Search results for: iterative design process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24585

Search results for: iterative design process

18345 The Stage and Cause of Regional Industrial Specialization Evolution in China

Authors: Cheng Wen, Zhang Jianhua

Abstract:

This paper aims to probe into the general rules of industry specialization or diversification in a region during its process of economic growth and the specific reasons for the difference of industry specialization development in the eastern, central and western regions of China. It is found in this paper that the changes of regional industry specialization in China, like most of countries in the world, also present the U-shaped curve. Regional industrial structure is diversified in the first place. And when the per capita income exceeds a certain level, distribution of economic resources in this region will be concentrated again. From the perspective of rising total factor productivity and falling of transaction cost in the process of economic development, this paper comes up with a theoretical model to explain the U-shaped curve. Through the empirical test of China's provincial panel data, this paper explains the factors that cause the inequality of the industry specialization development in the eastern, central and western regions of China.

Keywords: u-shaped curve, regional industrial specialization, technological progress, transaction costs

Procedia PDF Downloads 299
18344 Improving Research Collaborations in Medical Device Development in Korea from an SMEs’ Perspective

Authors: Yoon Chung Kim

Abstract:

In this coming aging society, medical device industry is expected to become one of the major industries. Since developing medical devices usually requires technology convergence, research collaboration is important, especially for some small and medium enterprises (SMEs) that do not have enough R&D resources in each related field. Collaboration in medical device development has some unique properties. Since it requires convergence technology, collaboration with different fields, and different types of people are often required. Since it requires clinical test, the development process usually takes longer and collaboration with hospitals is also required. However, despite these importance and uniqueness, collaboration in medical device development has not yet been widely studied. Thus, our research focuses on investigating collaborations in medical device development. For our research, we conducted surveys and interviews, especially with SMEs’ perspective in Korea. The result and discussion will be presented with a major impact factors for collaboration result, as well as future strategies that will improve and strengthen collaboration process in medical devices.

Keywords: medical device, SME, research collaboration, development, clinical

Procedia PDF Downloads 319
18343 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis

Procedia PDF Downloads 154
18342 Removal of Maxilon Red Dye by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium, and Kinetic Studies

Authors: Aid Asma, Dahdouh Nadjib, Amokrane Samira, Ladjali Samir, Nibou Djamel

Abstract:

The present work has for main objective the elimination of the textile dye Maxilon Red (MR) by two processes, adsorption on activated clay followed by photocatalysis in presence of ZnO as a photocatalyst. The influence of the physical parameters like the initial pH, adsorbent dose of the activated clay, the MR concentration and temperature has been studied. The best adsorption yield occurs at neutral pH ~ 7 within 60 min with an uptake percentage of 97% for a concentration of 25 mg L⁻¹ and a dose of 0.5 g L⁻¹. The adsorption data were suitably fitted by the Langmuir model with a maximum capacity of 176 mg g⁻¹. The MR adsorption is well described by the pseudo second order kinetic. The second part of this work was dedicated to the photocatalytic degradation onto ZnO under solar irradiation of the residual MR concentration, remained after adsorption. The effect of ZnO dose and MR concentration has also been investigated. The parametric study showed that the elimination is very effective by this process, based essentially on the in situ generation of free radicals *OH which are non-selective and very reactive. The photodegradation process follows a first order kinetic model according to the Langmuir-Hinshelwood model.

Keywords: maxilon red, adsorption, photodegradation, ZnO, coupling

Procedia PDF Downloads 170
18341 Involvement of Stakeholders in the R&D and Innovation Process in Developing Country Context: An Analysis of the Nigeria Innovation System

Authors: B. O. Oyedoyin, M. O. Ilori, T. O. Oyebisi, B. A. Oluwale, O. O. Jegede

Abstract:

The study was designed to evaluate the business development and transfer of technologies to small manufacturing companies by research institutes in South Western Nigeria. The study covered all the industrial research institutions with headquarters in South Western Nigeria. The study showed that the involvement of scientists in innovation process was rated highest in the idea generation (4.14) and idea screening (4.29) phases; high in R&D (3.86) and fairly high in pilot plant development (2.71) and commercialization (2.43) phase. Their involvement was rated low in business analysis and development (2.14), and test marketing (2.29) phase. The involvement of engineers was rated highest in idea generation (3.28), fairly high in R&D (2.71), pilot plant development (2.57), and idea screening (2.40) phases. However, their involvement was rated low in business analysis and development (2.0), test marketing (2.0), and commercialization (1.28) phases. The involvement of technology marketers in innovation process was generally rated fairly high in R&D (2.7) and business analysis and development (2.6), and low in all the other phases of innovation. However, their involvement at IAR&T, FIIRO, and NIOMR in all the phases was rated very high (3.0-5.0). The involvement of entrepreneurs was generally rated from fairly high to low (2.7-2.3) in all the phases of innovation. The involvement of financial institutions in all the phases of innovation was generally rated low (1.28-1.71). In conclusion, the study showed that the involvement of stakeholders like entrepreneurs and financial institutions in technology packaging for commercialization is very low.

Keywords: research institutes, national innovation system, Nigeria, entrepreneurs, financial institution

Procedia PDF Downloads 418
18340 Normal Spectral Emissivity of Roughened Aluminum Alloy AL 6061 Surfaces at High Temperature

Authors: Sumeet Kumar, C. V. Krishnamurthy, Krishnan Balasubramaniam

Abstract:

Normal spectral emissivity of Al 6061 alloys with different surface finishes was experimentally measured at 833°K. Four different samples were prepared by polishing the surfaces of the alloy by 80, 220, 600 grit sizes of SiC abrasive papers and diamond paste. The samples were heated in air for 6 h at 833°K, and the emissivity was measured during the process from pyrometers operating at wavelengths of 3.9, 5.14 and 7.8 μm. The results indicated that the emissivity was increasing with heating time and the rate of increase was rapid during the initial stage of heating in comparison with the later stage. This appears to be because of the parabolic rate law followed by the process of oxidation. Further, it is found that the increase in emissivity with heating time was higher for rough surfaces than that for polished surfaces. Both the results were analyzed at all the three wavelengths, and qualitatively similar results were obtained for all of them. In this way emissivity of the alloy can be increased by roughening the surfaces and heating it at high temperature until the surfaces are oxidized.

Keywords: aluminum alloy, high temperature, normal spectral emissivity, surface roughness

Procedia PDF Downloads 208
18339 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey

Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi

Abstract:

Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.

Keywords: AL1050, experiments, finite element method, severe plastic deformation

Procedia PDF Downloads 411
18338 The Effect of Different Composition of Dairy Cattle Feces Briquette on Moisture and Briquette Density

Authors: Dita Aviana Dewi, Heri Muji, Dian Nur Amalia, Nanung Agus Fitriyanto

Abstract:

Utilization of cow feces as a source of alternative energy can be done with turn it as briquettes. Cow feces generate heat around 4000 Cal/g and the methane gas (CH4) are quite high. Methane gas is one of the essential elements in briquettes which serve as the ignition, so that is resulting briquettes combustible. This study aims to know the difference of the composition of the constituents of briquette moisture content and density. Dairy cattle feces used as the main ingredient with additional material from the waste of the agricultural industry in the form of husk. This study was conducted with three treatments, namely T0= feces 1: husk 1, T1= feces 2: husk 1, and T2= feces 3: husk 1. Each treatment was replicated three times. The experimental design used was Complete Random Design Pattern in line with testing of Dunnet. The observed variables are moisture content and density of the briquettes. Results of this study showed an average moisture content of T0 is 31,17%, T1 is 28,14%, and T2 is 49.95%. The average density of briquettes at T0 is 1,0787 g/cm3, T1 is 1,1448 g/cm3, and T2 is 1,1133 g/cm3. Summary of the study is to take the difference of the composition of the feces and the husk do not have significant effects on moisture content and density of briquettes (p < 0.05).

Keywords: dairy cattle feces, briquette, moisture, density

Procedia PDF Downloads 727
18337 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 254
18336 Predictive Output Feedback Linearization for Safe Control of Collaborative Robots

Authors: Aliasghar Arab

Abstract:

Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better.

Keywords: robotics, collaborative robots, safety, autonomous robots

Procedia PDF Downloads 89
18335 Visual Design of Walkable City as Sidewalk Integration with Dukuh Atas MRT Station in Jakarta

Authors: Nadia E. Christiana, Azzahra A. N. Ginting, Ardhito Nurcahya, Havisa P. Novira

Abstract:

One of the quickest ways to do a short trip in urban areas is by walking, either individually, in couple or groups. Walkability nowadays becomes one of the parameters to measure the quality of an urban neighborhood. As a Central Business District and public transport transit hub, Dukuh Atas area becomes one of the highest numbers of commuters that pass by the area and interchange between transportation modes daily. Thus, as a public transport hub, a lot of investment should be focused to speed up the development of the area that would support urban transit activity between transportation modes, one of them is revitalizing pedestrian walkways. The purpose of this research is to formulate the visual design concept of 'Walkable City' based on the results of the observation and a series of rankings. To achieve this objective, it is necessary to accomplish several stages of the research that consists of (1) Identifying the system of pedestrian paths in Dukuh Atas area using descriptive qualitative method (2) Analyzing the sidewalk walkability rate according to the perception and the walkability satisfaction rate using the characteristics of pedestrians and non-pedestrians in Dukuh Atas area by using Global Walkability Index analysis and Multicriteria Satisfaction Analysis (3) Analyzing the factors that determine the integration of pedestrian walkways in Dukuh Atas area using descriptive qualitative method. The results achieved in this study is that the walkability level of Dukuh Atas corridor area is 44.45 where the value is included in the classification of 25-49, which is a bit of facility that can be reached by foot. Furthermore, based on the questionnaire, satisfaction rate of pedestrian walkway in Dukuh Atas area reached a number of 64%. It is concluded that commuters have not been fully satisfied with the condition of the sidewalk. Besides, the factors that influence the integration in Dukuh Atas area have been reasonable as it is supported by the utilization of land and modes such as KRL, Busway, and MRT. From the results of all analyzes conducted, the visual design and the application of the concept of walkable city along the pathway pedestrian corridor of Dukuh Atas area are formulated. Achievement of the results of this study amounted to 80% which needs to be done further review of the results of the analysis. The work of this research is expected to be a recommendation or input for the government in the development of pedestrian paths in maximizing the use of public transportation modes.

Keywords: design, global walkability index, mass rapid transit, walkable city

Procedia PDF Downloads 185
18334 The Effects of Seat Heights and Obesity on Lower-Limb Joint Kinematics during Sit-To-Stand Movement

Authors: Seungwon Baek, Haeseok Jeong, Haehyun Lee, Woojin Park

Abstract:

The main purpose of this study was to compare obese people to the non-obese in terms of joint kinematics in lower-limb body. The height of chairs was also considered as a design factor. Obese people had a difficulty in sit-to-stand (STS) tasks compared to the non-obese people. High chair heights can make STS task easy and it helps the obese to be more comfortable with STS task in particular. Subjects were instructed to wear inertial measurement unit (IMU) sensors. They perform STS task using chairs of different heights. Joint kinematics and subjective ratings of discomfort were measured. Knee angles of the obese group were greater than that of the non-obese group in normal type. No significant difference in joint kinematics was found in high chair. Interaction effect was found between obesity and height of chair. The results verified the previous research that had suggested a biomechanical model of STS movement. The results can be applied to occupational design for the obese.

Keywords: biomechanics, electromyography, joint kinematics, obesity, sitting, sit-to-stand

Procedia PDF Downloads 295
18333 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic

Procedia PDF Downloads 312
18332 Valorization of a Forest Waste, Modified P-Brutia Cones, by Biosorption of Methyl Geen

Authors: Derradji Chebli, Abdallah Bouguettoucha, Abdelbaki Reffas Khalil Guediri, Abdeltif Amrane

Abstract:

The removal of Methyl Green dye (MG) from aqueous solutions using modified P-brutia cones (PBH and PBN), has been investigated work. The physical parameters such as pH, temperature, initial MG concentration, ionic strength are examined in batch experiments on the sorption of the dye. Adsorption removal of MG was conducted at natural pH 4.5 because the dye is only stable in the range of pH 3.8 to 5. It was observed in experiments that the P-brutia cones treated with NaOH (PBN) exhibited high affinity and adsorption capacity compared to the MG P-brutia cones treated with HCl (PBH) and biosorption capacity of modified P-brutia cones (PBN and PBH) was enhanced by increasing the temperature. This is confirmed by the thermodynamic parameters (ΔG° and ΔH°) which show that the adsorption of MG was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase in the randomness for both adsorbent (PBN and PBH) during the adsorption process. The kinetic model pseudo-first order, pseudo-second order, and intraparticle diffusion coefficient were examined to analyze the sorption process; they showed that the pseudo-second-order model is the one that best describes the adsorption process (MG) on PBN and PBH with a correlation coefficient R²> 0.999. The ionic strength has shown that it has a negative impact on the adsorption of MG on two supports. A reduction of 68.5% of the adsorption capacity for a value Ce=30 mg/L was found for the PBH, while the PBN did not show a significant influence of the ionic strength on adsorption especially in the presence of NaCl. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P-brutia cones with a correlation factor R²>0.999. The capacity adsorption of P-brutia cones, was confirmed for the removal of a dye, MG, from aqueous solution. We note also that P-brutia cones is a material very available in the forest and low-cost biomaterial

Keywords: adsorption, p-brutia cones, forest wastes, dyes, isotherm

Procedia PDF Downloads 370
18331 Identity and Ethnic Conflicts in Afghanistan: Diversity as a Cultural Treasure

Authors: Morteza Azimi

Abstract:

In Afghanistan, as a multi-ethnic country, there have been ethnic conflicts, especially after 2001. These conflicts are more visible among the four main ethnicities Pashtun, Tajik, Hazara, and Uzbek. In this paper, such ethnic conflicts and their roles in the political sphere will be discussed. The distribution of personal electronic ID cards, for example, has been one of the most controversial and unsuccessful projects in Afghanistan. As a result, the lack of clear population statistics has led to several corrupted and unsuccessful presidential elections since 2001. The nation-building process in post-Taliban Afghanistan, as well as the Afghan government’s failure to build a nation, are discussed. By referring to the hybridity theory of Homi Bhabha, it is argued that the process of assimilation for nation-building has not only failed but has deepened ethnic divisions. In the end, some suggestions and solutions for making the most out of ethnic diversity rather than suffering from it will be provided. It will be argued that diversity or difference improves the freedom of choices for groups and individuals; it boosts agency in comparison with life in an assimilated, coherent, and homogeneous society.

Keywords: Afghan identity, ethnicity, nation-building, political system, self and other

Procedia PDF Downloads 225
18330 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H

Authors: Sherman Ho, Ahmed Cherif Megri

Abstract:

Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.

Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data

Procedia PDF Downloads 56
18329 Design and Assessment of Traffic Management Strategies for Improved Mobility on Major Arterial Roads in Lahore City

Authors: N. Ali, S. Nakayama, H. Yamaguchi, M. Nadeem

Abstract:

Traffic congestion is a matter of prime concern in developing countries. This can be primarily attributed due to poor design practices and biased allocation of resources based on political will neglecting the technical feasibilities in infrastructure design. During the last decade, Lahore has expanded at an unprecedented rate as compared to surrounding cities due to more funding and resource allocation by the previous governments. As a result of this, people from surrounding cities and areas moved to the Lahore city for better opportunities and quality of life. This migration inflow inherited the city with an increased population yielding the inefficiency of the existing infrastructure to accommodate enhanced traffic demand. This leads to traffic congestion on major arterial roads of the city. In this simulation study, a major arterial road was selected to evaluate the performance of the five intersections by changing the geometry of the intersections or signal control type. Simulations were done in two software; Highway Capacity Software (HCS) and Synchro Studio and Sim Traffic Software. Some of the traffic management strategies that were employed include actuated-signal control, semi-actuated signal control, fixed-time signal control, and roundabout. The most feasible solution for each intersection in the above-mentioned traffic management techniques was selected with the least delay time (seconds) and improved Level of Service (LOS). The results showed that Jinnah Hospital Intersection and Akbar Chowk Intersection improved 92.97% and 92.67% in delay time reduction, respectively. These results can be used by traffic planners and policy makers for decision making for the expansion of these intersections keeping in mind the traffic demand in future years.

Keywords: traffic congestion, traffic simulation, traffic management, congestion problems

Procedia PDF Downloads 463
18328 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 78
18327 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 155
18326 Digital Transformation in Developing Countries, A Study into Building Information Modelling Adoption in Thai Design and Engineering Small- and Medium-Sizes Enterprises

Authors: Prompt Udomdech, Eleni Papadonikolaki, Andrew Davies

Abstract:

Building information modelling (BIM) is the major technological trend amongst built environment organisations. Digitalising businesses and operations, BIM brings forth a digital transformation in any built environment industry. The adoption of BIM presents challenges for organisations, especially small- and medium-sizes enterprises (SMEs). The main problem for built-environment SMEs is the lack of project actors with adequate BIM competences. The research highlights learning in projects as the key and explores into the learning of BIM in projects of designers and engineers within Thai design and engineering SMEs. The study uncovers three impeding attributes, which are: a) lack of English proficiency; b) unfamiliarity with digital technologies; and c) absence of public standards. This research expands on the literature on BIM competences and adoption.

Keywords: BIM competences and adoption, digital transformation, learning in projects, SMEs, and developing built environment industry

Procedia PDF Downloads 130
18325 The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering

Authors: Eliska Oberhofnerova, Milos Panek, Stepan Hysek, Martin Lexa

Abstract:

Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial.

Keywords: colour stability, natural and artificial weathering, spruce wood, transparent coating

Procedia PDF Downloads 213
18324 Evaluation of Microbial Community, Biochemical and Physiological Properties of Korean Black Raspberry (Rubus coreanus Miquel) Vinegar Manufacturing Process

Authors: Nho-Eul Song, Sang-Ho Baik

Abstract:

Fermentation characteristics of black raspberry vinegar by using static cultures without any additives were has been investigated to establish of vinegar manufacturing conditions and improve the quality of vinegar by optimization the vinegar manufacturing process. The two vinegar manufacturing conditions were prepared; one-step fermentation condition only using mother vinegar that prepared naturally occurring black raspberry vinegar without starter yeast for alcohol fermentation (traditional method) and two-step fermentation condition using commercial wine yeast and mother vinegar for acetic acid fermentation. Approximately 12% ethanol was produced after 35 days fermentation with log 7.6 CFU/mL of yeast population in one-step fermentation, resulting sugar reduction from 14 to 6oBrix whereas in two-step fermentation, ethanol concentration was reached up to 8% after 27 days with continuous increasing yeast until log 7.0 CFU/mL. In addition, yeast and ethanol were decreased after day 60 accompanied with proliferation of acetic acid bacteria (log 5.8 CFU/mL) and titratable acidity; 4.4% in traditional method and 6% in two-step fermentation method. DGGE analysis showed that S. cerevisiae was detected until 77 days of traditional fermentation and gradually changed to AAB, Acetobacter pasteurianus, as dominant species and Komagataeibacter xylinus at the end of the fermentation. However, S. cerevisiae and A. pasteurianus was dominant in two-step fermentation process. The prepared two-step fermentation showed enhanced total polyphenol and flavonoid content significantly resulting in higher radical scavenging activity. Our studies firstly revealed the microbial community change with chemical change and demonstrated a suitable fermentation system for black raspberry vinegar by the static surface method.

Keywords: bacteria, black raspberry, vinegar fermentation, yeast

Procedia PDF Downloads 441
18323 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 325
18322 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 662
18321 Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource

Authors: Nurhayati Abdullah, Fauziah Sulaiman, Muhamad Azman Miskam, Rahmad Mohd Taib

Abstract:

Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, bio-oil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudo-stem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.

Keywords: banana waste, biomass, renewable energy, thermo-chemical characteristics

Procedia PDF Downloads 508
18320 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 465
18319 Decision Support Tool for Green Roofs Selection: A Multicriteria Analysis

Authors: I. Teotónio, C.O. Cruz, C.M. Silva, M. Manso

Abstract:

Diverse stakeholders show different concerns when choosing green roof systems. Also, green roof solutions vary in their cost and performance. Therefore, decision-makers continually face the difficult task of balancing benefits against green roofs costs. Decision analysis methods, as multicriteria analysis, can be used when the decision‑making process includes different perspectives, multiple objectives, and uncertainty. The present study adopts a multicriteria decision model to evaluate the installation of green roofs in buildings, determining the solution with the best trade-off between costs and benefits in agreement with the preferences of the users/investors. This methodology was applied to a real decision problem, assessing the preferences between different green roof systems in an existing building in Lisbon. This approach supports the decision-making process on green roofs and enables robust and informed decisions on urban planning while optimizing buildings retrofitting.

Keywords: decision making, green roofs, investors preferences, multicriteria analysis, sustainable development

Procedia PDF Downloads 174
18318 The Victim as a Public Actor: Understanding the Victim’s Role as an Agent of Accountability

Authors: Marie Manikis

Abstract:

This paper argues that the scholarship to date on victims in the criminal process has mainly adopted a private conception of victims –as bearers of individual interests, rights, and remedies– rather than a conception of the victim as an actor with public functions and interests, who has historically and continuously taken on an active role in the common law tradition. This conception enables a greater understanding of the various developments around victim participation in common law criminal justice systems and provides a useful analytical tool to understand the different roles of victims in England and Wales and the United States. Indeed, the main focus on individual rights and the conception of the victim as a private entity undermines the distinctive and increasing role victims play in the wider criminal justice process as agents of accountability through administrative-based processes within and outside courts, including private prosecutions, internal review processes within prosecutorial agencies, judicial review, and ombudsmen processes.

Keywords: victims, participation, criminal justice, accountability

Procedia PDF Downloads 119
18317 LEED Empirical Evidence in Northern and Southern Europe

Authors: Svetlana Pushkar

Abstract:

The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.

Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points

Procedia PDF Downloads 243
18316 Microsatellite Passive Thermal Design Using Anodized Titanium

Authors: Maged Assem Soliman Mossallam

Abstract:

Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.

Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy

Procedia PDF Downloads 128