioMetria Partecipativa project, which started collecting light pollution data on a national scale in 2008 with an environmental engineering and free/open source GIS core team; the Institute of Biometeorology from the National Research Council, with ongoing studies on light and urban vegetation and a consolidated track record in environmental education and citizen science; the Department of Biology from the University of Pisa, which started experiments to assess the impact of light pollution in coastal environments in 2015. While the core of the activities concerns in situ data, the campaign will account also for remote sensing data, thus considering heterogeneous data sources. The aim of the campaign is twofold: (1) To test actions of citizen and student engagement in monitoring sky brightness (2) To collect night sky brightness data and test a protocol for applications to studies on the ecological impact of light pollution, with a special focus on marine coastal ecosystems. The collaboration of an interdisciplinary team in the study of artificial lighting issues is not a common case in Italy, and the possibility of undertaking the campaign in Tuscany has the added value of operating in one of the territories where it is possible to observe both sites with extremely high lighting levels, and areas with extremely low light pollution, especially in the Southern part of the region. Combining environmental monitoring and communication actions in the context of the campaign, this effort will contribute to the promotion of night skies with a good quality as an important asset for the sustainability of coastal ecosystems, as well as to increase citizen awareness through star gazing, night photography and actively participating in field campaign measurements.Keywords: citizen science, light pollution, marine coastal biodiversity, environmental education
Procedia PDF Downloads 1731892 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision
Authors: Alaa El-Din Rezk
Abstract:
In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.Keywords: autonomous robotic, Hough transform, image processing, machine vision
Procedia PDF Downloads 3151891 Climate Smart Agriculture: Nano Technology in Solar Drying
Authors: Figen Kadirgan, M. A. Neset Kadirgan, Gokcen A. Ciftcioglu
Abstract:
Addressing food security and climate change challenges have to be done in an integrated manner. To increase food production and to reduce emissions intensity, thus contributing to mitigate climate change, food systems have to be more efficient in the use of resources. To ensure food security and adapt to climate change they have to become more resilient. The changes required in agricultural and food systems will require the creation of supporting institutions and enterprises to provide services and inputs to smallholders, fishermen and pastoralists, and transform and commercialize their production more efficiently. Thus there is continously growing need to switch to green economy where simultaneously causes reduction in carbon emissions and pollution, enhances energy and resource-use efficiency; and prevents the loss of biodiversity and ecosystem services. Smart Agriculture takes into account the four dimensions of food security, availability, accessibility, utilization, and stability. It is well known that, the increase in world population will strengthen the population-food imbalance. The emphasis on reduction of food losses makes a point on production, on farmers, on increasing productivity and income ensuring food security. Where also small farmers enhance their income and stabilize their budget. The use of solar drying for agricultural, marine or meat products is very important for preservation. Traditional sun drying is a relatively slow process where poor food quality is seen due to an infestation of insects, enzymatic reactions, microorganism growth and micotoxin development. In contrast, solar drying has a sound solution to all these negative effects of natural drying and artificial mechanical drying. The technical directions in the development of solar drying systems for agricultural products are compact collector design with high efficiency and low cost. In this study, using solar selective surface produced in Selektif Teknoloji Co. Inc. Ltd., solar dryers with high efficiency will be developed and a feasibility study will be realized.Keywords: energy, renewable energy, solar collector, solar drying
Procedia PDF Downloads 2251890 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures
Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk
Abstract:
From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach
Procedia PDF Downloads 2021889 The Political Economy of Green Trade in the Context of US-China Trade War: A Case Study of US Biofuels and Soybeans
Authors: Tonghua Li
Abstract:
Under the neoliberal corporate food regime, biofuels are a double-edged sword that exacerbates tensions between national food security and trade in green agricultural products. Biofuels have the potential to help achieve green sustainable development goals, but they threaten food security by exacerbating competition for land and changing global food trade patterns. The U.S.-China trade war complicates this debate. Under the influence of different political and corporate coordination mechanisms in China and the US, trade disputes can have different impacts on sustainable agricultural practices. This paper develops an actor-centred ‘network governance framework’ focusing on trade in soybean and corn-based biofuels to explain how trade wars can change the actions of governmental and non-governmental actors in the context of oligopolistic competition and market concentration in agricultural trade. There is evidence that the US-China trade decoupling exacerbates the conflict between national security, free trade in agriculture, and the realities and needs of green and sustainable energy development. The US government's trade policies reflect concerns about China's relative gains, leading to a loss of trade profits, making it impossible for the parties involved to find a balance between the three objectives and, consequently, to get into a biofuels and soybean industry dilemma. Within the setting of prioritizing national security and strategic interests, the government has replaced the dominant position of large agribusiness in the neoliberal food system, and the goal of environmental sustainability has been marginalized by high politics. In contrast, China faces tensions in the trade war between food security self-sufficiency policy and liberal sustainable trade, but the state-capitalist model ensures policy coordination and coherence in trade diversion and supply chain adjustment. Despite ongoing raw material shortages and technological challenges, China remains committed to playing a role in global environmental governance and promoting green trade objectives.Keywords: food security, green trade, biofuels, soybeans, US-China trade war
Procedia PDF Downloads 71888 Reuse of Wastewater from the Treated Water Pre-treatment Plant for Agricultural Purposes
Authors: Aicha Assal, El Mostapha Lotfi
Abstract:
According to data from the Directorate General of Meteorology (DGM), the average amount of precipitation recorded nationwide between September 1, 2021, and January 31, 2022, is 38.8 millimeters. This is well below the climatological normal of 106.8 millimeters for the same period between 1981 and 2010. This situation is becoming increasingly worrying, particularly for farmers who are finding it difficult to irrigate their land and feed their livestock. Drought is greatly influenced by the effects of climate change, mainly caused by pollution and greenhouse gases (GHGs). The aim of this work is to contribute to the purification of wastewater (considered as polluting) in order to reuse it for irrigation in agricultural areas or for livestock watering. This will be achieved once physico-chemical treatment tests on these waters have been carried out and validated. The main parameters analyzed in this study, after carrying out discoloration tests on domestic wastewater, include COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), pH, conductivity, dissolved oxygen, suspended solids (SS), phosphate, nitrate, nitrite and ammonium ions, faecal and total coliforms, as well as monitoring heavy metal concentrations. This work is also aimed at reclaiming the sludge produced by the decantation process, which will enable the waste to be transformed and reused as compost in agriculture and gardening.Keywords: wastewater, irrigation, COD, COB, SS
Procedia PDF Downloads 681887 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract
Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie
Abstract:
In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk
Procedia PDF Downloads 1611886 Wicking Bed Cultivation System as a Strategic Proposal for the Cultivation of Milpa and Mexican Medicinal Plants in Urban Spaces
Authors: David Lynch Steinicke, Citlali Aguilera Lira, Andrea León García
Abstract:
The proposal posed in this work comes from a researching-action approach. In Mexico, a dialogue of knowledge may function as a link between traditional, local, pragmatic knowledge, and technological, scientific knowledge. The advantage of generating this nexus lies on the positive impact in the environment, in society and economy. This work attempts to combine, on the one hand the traditional Mexican knowledge such as the usage of medicinal herb and the agroecosystem milpa; and on the other hand make use of a newly created agricultural ecotechnology which main function is to take advantage of the urban space and to save water. This ecotechnology is the wicking bed. In a globalized world, is relevant to have a proposal where the most important aspect is to revalorize the culture through the acquisition of traditional knowledge but at the same time adapting them to the new social and urbanized structures without threatening the environment. The methodology used in this work comes from a researching-action approach combined with a practical dimension where an experimental model made of three wickingbeds was implemented. In this model, there were cultivated medicinal herb and milpa components. The water efficiency and the social acceptance were compared with a traditional ground crop, all this practice was made in an urban social context. The implementation of agricultural ecotechnology has had great social acceptance as its irrigation involves minimal effort and it is economically feasible for low-income people. The wicking bed system raised in this project is attainable to be implemented in schools, urban and peri-urban environments, homemade gardens and public areas. The proposal managed to carry out an innovative and sustainable knowledge-based traditional Mexican agricultural technology, allowing regain Milpa agroecosystem in urban environments to strengthen food security in favour of nutritional and protein benefits for the Mexican fare.Keywords: milpa, traditional medicine, urban agriculture, wicking bed
Procedia PDF Downloads 3871885 The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta
Authors: Trieu Anh Ngoc, Nguyen Quang Kim
Abstract:
Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta.Keywords: sediment transport, sea level rise, climate change, Mike Model
Procedia PDF Downloads 2761884 LCA and LCC for the Evaluation of Sustainability of Rapeseed, Giant Reed, and Poplar Cultivation
Authors: Alessandro Suardi, Rodolfo Picchio, Domenico Coaloa, Maria Bonaventura Forleo, Nadia Palmieri, Luigi Pari
Abstract:
The reconversion process of the Italian sugar supply chain to bio-energy supply chains, as a result of the 2006 Sugar CMO reform, have involved research to define the best logistics, the most adapted energy crops for the Italian territory and their sustainability. Rapeseed (Brassica napus L.), Giant reed (Arundo donax L.) and Poplar (Poplar ssp.) are energy crops considered strategic for the development of Italian energy supply-chains. This study analyzed the environmental and the economic impacts on the farm level of these three energy crops. The environmental assessment included six farming units, two per crop, which were extracted from a sample of 251 rapeseed farm units (2751 ha), 7 giant reed farm units (7.8 ha), and 91 poplar farm units (440 ha) using a statistical multivariate analysis. Life Cycle Assessment (LCA) research method has been used to evaluate and compare the sustainability of the agricultural phases of the crops studied. The impact analyses have been performed at mid-point and end-point levels. The results of the analysis shown that the fertilization, is the major source of environmental impact of the agricultural phase due to the production of the fertilizers and the soil emissions of GHG following the treatment. The perennial energy crops studied (Arundo donax L., Poplar ssp.) were environmentally more sustainable if compared with the annual crop (Brassica napus L.) for all the impact categories at mid-point and end-point levels analyzed. The most relevant impact category influenced by the agricultural process result the fossil depletion, mainly due to the fossil fuels consumed during the mineral fertilizers production (urea). Human health was the most affected damage category at the end point level. Poplar result the energy crop with the best environmental performance for the Italian territory, in the distribution areas most suitable for its cultivation.Keywords: LCA, energy crops, rapeseed, giant reed, poplar
Procedia PDF Downloads 4811883 Optimal Evaluation of Weather Risk Insurance for Wheat
Authors: Slim Amami
Abstract:
A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, database, meteorological factors, production model, optimal price
Procedia PDF Downloads 2221882 Ecological Engineering Through Organic Amendments: Enhancing Pest Regulation, Beneficial Insect Populations, and Rhizosphere Microbial Diversity in Cabbage Ecosystems
Authors: Ravi Prakash Maurya, Munaswamyreddygari Sreedhar
Abstract:
The present studies on ecological engineering through soil amendments in cabbage crops for insect pests regulation were conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, India. Ten treatments viz., Farm Yard Manure (FYM), Neem cake (NC), Vermicompost (VC), Poultry manure (PM), PM+FYM, NC+VC, NC+PM, VC+FYM, Urea+ SSP+MOP (Standard Check) and Untreated Check were evaluated to study the effect of these amendments on the population of insect pests, natural enemies and the microbial community of the rhizosphere in the cabbage crop ecosystem. The results revealed that most of the cabbage pests, viz., aphids, head borer, gram pod borer, and armyworm, were more prevalent in FYM, followed by PM and NC-treated plots. The best cost-benefit ratio was found in PM + FYM treatment, which was 1: 3.62, while the lowest, 1: 0.97, was found in the VC plot. The population of natural enemies like spiders, coccinellids, syrphids, and other hymenopterans and dipterans was also found to be prominent in organic plots, namely FYM, followed by VC and PM plots. Diversity studies on organic manure-treated plots were also carried out, which revealed a total of nine insect orders (Hymenoptera, Hemiptera, Lepidoptera, Coleoptera, Neuroptera, Diptera, Orthoptera, Dermaptera, Thysanoptera, and one arthropodan class, Arachnida) in different treatments. The Simpson Diversity Index was also studied and found to be maximum in FYM plots. The metagenomic analysis of the rhizosphere microbial community revealed that the highest bacterial count was found in NC+PM plot as compared to standard check and untreated check. The diverse microbial population contributes to soil aggregation and stability. Healthier soil structures can improve water retention, aeration, and root penetration, which are all crucial for crop health. The further analysis also identified a total of 39 bacterial phyla, among which the most abundant were Actinobacteria, Firmicutes, and the SAR324 clade. Actinobacteria and Firmicutes are known for their roles in decomposing organic matter and mineralizing nutrients. Their highest abundance suggests improved nutrient cycling and availability, which can directly enhance plant growth. Hence, organic amendments in cabbage farming can transform the rhizosphere microbiome, reduce pest pressure, and foster populations of beneficial insects, leading to healthier crops and a more sustainable agricultural ecosystem.Keywords: cabbage ecosystem, organic amendments, rhizosphere microbiome, pest and natural enemy diversity
Procedia PDF Downloads 131881 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 1001880 Eradicating Micronutrient Deficiency through Biofortification
Authors: Ihtasham Hamza
Abstract:
In the contemporary world, where the West is afflicted by the diseases of excess nutrition, much of the rest globe suffers at the hands of hunger. A troubling constituent of hunger is micronutrient deficiency, also called hidden hunger. Major dependence on calorie-rich diets and low diet diversification are responsible for high malnutrition rates, especially in African and Asian countries. But the dilemma isn’t immune to solutions. Highlighting the substantial cause to be sole dependence on staples for food, biofortification has emerged as a novel tool to confront the widely distributed jeopardize of hidden hunger. Biofortification potentials the better nutritional approachability to commonalities overcoming various difficulties and reaching the doorstep. The crops associated with biofortification offer a rural-based involvement that, proposal, primarily reaches these more remote populations, which comprise a majority of the malnourished in many countries, and then penetrates to urban populations as assembly overages are marketed. Initial investments in agricultural research at a central location can generate high recurrent benefits at low cost as adapted biofortified cultivars become widely available in countries across time at low recurrent costs as opposed to supplementation which is comparatively expensive and requires continued financing over time, which may be imperilled by fluctuating political curiosity.Keywords: biofortified crops, hunger, malnutrition, agricultural practices
Procedia PDF Downloads 2881879 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia
Authors: Zelalem Teshager
Abstract:
The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions
Procedia PDF Downloads 541878 Greenland Monitoring Using Vegetation Index: A Case Study of Lal Suhanra National Park
Authors: Rabia Munsaf Khan, Eshrat Fatima
Abstract:
The analysis of the spatial extent and temporal change of vegetation cover using remotely sensed data is of critical importance to agricultural sciences. Pakistan, being an agricultural country depends on this resource as it makes 70% of the GDP. The case study is of Lal Suhanra National Park, which is not only the biggest forest reserve of Pakistan but also of Asia. The study is performed using different temporal images of Landsat. Also, the results of Landsat are cross-checked by using Sentinel-2 imagery as it has both higher spectral and spatial resolution. Vegetation can easily be detected using NDVI which is a common and widely used index. It is an important vegetation index, widely applied in research on global environmental and climatic change. The images are then classified to observe the change occurred over 15 years. Vegetation cover maps of 2000 and 2016 are used to generate the map of vegetation change detection for the respective years and to find out the changing pattern of vegetation cover. Also, the NDVI values aided in the detection of percentage decrease in vegetation cover. The study reveals that vegetation cover of the area has decreased significantly during the year 2000 and 2016.Keywords: Landsat, normalized difference vegetation index (NDVI), sentinel 2, Greenland monitoring
Procedia PDF Downloads 3091877 Resource Allocation of Small Agribusinesses and Entrepreneurship Development In Nigeria
Authors: Festus M. Epetimehin
Abstract:
Resources are essential materials required for production of goods and services. Effective allocation of these resources can engender the success of current business activities and its sustainability for future generation. The study examined effect of resource allocation of small agribusinesses on entrepreneurship development in Southwest Nigeria. Sample size of 385 was determined using Cochran’s formula. 350 valid copies of questionnaire were used in the analysis. In order to achieve the objective, research design (descriptive and cross sectional designs) was used to gather data for the study through the administration of questionnaire to respondents. Both descriptive and inferential statistics were used to investigate the objective of the study. The result obtained indicated that resource allocation by small agribusinesses had a substantial positive effect on entrepreneurship development with the p-value of (0.0000) which was less than the 5.0% critical value with a positive regression coefficient of 0.53. The implication of this is that the ability of the entrepreneurs to deploy their resources efficiently through adequate realization of better gross margin could enhance business activities and development. The study recommends that business owners still need some level of serious training and exposure on how to manage modern small agribusiness resources to enhance business performance. The intervention of Agricultural Development Programme (ADP) and other Agricultural institutions are needed in this regard.Keywords: resource, resource allocation, small businesses, agriculture, entrepreneurship development
Procedia PDF Downloads 511876 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model
Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani
Abstract:
The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil
Procedia PDF Downloads 3121875 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers
Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye
Abstract:
Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.Keywords: energy, ibadan, heat - load, visual-basic.net
Procedia PDF Downloads 4101874 Climate Change and Extreme Weather: Understanding Interconnections and Implications
Authors: Johnstone Walubengo Wangusi
Abstract:
Climate change is undeniably altering the frequency, intensity, and geographic distribution of extreme weather events worldwide. In this paper, we explore the complex interconnections between climate change and extreme weather phenomena, drawing upon research from atmospheric science, geology, and climatology. We examine the underlying mechanisms driving these changes, the impacts on natural ecosystems and human societies, and strategies for adaptation and mitigation. By synthesizing insights from interdisciplinary research, this paper aims to provide a comprehensive understanding of the multifaceted relationship between climate change and extreme weather, informing efforts to address the challenges posed by a changing climate.Keywords: climate change, extreme weather, atmospheric science, geology, climatology, impacts, adaptation, mitigation
Procedia PDF Downloads 641873 Broad Survey of Fine Root Traits to Investigate the Root Economic Spectrum Hypothesis and Plant-Fire Dynamics Worldwide
Authors: Jacob Lewis Watts, Adam F. A. Pellegrini
Abstract:
Prairies, grasslands, and forests cover an expansive portion of the world’s surface and contribute significantly to Earth’s carbon cycle. The largest driver of carbon dynamics in some of these ecosystems is fire. As the global climate changes, most fire-dominated ecosystems will experience increased fire frequency and intensity, leading to increased carbon flux into the atmosphere and soil nutrient depletion. The plant communities associated with different fire regimes are important for reassimilation of carbon lost during fire and soil recovery. More frequent fires promote conservative plant functional traits aboveground; however, belowground fine root traits are poorly explored and arguably more important drivers of ecosystem function as the primary interface between the soil and plant. The root economic spectrum (RES) hypothesis describes single-dimensional covariation between important fine-root traits along a range of plant strategies from acquisitive to conservative – parallel to the well-established leaf economic spectrum (LES). However, because of the paucity of root trait data, the complex nature of the rhizosphere, and the phylogenetic conservatism of root traits, it is unknown whether the RES hypothesis accurately describes plant nutrient and water acquisition strategies. This project utilizesplants grown in common garden conditions in the Cambridge University Botanic Garden and a meta-analysis of long-term fire manipulation experiments to examine the belowground physiological traits of fire-adapted and non-fire-adapted herbaceous species to 1) test the RES hypothesis and 2) describe the effect of fire regimes on fine root functional traits – which in turn affect carbon and nutrient cycling. A suite of morphological, chemical, and biological root traits (e.g. root diameter, specific root length, percent N, percent mycorrhizal colonization, etc.) of 50 herbaceous species were measuredand tested for phylogenetic conservatism and RES dimensionality. Fire-adapted and non-fire-adapted plants traits were compared using phylogenetic PCA techniques. Preliminary evidence suggests that phylogenetic conservatism may weaken the single-dimensionality of the RES, suggesting that there may not be a single way that plants optimize nutrient and water acquisition and storage in the complex rhizosphere; additionally, fire-adapted species are expected to be more conservative than non-fire-adapted species, which may be indicative of slower carbon cycling with increasing fire frequency and intensity.Keywords: climate change, fire regimes, root economic spectrum, fine roots
Procedia PDF Downloads 1231872 Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia
Authors: Wasihun Girma Hailemariam
Abstract:
Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussedKeywords: energy analysis, organic fertilizer, resource management, sugarcane
Procedia PDF Downloads 1581871 Determinants of International Volatility Passthroughs of Agricultural Commodities: A Panel Analysis of Developing Countries
Authors: Tetsuji Tanaka, Jin Guo
Abstract:
The extant literature has not succeeded in uncovering the common determinants of price volatility transmissions of agricultural commodities from international to local markets, and further, has rarely investigated the role of self-sufficiency measures in the context of national food security. We analyzed various factors to determine the degree of price volatility transmissions of wheat, rice, and maize between world and domestic markets using GARCH models with dynamic conditional correlation (DCC) specifications and panel-feasible generalized least square models. We found that the grain autarky system has the potential to diminish volatility pass-throughs for three grain commodities. Furthermore, it was discovered that the substitutive commodity consumption behavior between maize and wheat buffers the volatility transmissions of both, but rice does not function as a transmission-relieving element, either for the volatilities of wheat or maize. The effectiveness of grain consumption substitution to insulate the pass-throughs from global markets is greater than that of cereal self-sufficiency. These implications are extremely beneficial for developing governments to protect their domestic food markets from uncertainty in foreign countries and as such, improves food security.Keywords: food security, GARCH, grain self-sufficiency, volatility transmission
Procedia PDF Downloads 1551870 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice
Authors: Chiling Chen, Chiaoying Chou, Siyang Wu
Abstract:
Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy
Procedia PDF Downloads 3001869 Justitium: Endangered Species and Humanitarian Interventions in the Anthropocene Era
Authors: Eleni Panagiotarakou
Abstract:
This paper argues that humans have a collective moral responsibility to help wild animals during the Anthropocene era. Seen from the perspective of deontic logic, this moral responsibility did not exist in the Holocene era (ca. 11,700 BC-1945 AD) on account of humanity’s limited impact on the natural environment. By contrast in the Anthropocene, human activities are causing significant disturbances to planetary ecosystems and by inference to wildlife communities. Under these circumstances controversial and deeply regrettable interventional methods such as Managed Relocations (MR) and synthetic biology should be expanded and become policy measures despite their known and unknown risks. The main rationale for the above stems from the fact that traditional management strategies are simply insufficient in the Anthropocene. If the same anthropogenic activities continue unabated they risk triggering a sixth mass species extinction.Keywords: anthropocene, humanitarian interventions, managed relocations, species extinctions, synthetic biology
Procedia PDF Downloads 2491868 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols
Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene
Abstract:
The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon
Procedia PDF Downloads 2361867 Cooking Qualities and Sensory Evaluation Analysis of a Collection of Traditional Rice Genotypes of Kerala, India
Authors: Vanaja T., Sravya P. K.
Abstract:
Cooking and eating qualities have major roles in determining the quality characteristics of rice. Traditional rice varieties are highly diversified with each other with respect to unique nutrient, cooking, and eating characteristics, which can be used as parents for the development of high-quality varieties. In order to gather vital information for upcoming rice breeding programs, a study was conducted to assess the diversity of the cooking attributes and sensory evaluation of 28 traditional rice genotypes of Kerala, India, conserved at Regional Agricultural Research Station, Pilicode of Kerala Agricultural University. The cultivars ‘Kochuvithu’, ‘Jeerakachamba’, and ‘Rajameni’ exhibited the highest volume expansion ratio. The highest Kernel elongation ratio was recorded for ‘Gandhakasala’, ‘Rajameni’, and ‘Avadi’. A shorter cooking time based on Alkali spread value was shown by the cultivars ‘Kozhivalan’, ‘Kunhikayama’, ‘Rasagadham’, ‘Jadathi’, ‘Japanviolet’, ‘Nooravella’, ‘Punchavella’, ‘Avadi’, ‘Vadakan vellarikayama’, ‘Punchaparuthi’, ‘Shyamala’, ‘China Silk’, ‘Marathondi’, and ‘Gandhakasala’. Sensory evaluation revealed that the cultivars ‘Japanviolet’, ‘Kunhukunhu’, and ‘Kalladiyaran’ can be categorized under moderate to very much.Keywords: rice, traditional rice varieties, cooking qualities, sensory evaluation, consumer acceptance
Procedia PDF Downloads 19