Search results for: Extended Park´s vector approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16481

Search results for: Extended Park´s vector approach

15881 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 161
15880 Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018

Authors: Godfrey Nsereko, Daniel Kadobera, Denis Okethwangu, Joyce Nguna, Alex Riolexus Ario

Abstract:

Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites.

Keywords: malaria outbreak, Plasmodium falciparum, global health security, Uganda

Procedia PDF Downloads 226
15879 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
15878 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 349
15877 Analysis of Silicon Controlled Rectifier-Based Electrostatic Discharge Protection Circuits with Electrical Characteristics for the 5V Power Clamp

Authors: Jun-Geol Park, Kyoung-Il Do, Min-Ju Kwon, Kyung-Hyun Park, Yong-Seo Koo

Abstract:

This paper analyzed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuits with the turn-on time characteristics. The structures are the LVTSCR (Low Voltage Triggered SCR), the ZTSCR (Zener Triggered SCR) and the PTSCR (P-Substrate Triggered SCR). The three structures are for the 5V power clamp. In general, the structures with the low trigger voltage structure can have the fast turn-on characteristics than other structures. All the ESD protection circuits have the low trigger voltage by using the N+ bridge region of LVTSCR, by using the zener diode structure of ZTSCR, by increasing the trigger current of PTSCR. The simulation for the comparison with the turn-on time was conducted by the Synopsys TCAD simulator. As the simulation results, the LVTSCR has the turn-on time of 2.8 ns, ZTSCR of 2.1 ns and the PTSCR of 2.4 ns. The HBM simulation results, however, show that the PTSCR is the more robust structure of 430K in HBM 8kV standard than 450K of LVTSCR and 495K of ZTSCR. Therefore the PTSCR is the most effective ESD protection circuit for the 5V power clamp.

Keywords: ESD, SCR, turn-on time, trigger voltage, power clamp

Procedia PDF Downloads 348
15876 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry

Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai

Abstract:

The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.

Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy

Procedia PDF Downloads 102
15875 Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code

Authors: M. Y. Kang, Euntaek Yoon, H. D. Choi

Abstract:

To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source.

Keywords: attenuation, EXVol, detection efficiency, volume source

Procedia PDF Downloads 185
15874 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 145
15873 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 190
15872 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
15871 Study of the Microflora of Cedar Forests with Different Degrees of Decline in the National Park Belezma (Batna, Algeria)

Authors: Cherak Imen, Sellami Mehdi

Abstract:

The Atlas cedar, Cedrus atlantica, is endemic to the mountains of North Africa. This is one of the most valuable softwood, both economically, ecologically, aesthetically and culturally. In Algeria, the cedar forests currently have worrying symptoms of decline which therefore require special monitoring. Fungal endophytes are involved in various diseases of the Atlas cedar. They attack all organs on which they cause many symptoms. These microflora live in complex interaction with plants. In this study, we identified a total of 09 mycotaxons collected needles Cedarwood at three stations with different degrees of decline (Talmet, Boumerzoug and Tuggurt) in the National Park Belezma (Batna, Algeria). The study conducted on a total of 12 trees were identified 08 mycoendophytes in Talmet station, 04 species in the Boumerzoug station and 03 in Tuggurt station. The total species richness mycoendophytes depending on the types of cedar forests showed that the largest diversity was recorded at the cedar forest healthy, Alternaria is the most common type in all stations. This work should be completed by further detailed studies to identify other endophyte species and better know its interactions with the Atlas cedar.

Keywords: Cedrus atlantica, endophytic fungi, microflora, mycotaxons, mycoendophyte

Procedia PDF Downloads 346
15870 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy

Authors: J. Alvarez, J. Pimienta, R. Sarmiento

Abstract:

Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.

Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure

Procedia PDF Downloads 228
15869 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 371
15868 Effect of Packaging Treatment and Storage Condition on Stability of Low Fat Chicken Burger

Authors: Mohamed Ahmed Kenawi Abdallah

Abstract:

Chemical composition, cooking loss, shrinkage value, texture coefficient indices, Feder value, microbial examination, and sensory evaluation were done in order to examine the effect of adding 15% germinated quinoa seeds flour as extender to chicken wings meat to produce low fat chicken burger, packaged in two different packing materials and stored frozen for nine months. The data indicated reduction in the moisture content, crude either extract, and increase in the ash content, pH value, and total acidity for the samples extended by quinoa flour compared with the control one. The data showed that the extended samples with quinoa flour had the lowest values of TBA, cooking loss, and shrinkage value compared with the control ones. The data also revealed that, the sample contained quinoa flour had total bacterial count and psychrophilic bacterial count lower than the control sample. In addition, it has higher evaluation values for overall acceptability than the control one.

Keywords: chicken wings, low fat chicken burger, quinoa flour, vacuum packaging.

Procedia PDF Downloads 102
15867 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design

Procedia PDF Downloads 642
15866 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 168
15865 A Study on the Relationship between Nonverbal Communication, Perceived Expertise, Service Quality, and Trust: Focusing on Cosmetic Stores in Korea

Authors: Park Sung-Min, Chan Kwon Park, Kim Chae-Bogk

Abstract:

This study aims to analyze the relationship between nonverbal communication, perceived expertise, service quality, and trust. The study was conducted with clients using cosmetic stores in the Daegu area of Korea. Based on the prior study, the measurement questions are correctly amended and organized in this study. The exploration factor analysis was performed using SPSS 22 for the configured measurement questions. And PLS 2.0 was used to perform a confirmatory factor analysis and path analysis. As a result of the analysis, nonverbal communication has been categorized as physical appearance, kinesics, vocal behavior and proxemics. It has been shown that all of the factors in nonverbal communication have a (+) significant effect on perceived expertise. The degree of impact has been analyzed to influence the perceived expertise in the order in which physical appearance, vocal behavior, kinesics and proxemics. The perceived expertise was analyzed to have a (+) significant effect on the service quality. It has been shown that the service quality has a (+) significant effect on trust.

Keywords: nonverbal communication, perceived expertise, service quality, trust

Procedia PDF Downloads 284
15864 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 139
15863 Greenland Monitoring Using Vegetation Index: A Case Study of Lal Suhanra National Park

Authors: Rabia Munsaf Khan, Eshrat Fatima

Abstract:

The analysis of the spatial extent and temporal change of vegetation cover using remotely sensed data is of critical importance to agricultural sciences. Pakistan, being an agricultural country depends on this resource as it makes 70% of the GDP. The case study is of Lal Suhanra National Park, which is not only the biggest forest reserve of Pakistan but also of Asia. The study is performed using different temporal images of Landsat. Also, the results of Landsat are cross-checked by using Sentinel-2 imagery as it has both higher spectral and spatial resolution. Vegetation can easily be detected using NDVI which is a common and widely used index. It is an important vegetation index, widely applied in research on global environmental and climatic change. The images are then classified to observe the change occurred over 15 years. Vegetation cover maps of 2000 and 2016 are used to generate the map of vegetation change detection for the respective years and to find out the changing pattern of vegetation cover. Also, the NDVI values aided in the detection of percentage decrease in vegetation cover. The study reveals that vegetation cover of the area has decreased significantly during the year 2000 and 2016.

Keywords: Landsat, normalized difference vegetation index (NDVI), sentinel 2, Greenland monitoring

Procedia PDF Downloads 311
15862 A Study on the Relationship between Transaction Fairness, Social Capital, Supply Chain Integration and Sustainability: Focusing on Manufacturing Companies of South Korea

Authors: Sung-Min Park, Chan Kwon Park, Chae-Bogk Kim

Abstract:

The purpose of this study is to analyze the relationship between transaction fairness, social capital, supply chain integration and sustainability. Based on the previous studies, measurement items were determined by using SPSS 22 and exploratory factor analysis was performed, and again, using AMOS 21 for confirmatory factor analysis and path analysis was performed by using study items that satisfy reliability, validity, and appropriateness of measurement model. It has shown that transaction fairness has a (+) significant effect on social capital, social capital on supply chain integration, supply chain integration on economic sustainability and social sustainability, and has a (+), but not significant effect on environmental sustainability. It has shown that supply chain integration has been proven to play a role as a parameter between social capital and economic and social sustainability, but not as a parameter between environmental sustainability. Through this study, it is suggested that clearly examining the relationship between fairness of trade, social capital, supply chain integration and sustainability, maintaining fairness of the transaction make formation of social capital, and further integration of supply chain, and achieve sustainability of entire supply chain.

Keywords: transaction fairness, social capital, supply chain integration, sustainability

Procedia PDF Downloads 442
15861 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 137
15860 The Influence of Steel Connection on Fire Resistance of Composite Steel-Framed Buildings

Authors: Mohammed Kadhim, Zhaohui Huang

Abstract:

Steel connections can play an important role in enhancing the robustness of structures under fire conditions. Therefore, it is significant to examine the influence of steel connections on the fire resistance of composite steel-framed buildings. In this paper, both the behavior of steel connections and their influence on composite steel frame are analyzed using the non-linear finite element computer software VULCAN at ambient and elevated temperatures. The chosen frame is subjected to ISO834 fire. The comparison between end plate connections, pinned connection, and rigid connection has been carried out. By applying different compartment fires, some cases are studied to show the behavior of steel connection when the fire is applied at certain beams. In addition, different plate thickness and deferent applied loads have been analyzed to examine the behavior of chosen steel connection under ISO834 fire. It was found from the analytical results that the beam with extended end plate is stronger and has better performance in terms of axial forces than those beams with flush end plate connection. It was also found that extended end plate connection has highest limiting temperatures compared to the flush end plate connection. In addition, it was found that the performance of end-plate connections is very close to rigid connection and very far from pinned connections. Furthermore, plate thickness has less effect on the influence of steel connection on fire resistance. In conclusion, the behavior of composite steel framed buildings is largely dependent on the steel connection due to their high impact under fire condition. It is recommended to consider the extended end-plate in the design proposes because of its higher properties compared to the flush end plate connection. Finally, this paper shows a steel connection has an important effect on the fire resistance of composite steel framed buildings.

Keywords: composite steel-framed buildings, connection behavior, end-plate connections, finite element modeling, fire resistance

Procedia PDF Downloads 160
15859 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt

Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal

Abstract:

In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.

Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm

Procedia PDF Downloads 404
15858 Loading by Number Strategy for Commercial Vehicles

Authors: Ramalan Musa Yerima

Abstract:

The paper titled “loading by number” explained a strategy developed recently by Zonal Commanding Officer of the Federal Road Safety Corps of Nigeria, covering Sokoto, Kebbi and Zamfara States of Northern Nigeria. The strategy is aimed at reducing competition, which will invariably leads to the reduction in speed, reduction in dangerous driving, reduction in crash rate, reduction in injuries, reduction in property damages and reduction in death through road traffic crashes (RTC). This research paper presents a study focused on enhancing the safety of commercial vehicles. The background of this study highlights the alarming statistics related to commercial vehicle crashes in Nigeria with focus on Sokoto, Kebbi and Zamfara States, which often result in significant damage to property, loss of lives, and economic costs. The significance and aims is to investigate and propose effective strategy to enhance the safety of commercial vehicles. The study recognizes the pressing need for heightened safety measures in commercial transportation, as it impacts not only the well-being of drivers and passengers but also the overall public safety. To achieve the objectives, an examination of accident data, including causes and contributing factors, was performed to identify critical areas for improvement. The major finding of the study reveals that when competition comes into play within the realm of commercial driving, it has detrimental effects on road safety and resource management. Commercial drivers are pushed to complete their routes quickly, deliver goods on time or they pushed themselves to arrive quickly for more passengers and new contracts. This competitive environment, fuelled by internal and external pressures such as tight deadlines, poverty and greed, often leads to sad endings. The study recommend that if a strategy called loading by number is integrated with other multiple safety measures such as driver training programs, regulatory enforcement, and infrastructure improvements, commercial vehicle safety can be significantly enhanced. "Loading by Number” approach is design to ensure that the sequence of departure of drivers from motor park ‘A’ would be communicated to motor park officials of park ‘B’, which would be considered sequentially when giving them returning passengers, regardless of the first to arrive. In conclusion, this paper underscores the significance of improving the safety measures of commercial vehicles, as they are often larger and heavier than other vehicles on the road. Whenever they are involved in accidents, the consequences can be more severe. Commercial vehicles are also frequently involved in long-haul or interstate transportation, which means they cover longer distances and spend more time on the road. This increased exposure to driving conditions increases the probability of accidents occurring. By implementing the suggested measures, policymakers, transportation authorities, and industry stakeholders can work collectively towards ensuring a safer commercial transportation system.

Keywords: commercial, safety, strategy, transportation

Procedia PDF Downloads 62
15857 Eco-Design of Construction Industrial Park in China with Selection of Candidate Tenants

Authors: Yang Zhou, Kaijian Li, Guiwen Liu

Abstract:

Offsite construction is an innovative alternative to conventional site-based construction, with wide-ranging benefits. It requires building components, elements or modules were prefabricated and pre-assembly before installed into their final locations. To improve efficiency and achieve synergies, in recent years, construction companies were clustered into construction industrial parks (CIPs) in China. A CIP is a community of construction manufacturing and service businesses located together on a common property. Companies involved in industrial clusters can obtain environment and economic benefits by sharing resources and information in a given region. Therefore, the concept of industrial symbiosis (IS) can be applied to the traditional CIP to achieve sustainable industrial development or redevelopment through the implementation of eco-industrial parks (EIP). However, before designing a symbiosis network between companies in a CIP, candidate support tenants need to be selected to complement the existing construction companies. In this study, an access indicator system and a linear programming model are established to select candidate tenants in a CIP while satisfying the degree of connectivity among the enterprises in the CIP, minimizing the environmental impact, and maximizing the annualized profit of the CIP. The access indicator system comprises three primary indicators and fifteen secondary indicators, is proposed from the perspective of park-based level. The fifteen indicators are classified as three primary indicators including industrial symbiosis, environment performance and economic benefit, according to the three dimensions of sustainability (environment, economic and social dimensions) and the three R's of the environment (reduce, reuse and recycle). The linear programming model is a method to assess the satisfactoriness of all the indicators and to make an optimal multi-objective selection among candidate tenants. This method provides a practical tool for planners of a CIP in evaluating which among the candidate tenants would best complement existing anchor construction tenants. The reasonability and validity of the indicator system and the method is worth further study in the future.

Keywords: construction industrial park, China, industrial symbiosis, offsite construction, selection of support tenants

Procedia PDF Downloads 275
15856 Mentorship and Feelings of Identify and Self-Efficacy in Women Returning to the Workforce after an Extended Child-Rearing Leave

Authors: Jacquelyn Irene Eidson

Abstract:

Women who leave the workforce due to motherhood and wish to return are a valuable, untapped resource for organizations. Levinson’s theory of adult development defines life as a sequence of transitions requiring difficult decisions that prompt humans to question their identity and their self-efficacy. The experience of being a working mother and the experience of workplace mentorship have received extensive research attention. Merging the two experiences and focusing on feelings of identity and self-efficacy provides a unique and focused opportunity for learning. Through one-on-one interviews and focus group discussion with working mothers that had previously left the workforce for an extended leave due to child-rearing, a meaningful description of their experiences will be obtained. Data is currently being collected via a collaboration with state banking associations in the United States. Results from the study will enable organizations worldwide to more effectively provide mentorship opportunities built around a culture of understanding while more effectively recruiting, supporting, developing, and retaining this valuable talent pool.

Keywords: identity, mentorship, self-efficacy, working mother

Procedia PDF Downloads 195
15855 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.

Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes

Procedia PDF Downloads 309
15854 Strategy of Loading by Number for Commercial Vehicles

Authors: Ramalan Musa Yerima

Abstract:

The paper titled “Loading by number” explained a strategy developed recently by the Zonal Commanding Officer of the Federal Road Safety Corps of Nigeria, covering Sokoto, Kebbi and Zamfara States of Northern Nigeria. The strategy is aimed at reducing competition, which will invariably lead to a reduction in speed, reduction in dangerous driving, reduction in crash rate, reduction in injuries, reduction in property damages and reduction in death through road traffic crashes (RTC). This research paper presents a study focused on enhancing the safety of commercial vehicles. The background of this study highlights the alarming statistics related to commercial vehicle crashes in Nigeria with a focus on Sokoto, Kebbi and Zamfara States, which often result in significant damage to property, loss of lives, and economic costs. The significance and aims is to investigate and propose an effective strategy to enhance the safety of commercial vehicles. The study recognizes the pressing need for heightened safety measures in commercial transportation, as it impacts not only the well-being of drivers and passengers but also the overall public safety. To achieve the objectives, an examination of accident data, including causes and contributing factors, was performed to identify critical areas for improvement. The major finding of the study reveals that when competition comes into play within the realm of commercial driving, it has detrimental effects on road safety and resource management. Commercial drivers are pushed to complete their routes quickly and deliver goods on time, or they push themselves to arrive quickly for more passengers and new contracts. This competitive environment, fuelled by internal and external pressures such as tight deadlines, poverty and greed, often leads to sad endings. The study recommends that if a strategy called loading by number is integrated with other multiple safety measures, such as driver training programs, regulatory enforcement, and infrastructure improvements, commercial vehicle safety can be significantly enhanced. "Loading by Number” approach is designed to ensure that the sequence of departure of drivers from the motor park ‘A’ would be communicated to motor park officials of park ‘B’, which would be considered sequentially when giving them returning passengers, regardless of the first to arrive. In conclusion, this paper underscores the significance of improving the safety measures of commercial vehicles, as they are often larger and heavier than other vehicles on the road. Whenever they are involved in accidents, the consequences can be more severe. Commercial vehicles are also frequently involved in long-haul or interstate transportation, which means they cover longer distances and spend more time on the road. This increased exposure to driving conditions increases the probability of accidents occurring. By implementing the suggested measures, policymakers, transportation authorities, and industry stakeholders can work collectively toward ensuring a safer commercial transportation system.

Keywords: commercial, safety, strategy, transport

Procedia PDF Downloads 64
15853 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 109
15852 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches

Authors: Bin Liu

Abstract:

As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.

Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines

Procedia PDF Downloads 125