Search results for: Dense Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3223

Search results for: Dense Networks

2623 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing

Procedia PDF Downloads 608
2622 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 149
2621 Merging Appeal to Ignorance, Composition, and Division Argument Schemes with Bayesian Networks

Authors: Kong Ngai Pei

Abstract:

The argument scheme approach to argumentation has two components. One is to identify the recurrent patterns of inferences used in everyday discourse. The second is to devise critical questions to evaluate the inferences in these patterns. Although this approach is intuitive and contains many insightful ideas, it has been noted to be not free of problems. One is that due to its disavowing the probability calculus, it cannot give the exact strength of an inference. In order to tackle this problem, thereby paving the way to a more complete normative account of argument strength, it has been proposed, the most promising way is to combine the scheme-based approach with Bayesian networks (BNs). This paper pursues this line of thought, attempting to combine three common schemes, Appeal to Ignorance, Composition, and Division, with BNs. In the first part, it is argued that most (if not all) formulations of the critical questions corresponding to these schemes in the current argumentation literature are incomplete and not very informative. To remedy these flaws, more thorough and precise formulations of these questions are provided. In the second part, how to use graphical idioms (e.g. measurement and synthesis idioms) to translate the schemes as well as their corresponding critical questions to graphical structure of BNs, and how to define probability tables of the nodes using functions of various sorts are shown. In the final part, it is argued that many misuses of these schemes, traditionally called fallacies with the same names as the schemes, can indeed be adequately accounted for by the BN models proposed in this paper.

Keywords: appeal to ignorance, argument schemes, Bayesian networks, composition, division

Procedia PDF Downloads 285
2620 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography

Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu

Abstract:

Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.

Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli

Procedia PDF Downloads 253
2619 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 449
2618 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 234
2617 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 407
2616 Dense and Quality Urban Living: A Comparative Study on Architectural Solutions in the European City

Authors: Flavia Magliacani

Abstract:

The urbanization of the last decades and its resulting urban growth entail problems both for environmental and economic sustainability. From this perspective, sustainable settlement development requires a horizontal decrease in the existing urban structure in order to enhance its greater concentration. Hence, new stratifications of the city fabric and architectural strategies ensuring high-density settlement models are possible solutions. However, although increasing housing density is necessary, it is not sufficient. Guaranteeing the quality of living is, indeed, equally essential. In order to meet this objective, many other factors come to light, namely the relationship between private and public spaces, the proximity to services, the accessibility of public transport, the local lifestyle habits, and the social needs. Therefore, how to safeguard both quality and density in human habitats? The present paper attempts to answer the previous main research question by addressing several sub-questions: Which architectural types meet the dual need for urban density and housing quality? Which project criteria should be taken into consideration by good design practices? What principles are desirable for future planning? The research will analyse different architectural responses adopted in four European cities: Paris, Lion, Rotterdam, and Amsterdam. In particular, it will develop a qualitative and comparative study of two specific architectural solutions which integrate housing density and quality living. On the one hand, the so-called 'self-contained city' model, on the other hand, the French 'Habitat Dense Individualisé' one. The structure of the paper will be as follows: the first part will develop a qualitative evaluation of some case studies, emblematic examples of the two above said architectural models. The second part will focus on the comparison among the chosen case studies. Finally, some conclusions will be drawn. The methodological approach, therefore, combines qualitative and comparative research. Parameters will be defined in order to highlight potential and criticality of each model in light of an interdisciplinary view. In conclusion, the present paper aims at shading light on design approaches which ensure a right balance between density and quality of the urban living in contemporary European cities.

Keywords: density, future design, housing quality, human habitat

Procedia PDF Downloads 102
2615 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority

Authors: Vahid Asadzadeh, Amin Ataee

Abstract:

Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau‎ and Mouffe had in mind‎) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.

Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media

Procedia PDF Downloads 145
2614 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 229
2613 Formation of Physicalist and Mental Consciousness from a Continuous Four-Dimensional Continuum

Authors: Nick Alex

Abstract:

Consciousness is inseparably connected with energy. Based on panpsychism, consciousness is a fundamental substance that emerged with the birth of the Universe from a continuous four-dimensional continuum. It consists of a physicalist form of consciousness characteristic of all matter and a mental form characteristic of neural networks. Due to the physicalist form of consciousness, metabolic processes were formed, and life in the form of living matter emerged. It is the same for all living matter. Mental consciousness began to develop 3000 million years after the birth of the Universe due to the physicalist form of consciousness, with the emergence of neural networks. Mental consciousness is individualized in contrast to physicalist consciousness. It is characterized by cognitive abilities, self-identity, and the ability to influence the world around us. Each level of consciousness is in its own homeostasis environment.

Keywords: continuum, physicalism, neurons, metabolism

Procedia PDF Downloads 23
2612 Increasing of Resiliency by Using Gas Storage in Iranian Gas Network

Authors: Mohsen Dourandish

Abstract:

Iran has a huge pipeline network in every state of country which is the longest and vastest pipeline network after Russia and USA (360,000 Km high pressure pipelines and 250,000 Km distribution networks). Furthermore in recent years National Iranian Gas Company is planning to develop natural gas network to cover all cities and villages above 20 families, in a way that 97 percent of Iran population will be gas consumer by 2020. In this condition, network resiliency will be the first priority of NIGC and due to that several planning for increasing resiliency of gas network is under construction. The most important strategy of NIGC is converting tree form pattern network to loop gas networks and developing underground gas storage near main gas consuming centers. In this regard NIGC is planning for construction of over 3500 km high-pressure pipeline and also 10 TCM gas storage capacities in UGSs.

Keywords: Iranian gas network, peak shaving, resiliency, underground gas storage

Procedia PDF Downloads 325
2611 Speech Perception by Video Hosting Services Actors: Urban Planning Conflicts

Authors: M. Pilgun

Abstract:

The report presents the results of a study of the specifics of speech perception by actors of video hosting services on the material of urban planning conflicts. To analyze the content, the multimodal approach using neural network technologies is employed. Analysis of word associations and associative networks of relevant stimulus revealed the evaluative reactions of the actors. Analysis of the data identified key topics that generated negative and positive perceptions from the participants. The calculation of social stress and social well-being indices based on user-generated content made it possible to build a rating of road transport construction objects according to the degree of negative and positive perception by actors.

Keywords: social media, speech perception, video hosting, networks

Procedia PDF Downloads 147
2610 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight

Procedia PDF Downloads 148
2609 The Interactive Effect of Sodium Chloride and Diatomaceous Earth (DE) on Bacillus aquimaris

Authors: Bassam O AlJohny

Abstract:

The growth of Bacillus aquimaris was inhibited from 6 - 20 % of NaCl but it showed some tolerance when Diatomaceous earth (DE) added from 2 - 12% NaCl. Concerning the effect of NaCl on polyol production, we can conclude that, the test bacterium showed some tolerance to NaCl by producing glycerol up to 8 % of NaCl. Then decreased sharply. The addition of DE decrease the amount of polyol and glycerol remarkably and this due to the productive effect of DE to the bacterial cells. The SEM figures represented the presence of electron dense bodies due to the accumulation of small particles of DE as protective molecules.

Keywords: Bacillus aquimaris, Diatomaceous earth (DE), osmoticstress, sodium chloride

Procedia PDF Downloads 283
2608 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 265
2607 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control

Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar

Abstract:

This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.

Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory

Procedia PDF Downloads 390
2606 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 116
2605 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)

Procedia PDF Downloads 301
2604 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 425
2603 Multi Criteria Authentication Method in Cognitive Radio Networks

Authors: Shokoufeh Monjezi Kouchak

Abstract:

Cognitive radio network (CRN) is future network .Without this network wireless devices can’t work appropriately in the next decades. Today, wireless devices use static spectrum access methods and these methods don’t use spectrums optimum so we need use dynamic spectrum access methods to solve shortage spectrum challenge and CR is a great device for DSA but first of all its challenges should be solved .security is one of these challenges .In this paper we provided a survey about CR security. You can see this survey in tables 1 to 7 .After that we proposed a multi criteria authentication method in CRN. Our criteria in this method are: sensing results, following sending data rules, position of secondary users and no talk zone. Finally we compared our method with other authentication methods.

Keywords: authentication, cognitive radio, security, radio networks

Procedia PDF Downloads 391
2602 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?

Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq

Abstract:

Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.

Keywords: Cox regression, neural networks, survival, cancer.

Procedia PDF Downloads 198
2601 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks

Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook

Abstract:

Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.

Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants

Procedia PDF Downloads 71
2600 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances

Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo

Abstract:

Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.

Keywords: hydrogen, methane, combustion, appliances, interchangeability

Procedia PDF Downloads 90
2599 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks

Authors: Wided Abidi, Tahar Ezzedine

Abstract:

Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.

Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency

Procedia PDF Downloads 329
2598 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 153
2597 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 136
2596 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution

Authors: Ulrike Dowie, Ralph Grothmann

Abstract:

Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.

Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management

Procedia PDF Downloads 188
2595 Facebook Spam and Spam Filter Using Artificial Neural Networks

Authors: A. Fahim, Mutahira N. Naseem

Abstract:

SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.

Keywords: artificial neural networks, facebook spam, social networking sites, spam filter

Procedia PDF Downloads 372
2594 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani

Abstract:

Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 348