Search results for: RFID (Radio Frequency Identification)
6455 A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform
Authors: Beldjilali Bilal, Benadda Belkacem, Kahlouche Salem
Abstract:
Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.Keywords: global positioning system, acquisition, FFT, GPS/L1, software receiver, weak signal
Procedia PDF Downloads 2516454 Clothes Identification Using Inception ResNet V2 and MobileNet V2
Authors: Subodh Chandra Shakya, Badal Shrestha, Suni Thapa, Ashutosh Chauhan, Saugat Adhikari
Abstract:
To tackle our problem of clothes identification, we used different architectures of Convolutional Neural Networks. Among different architectures, the outcome from Inception ResNet V2 and MobileNet V2 seemed promising. On comparison of the metrices, we observed that the Inception ResNet V2 slightly outperforms MobileNet V2 for this purpose. So this paper of ours proposes the cloth identifier using Inception ResNet V2 and also contains the comparison between the outcome of ResNet V2 and MobileNet V2. The document here contains the results and findings of the research that we performed on the DeepFashion Dataset. To improve the dataset, we used different image preprocessing techniques like image shearing, image rotation, and denoising. The whole experiment was conducted with the intention of testing the efficiency of convolutional neural networks on cloth identification so that we could develop a reliable system that is good enough in identifying the clothes worn by the users. The whole system can be integrated with some kind of recommendation system.Keywords: inception ResNet, convolutional neural net, deep learning, confusion matrix, data augmentation, data preprocessing
Procedia PDF Downloads 1876453 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 2266452 Allele Frequency of HLA-DRB1* in Thai Population to Predict Factor for Severity of COVID-19 Infection
Authors: Siriniya Siribrahmanakul
Abstract:
Introduction:SARsCOVID-19 is rapidly spreading, and some people may exhibit severe symptoms. Mortality rate of 2.0–3.0% with COVID-19 infection atworldwide. Human leukocyte antigen (HLA), located on chromosome 6, consist of HLA class I and class II. HLA are used by the immune system to attach self-antigens. Previous studies, HLA-DRB1*01:01,HLA-DRB1*12:01and HLA-DRB1*14:04 were, showed significant difference with severe COVID-19 in the Chinese population by p-value < 0.05. Objective: We investigated the prevalence of HLA-DRB1 alleles associated with severe COVID-19 in Thai population. Materials and Methods:200 DNA samples were isolated from EDTA blood using the MagNAprue Compact Nucleic Acid Isolation kits.HLA-DRB1alleles were genotyped using sequence-specific oligonucleotides (PCR-SSOs). Results:The frequency of HLA-DRB1 alleles in Thai population wereHLA-DRB1*12:02 (15.75%), HLA-DRB1*15:02 (14.50%), HLA-DRB1*09:01 (11.50%), HLA-DRB1*07:01 (9.50%), HLA-DRB1*03:01,HLA-DRB1*05:01 (5.75%), HLA-DRB1*14:01 (5.50%), HLA-DRB1*16:02 (4.50%), HLA-DRB1*04:05 (4.00%), HLA-DRB1*14:03 (3.25%), HLA-DRB1*10:01 (2.25%) and HLA-DRB1*13:02 (2.00%). Particularly, HLA-DRB1*12:02 allele was the highest allele frequency presented in the four regions groups of Thai population. Furthermore, the HLA-DRB1* alleles associated with severe COVID-19, which consists ofHLA-DRB1*14:04(2.00 %) and HLA-DRB1*12:01(0.50%) in Thai population, whereas HLA-DRB1*01:01 allele was not found in this population. HLA-DRB1*14:04 and HLA-DRB1*12:01alleles were similarly distributed in four regions populations in Thailand (p-value > 0.05). The alleles frequencies of HLA-DRB1*14:04 and HLA-DRB1*12:01, which associated with severe COVID-19, had no significant differences between Thai population, South China population, South Africa population, and South Koreapopulation (p-value > 0.05). Conclusions: Particularly, this study has focused on allele frequency of HLA-DRB1*14:04in a healthy Thai population to evaluating their impact on the severe COVID-19. Furthermore, our research needs to be done in larger numbers of Thai patients.Keywords: HLA-DRB1, allele frequency, Thai population, COVID-19 marker
Procedia PDF Downloads 1346451 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems
Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat
Abstract:
Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning
Procedia PDF Downloads 1206450 Experimental Assessment of the Effectiveness of Judicial Instructions and of Expert Testimony in Improving Jurors’ Evaluation of Eyewitness Evidence
Authors: Alena Skalon, Jennifer L. Beaudry
Abstract:
Eyewitness misidentifications can sometimes lead to wrongful convictions of innocent people. This occurs in part because jurors tend to believe confident eyewitnesses even when the identification took place under suggestive conditions. Empirical research demonstrated that jurors are often unaware of the factors that can influence the reliability of eyewitness identification. Most common legal safeguards that are designed to educate jurors about eyewitness evidence are judicial instructions and expert testimony. To date, very few studies assessed the effectiveness of judicial instructions and most of them found that judicial instructions make jurors more skeptical of eyewitness evidence or do not have any effect on jurors’ judgments. Similar results were obtained for expert testimony. However, none of the previous studies focused on the ability of legal safeguards to improve jurors’ assessment of evidence obtained from suggestive identification procedures—this is one of the gaps addressed by this paper. Furthermore, only three studies investigated whether legal safeguards improve the ultimate accuracy of jurors’ judgments—that is, whether after listening to judicial instructions or expert testimony jurors can differentiate between accurate and inaccurate eyewitnesses. This presentation includes two studies. Both studies used genuine eyewitnesses (i.e., eyewitnesses who watched the crime) and manipulated the suggestiveness of identification procedures. The first study manipulated the presence of judicial instructions; the second study manipulated the presence of one of two types of expert testimony: a traditional, verbal expert testimony or expert testimony accompanied by visual aids. All participant watched a video-recording of an identification procedure and of an eyewitness testimony. The results indicated that neither judicial instructions nor expert testimony affected jurors’ judgments. However, consistent with the previous findings, when the identification procedure was non-suggestive, jurors believed accurate eyewitnesses more often than inaccurate eyewitnesses. When the procedure was suggestive, jurors believed accurate and inaccurate eyewitnesses at the same rate. The paper will discuss the implications of these studies and directions for future research.Keywords: expert testimony, eyewitness evidence, judicial instructions, jurors’ decision making, legal safeguards
Procedia PDF Downloads 1776449 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 826448 Deep Learning to Improve the 5G NR Uplink Control Channel
Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche
Abstract:
The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LSKeywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning
Procedia PDF Downloads 826447 Identification of Shark Species off The Nigerian Coast Using DNA Barcoding
Authors: O. O. Fola-Matthews, O. O. Soyinka, D. N. Bitalo
Abstract:
Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode databaseKeywords: BOLD, DNA barcoding, nigeria, sharks
Procedia PDF Downloads 1676446 Host Range and Taxonomy of Hairy Caterpillars (Erebidae: Lepidoptera) in Different Cropping Ecosystems
Authors: Mallikarjun Warad, C. M. Kalleshwaraswamy, P. R. Shashank
Abstract:
Studies were conducted to record the occurrence of different species of hairy caterpillar on different host plants in and around Shivamogga, Karnataka, India. Twelve genera of hairy caterpillars belonging to Arctiinae and Lymantriinae were recorded on different host plants and reared to adults in laboratory on their respective hosts. The Porthesia sp. feed on castor, Creatonotus gangis on cocoa, Perina nuda on fig, Pericalia ricini on pigeon pea, Utetheisa pulchella on sunhemp and Euproctis sp. on paddy and banana. Illustrations of immature and adults were made to associate them. Along with this, light traps were also set during the rainy season, to capture adults of hairy caterpillars. An illustrated identification key was provided for easy and accurate identification of adult of hairy caterpillars based on their morphological (male genitalial) characters. The study through a light on the existence of sexual dimorphism, polyphagous nature and diapause are the major hindrance in taxonomic identification. Hence, attempts were made to address these issues in the study.Keywords: Erebidae, hairy caterpillars, male genitalia, taxonomy
Procedia PDF Downloads 2066445 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis
Authors: Yazid Alkraimeen
Abstract:
Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses
Procedia PDF Downloads 1396444 Primary Resonance in Vortex-Induced Vibration of a Pipeline Close to a Plane Boundary
Authors: Yiming Jin, Ping Dong
Abstract:
The primary resonance of a pipeline close to a plane boundary is investigated in this paper. Based on classic Van der Pol equation and added a nonlinear item, a new wake oscillator model is proposed to predict the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary. Then, with the multi-scale method, the approximate solution for the case of the primary resonance is obtained. Besides, to study the characteristic of the primary resonance, the effects of the mass ration, frequency, damp ratio and gap ratio on the frequency-response curves of the pipeline are analysed. On the whole, the trend of the numerical results match up with that of the experimental data well and the mass ration, frequency, damp ratio and gap ratio play an important role in the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary, especially, the smaller is the mass ratio, the larger impact the gap ratio has on the frequency-response curves of the primary resonance.Keywords: primary resonance, gap ratio, vortex-induced vibration, multi-scale method
Procedia PDF Downloads 3726443 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation
Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun
Abstract:
This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation
Procedia PDF Downloads 4516442 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach
Authors: Mustapha Sadouk
Abstract:
This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material
Procedia PDF Downloads 866441 Interference Management in Long Term Evolution-Advanced System
Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi
Abstract:
Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).Keywords: capacity, carrier aggregation, LTE-Advanced, MIMO (Multiple Input Multiple Output), peak data rate, spectral efficiency
Procedia PDF Downloads 2566440 High Frequency Sonochemistry: A New Field of Cavitation‐Free Acoustic Materials Synthesis and Manipulation
Authors: Amgad Rezk, Heba Ahmed, Leslie Yeo
Abstract:
Ultrasound presents a powerful means for material synthesis. In this talk, we showcase a new field demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (kHz and up to ~2 MHz) for crystalising and manipulating a variety of nanoscale materials. At these frequencies, cavitation—which underpins most sonochemical processes—is largely absent, suggesting that altogether fundamentally different mechanisms are at dominant. Examples include the crystallization of highly oriented structures, quasi-2D metal-organic frameworks and nanocomposites. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with high-frequency surface vibration gives rise to molecular ordering and assembly on the nano and microscale.Keywords: high-frequency acoustics, microfluidics, crystallisation, composite nanomaterials
Procedia PDF Downloads 1216439 Iot-Based Interactive Patient Identification and Safety Management System
Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro
Abstract:
We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band
Procedia PDF Downloads 3116438 Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors
Authors: Isaac Quiros-Fernandez, Angel Cid-Arregui
Abstract:
Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors.Keywords: cancer, TCR, tumor antigens, immunotherapy
Procedia PDF Downloads 696437 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses
Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev
Abstract:
The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion
Procedia PDF Downloads 2956436 Release of Calcein from Liposomes Using Low and High Frequency Ultrasound
Authors: Ghaleb A. Husseini, Salma E. Ahmed, Hesham G. Moussa, Ana M. Martins, Mohammad Al-Sayah, Nasser Qaddoumi
Abstract:
This abstract aims to investigate the use of targeted liposomes as anticancer drug carriers in vitro in combination with ultrasound applied as drug trigger; in order to reduce the side effects caused by traditional chemotherapy. Pegylated liposomes were used to encapsulate calcein and then release this model drug when 20-kHz, 40-kHz, 1-MHz and 3-MHz ultrasound were applied at different acoustic power densities. Fluorescence techniques were then used to measure the percent drug release of calcein from these targeted liposomes. Results showed that as the power density increases, at the four frequencies studied, the release of calcein also increased. Based on these results, we believe that ultrasound can be used to increase the rate and amount of chemotherapeutics release from liposomes.Keywords: liposomes, calcein release, high frequency ultrasound, low frequency ultrasound, fluorescence techniques
Procedia PDF Downloads 4246435 Multilingualism and Unification of Teaching
Authors: Mehdi Damaliamiri, Firouzeh Akbari
Abstract:
Teaching literature to children at an early age is of great importance, and there have been different methods to facilitate learning literature. Based on the law, all children going to school in Iran should learn the Persian language and literature. This has been concomitant with two different levels of learning related to urban or rural bilingualism. For bilingual children living in the villages, learning literature and a new language (Persian) turns into a big challenge as it is done based on the translation the teacher does while in the city, it is easier as the confrontation of children with the Persian language is more. Over recent years, to change the trend of learning Persian by children speaking another language, the TV and radio programs have been considered to be effective, but the scores of the students in Persian language national exams show that these programs have not been so effective for the bilingual students living in the villages. To identify the determinants of weak learning of Persian by bilingual children, two different regions were chosen, Turkish-speaking and Kurdish-speaking communities, to compare their learning of Persian at the first and second levels of elementary school. The criteria of learning was based on the syllabification of Persian words, word order in the sentence, and compound sentences. Students were taught in Persian how to recognize syllabification without letting them translate the words in their own languages and were asked to produce simple sentences in Persian in response to situational questions. Teaching methods, language relatedness with Persian, and exposure to social media programs, especially TV and radio, were the factors that were considered to affect the potential of children in learning Persian.Keywords: bilingualism, persian, education, Literature
Procedia PDF Downloads 736434 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1576433 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode
Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum
Abstract:
Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient
Procedia PDF Downloads 1546432 Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation
Authors: Anupuma Raina, Ajay Parkash
Abstract:
In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study.Keywords: chimerism, HSCT, STRs analysis, forensic identification
Procedia PDF Downloads 656431 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 236430 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting
Procedia PDF Downloads 4536429 A Study on the Improvement of Mobile Device Call Buzz Noise Caused by Audio Frequency Ground Bounce
Authors: Jangje Park, So Young Kim
Abstract:
The market demand for audio quality in mobile devices continues to increase, and audible buzz noise generated in time division communication is a chronic problem that goes against the market demand. In the case of time division type communication, the RF Power Amplifier (RF PA) is driven at the audio frequency cycle, and it makes various influences on the audio signal. In this paper, we measured the ground bounce noise generated by the peak current flowing through the ground network in the RF PA with the audio frequency; it was confirmed that the noise is the cause of the audible buzz noise during a call. In addition, a grounding method of the microphone device that can improve the buzzing noise was proposed. Considering that the level of the audio signal generated by the microphone device is -38dBV based on 94dB Sound Pressure Level (SPL), even ground bounce noise of several hundred uV will fall within the range of audible noise if it is induced by the audio amplifier. Through the grounding method of the microphone device proposed in this paper, it was confirmed that the audible buzz noise power density at the RF PA driving frequency was improved by more than 5dB under the conditions of the Printed Circuit Board (PCB) used in the experiment. A fundamental improvement method was presented regarding the buzzing noise during a mobile phone call.Keywords: audio frequency, buzz noise, ground bounce, microphone grounding
Procedia PDF Downloads 1366428 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1636427 Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis
Authors: Yo Fukutani, Shuji Moriguchi, Takuma Kotani, Terada Kenjiro
Abstract:
If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula.Keywords: copulas, Monte-Carlo simulation, probabilistic risk assessment, tsunamis
Procedia PDF Downloads 1436426 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium
Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh
Abstract:
The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow
Procedia PDF Downloads 494