Search results for: language learning strategies
7937 Seismic Vulnerability Assessment of Masonry Buildings in Seismic Prone Regions: The Case of Annaba City, Algeria
Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente
Abstract:
Seismic vulnerability assessment of masonry buildings is a fundamental issue even for moderate to low seismic hazard regions. This fact is even more important when dealing with old structures such as those located in Annaba city (Algeria), which the majority of dates back to the French colonial era from 1830. This category of buildings is in high risk due to their highly degradation state, heterogeneous materials and intrusive modifications to structural and non-structural elements. Furthermore, they are usually shelter a dense population, which is exposed to such risk. In order to undertake a suitable seismic risk mitigation strategies and reinforcement process for such structures, it is essential to estimate their seismic resistance capacity at a large scale. In this sense, two seismic vulnerability index methods and damage estimation have been adapted and applied to a pilot-scale building area located in the moderate seismic hazard region of Annaba city: The first one based on the EMS-98 building typologies, and the second one derived from the Italian GNDT approach. To perform this task, the authors took the advantage of an existing data survey previously performed for other purposes. The results obtained from the application of the two methods were integrated and compared using a geographic information system tool (GIS), with the ultimate goal of supporting the city council of Annaba for the implementation of risk mitigation and emergency planning strategies.Keywords: Annaba city, EMS98 concept, GNDT method, old city center, seismic vulnerability index, unreinforced masonry buildings
Procedia PDF Downloads 6227936 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 707935 Embracing the Uniqueness and Potential of Each Child: Moving Theory to Practice
Authors: Joy Chadwick
Abstract:
This Study of Teaching and Learning (SoTL) research focused on the experiences of teacher candidates involved in an inclusive education methods course within a four-year direct entry Bachelor of Education program. The placement of this course within the final fourteen-week practicum semester is designed to facilitate deeper theory-practice connections between effective inclusive pedagogical knowledge and the real life of classroom teaching. The course focuses on supporting teacher candidates to understand that effective instruction within an inclusive classroom context must be intentional, responsive, and relational. Diversity is situated not as exceptional but rather as expected. This interpretive qualitative study involved the analysis of twenty-nine teacher candidate reflective journals and six individual teacher candidate semi-structured interviews. The journal entries were completed at the start of the semester and at the end of the semester with the intent of having teacher candidates reflect on their beliefs of what it means to be an effective inclusive educator and how the course and practicum experiences impacted their understanding and approaches to teaching in inclusive classrooms. The semi-structured interviews provided further depth and context to the journal data. The journals and interview transcripts were coded and themed using NVivo software. The findings suggest that instructional frameworks such as universal design for learning (UDL), differentiated instruction (DI), response to intervention (RTI), social emotional learning (SEL), and self-regulation supported teacher candidate’s abilities to meet the needs of their students more effectively. Course content that focused on specific exceptionalities also supported teacher candidates to be proactive rather than reactive when responding to student learning challenges. Teacher candidates also articulated the importance of reframing their perspective about students in challenging moments and that seeing the individual worth of each child was integral to their approach to teaching. A persisting question for teacher educators exists as to what pedagogical knowledge and understanding is most relevant in supporting future teachers to be effective at planning for and embracing the diversity of student needs within classrooms today. This research directs us to consider the critical importance of addressing personal attributes and mindsets of teacher candidates regarding children as well as considering instructional frameworks when designing coursework. Further, the alignment of an inclusive education course during a teaching practicum allows for an iterative approach to learning. The practical application of course concepts while teaching in a practicum allows for a deeper understanding of instructional frameworks, thus enhancing the confidence of teacher candidates. Research findings have implications for teacher education programs as connected to inclusive education methods courses, practicum experiences, and overall teacher education program design.Keywords: inclusion, inclusive education, pre-service teacher education, practicum experiences, teacher education
Procedia PDF Downloads 727934 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning
Authors: Newton Muhury, Armando A. Apan, Tek Maraseni
Abstract:
This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1237933 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.Keywords: classification, falls, health risk factors, machine learning, older adults
Procedia PDF Downloads 1537932 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 3327931 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1237930 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 147929 Robotics Education Continuity from Diaper Age to Doctorate
Authors: Vesa Salminen, Esa Santakallio, Heikki Ruohomaa
Abstract:
Introduction: The city of Riihimäki has decided robotics on well-being, service and industry as the main focus area on their ecosystem strategy. Robotics is going to be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, also education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The objective of this activity has been to develop education continuity from diaper age to doctorate. The main target of the development activity is to create a unique robotics study entity that enables ongoing robotics studies from preprimary education to university. The aim is also to attract students internationally and supply a skilled workforce to the private sector, capable of the challenges of the future. Methodology: Education instances (high school, second grade, Universities on all levels) in a large area of Tavastia Province have gradually directed their education programs to support this goal. On the other hand, applied research projects have been created to make proof of concept- phases on areal real environment field labs to test technology opportunities and digitalization to change business processes by applying robotic solutions. Customer-oriented applied research projects offer for students in robotics education learning environments to learn new knowledge and content. That is also a learning environment for education programs to adapt and co-evolution. New content and problem-based learning are used in future education modules. Major findings: Joint robotics education entity is being developed in cooperation with the city of Riihimäki (primary education), Syria Education (secondary education) and HAMK (bachelor and master education). The education modules have been developed to enable smooth transitioning from one institute to another. This article is introduced a case study of the change of education of wellbeing education because of digitalization and robotics. Riihimäki's Elderly citizen's service house, Riihikoti, has been working as a field lab for proof-of-concept phases on testing technology opportunities. According to successful case studies also education programs on various levels of education have been changing. Riihikoti has been developed as a physical learning environment for home care and robotics, investigating and developing a variety of digital devices and service opportunities and experimenting and learn the use of equipment. The environment enables the co-development of digital service capabilities in the authentic environment for all interested groups in transdisciplinary cooperation.Keywords: ecosystem strategy, digitalization and robotics, education continuity, learning environment, transdisciplinary co-operation
Procedia PDF Downloads 1817928 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 1587927 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1317926 Relationship of Macro-Concepts in Educational Technologies
Authors: L. R. Valencia Pérez, A. Morita Alexander, Peña A. Juan Manuel, A. Lamadrid Álvarez
Abstract:
This research shows the reflection and identification of explanatory variables and their relationships between different variables that are involved with educational technology, all of them encompassed in macro-concepts which are: cognitive inequality, economy, food and language; These will give the guideline to have a more detailed knowledge of educational systems, the communication and equipment, the physical space and the teachers; All of them interacting with each other give rise to what is called educational technology management. These elements contribute to have a very specific knowledge of the equipment of communications, networks and computer equipment, systems and content repositories. This is intended to establish the importance of knowing a global environment in the transfer of knowledge in poor countries, so that it does not diminish the capacity to be authentic and preserve their cultures, their languages or dialects, their hierarchies and real needs; In short, to respect the customs of different towns, villages or cities that are intended to be reached through the use of internationally agreed professional educational technologies. The methodology used in this research is the analytical - descriptive, which allows to explain each of the variables, which in our opinion must be taken into account, in order to achieve an optimal incorporation of the educational technology in a model that gives results in a medium term. The idea is that in an encompassing way the concepts will be integrated to others with greater coverage until reaching macro concepts that are of national coverage in the countries and that are elements of conciliation in the different federal and international reforms. At the center of the model is the educational technology which is directly related to the concepts that are contained in factors such as the educational system, communication and equipment, spaces and teachers, which are globally immersed in macro concepts Cognitive inequality, economics, food and language. One of the major contributions of this article is to leave this idea under an algorithm that allows to be as unbiased as possible when evaluating this indicator, since other indicators that are to be taken from international preference entities like the OECD in the area of education systems studied, so that they are not influenced by particular political or interest pressures. This work opens the way for a relationship between involved entities, both conceptual, procedural and human activity, to clearly identify the convergence of their impact on the problem of education and how the relationship can contribute to an improvement, but also shows possibilities of being able to reach a comprehensive education reform for all.Keywords: relationships macro-concepts, cognitive inequality, economics, alimentation and language
Procedia PDF Downloads 2027925 Agritourism Potentials in Oman: An Overview with Visionary for Adoption
Authors: A. Al Hinai, H. Jayasuriya, H. Kotagama
Abstract:
Most Gulf Cooperation Council (GCC) countries with oil-based economy like Oman are looking for other potential revenue generation options as the crude oil price is regularly fluctuating due to changing geopolitical environment. Oman has advantage of possessing world-heritage nature tourism hotspots around the country and the government is making investments and strategies to uplift the tourism industry following Oman Vision 2040 strategies. Oman’s agriculture is not significantly contributing to the economy, but possesses specific and diversified arid cropping systems. Oman has modern farms; nevertheless some of the agricultural production activities are done with cultural practices and styles that would be attractive to tourists. The aim of this paper is to investigate the potentials for promoting agritourism industry in Oman; recognize potential sites, commodities and activities, and predict potential revenue generation as a projection from that of the tourism sector. Moreover, the study enables to foresee possible auxiliary advantages of agritourism such as, empowerment of women and youth, enhancement in the value-addition industry for agricultural produce through technology transfer and capacity building, and producing export quality products. Agritourism could increase employability, empowerment of women and youth, improve value-addition industry and export-oriented agribusiness. These efforts including provision of necessary technology-transfer and capacity-building should be rendered by the collaboration of academic institutions, relevant ministries and other public and private sector stakeholders.Keywords: agritourism, nature-based tourism, potentials, revenue generation, value addition
Procedia PDF Downloads 1427924 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation
Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno
Abstract:
Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression
Procedia PDF Downloads 1327923 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 1167922 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 737921 Information Technology Approaches to Literature Text Analysis
Authors: Ayse Tarhan, Mustafa Ilkan, Mohammad Karimzadeh
Abstract:
Science was considered as part of philosophy in ancient Greece. By the nineteenth century, it was understood that philosophy was very inclusive and that social and human sciences such as literature, history, and psychology should be separated and perceived as an autonomous branch of science. The computer was also first seen as a tool of mathematical science. Over time, computer science has grown by encompassing every area in which technology exists, and its growth compelled the division of computer science into different disciplines, just as philosophy had been divided into different branches of science. Now there is almost no branch of science in which computers are not used. One of the newer autonomous disciplines of computer science is digital humanities, and one of the areas of digital humanities is literature. The material of literature is words, and thanks to the software tools created using computer programming languages, data that a literature researcher would need months to complete, can be achieved quickly and objectively. In this article, three different tools that literary researchers can use in their work will be introduced. These studies were created with the computer programming languages Python and R and brought to the world of literature. The purpose of introducing the aforementioned studies is to set an example for the development of special tools or programs on Ottoman language and literature in the future and to support such initiatives. The first example to be introduced is the Stylometry tool developed with the R language. The other is The Metrical Tool, which is used to measure data in poems and was developed with Python. The latest literature analysis tool in this article is Voyant Tools, which is a multifunctional and easy-to-use tool.Keywords: DH, literature, information technologies, stylometry, the metrical tool, voyant tools
Procedia PDF Downloads 1567920 Teaching about Justice With Justice: How Using Experiential, Learner Centered Literacy Methodology Enhances Learning of Justice Related Competencies for Young Children
Authors: Bruna Azzari Puga, Richard Roe, Andre Pagani de Souza
Abstract:
abstract outlines a proposed study to examine how and to what extent interactive, experiential, learner centered methodology develops learning of basic civic and democratic competencies among young children. It stems from the Literacy and Law course taught at Georgetown University Law Center in Washington, DC, since 1998. Law students, trained in best literacy practices and legal cases affecting literacy development, read “law related” children’s books and engage in interactive and extension activities with emerging readers. The law students write a monthly journal describing their experiences and a final paper: a conventional paper or a children’s book illuminating some aspect of literacy and law. This proposal is based on the recent adaptation of Literacy and Law to Brazil at Mackenzie Presbyterian University in São Paulo in three forms: first, a course similar to the US model, often conducted jointly online with Brazilian and US law students; second, a similar course that combines readings of children’s literature with activity based learning, with law students from a satellite Mackenzie campus, for young children from a vulnerable community near the city; and third, a course taught by law students at the main Mackenzie campus for 4th grade students at the Mackenzie elementary school, that is wholly activity and discourse based. The workings and outcomes of these courses are well documented by photographs, reports, lesson plans, and law student journals. The authors, faculty who teach the above courses at Mackenzie and Georgetown, observe that literacy, broadly defined as cognitive and expressive development through reading and discourse-based activities, can be influential in developing democratic civic skills, identifiable by explicit civic competencies. For example, children experience justice in the classroom through cooperation, creativity, diversity, fairness, systemic thinking, and appreciation for rules and their purposes. Moreover, the learning of civic skills as well as the literacy skills is enhanced through interactive, learner centered practices in which the learners experience literacy and civic development. This study will develop rubrics for individual and classroom teaching and supervision by examining 1) the children’s books and students diaries of participating law students and 2) the collection of photos and videos of classroom activities, and 3) faculty and supervisor observations and reports. These rubrics, and the lesson plans and activities which are employed to advance the higher levels of performance outcomes, will be useful in training and supervision and in further replication and promotion of this form of teaching and learning. Examples of outcomes include helping, cooperating and participating; appreciation of viewpoint diversity; knowledge and utilization of democratic processes, including due process, advocacy, individual and shared decision making, consensus building, and voting; establishing and valuing appropriate rules and a reasoned approach to conflict resolution. In conclusion, further development and replication of the learner centered literacy and law practices outlined here can lead to improved qualities of democratic teaching and learning supporting mutual respect, positivity, deep learning, and the common good – foundation qualities of a sustainable world.Keywords: democracy, law, learner-centered, literacy
Procedia PDF Downloads 1287919 Wood Energy in Bangladesh: An Overview of Status, Challenges and Development
Authors: Md. Kamrul Hassan, Ari Pappinen
Abstract:
Wood energy is the single most important form of renewable energy in many parts of the world especially in the least developing countries in South Asia like Bangladesh. The last portion of the national population of this country depends on wood energy for their daily primary energy need. This paper deals with the estimation of wood fuel at the current level and identifies the challenges and strategies related to the development of this resource. Desk research, interactive research and field survey were conducted for gathering and analyzing of data for this study. The study revealed that wood fuel plays a significant role in total primary energy supply in Bangladesh, and the contribution of wood fuel in final energy consumption in 2013 was about 24%. Trees on homestead areas, secondary plantation on off forest lands, and forests are the main sources of supplying wood fuel in the country. Insufficient supply of wood fuel against high upward demand is the main cause of concern for sustainable consumption, which eventually leads deterioration and depletion of the resources. Inadequate afforestation programme, lack of initiatives towards the utilization of set-aside lands for wood energy plantations, and inefficient management of the existing resources have been identified as the major impediments to the development of wood energy in Bangladesh. The study argued that enhancement of public-private-partnership afforestation programmes, intensifying the waste and marginal lands with short-rotation tree species, and formulation of biomass-based rural energy strategies at the regional level are relevant to the promotion of sustainable wood energy in the country.Keywords: Bangladesh, challenge, supply, wood energy
Procedia PDF Downloads 1937918 The Core Obstacles of Continuous Improvement Implementation: Some Key Findings from Health and Education Sectors
Authors: Abdullah Alhaqbani
Abstract:
Purpose: Implementing continuous improvement is a challenge that public sector organisations face in becoming successful. Many obstacles hinder public organisations from successfully implementing continuous improvement. This paper aims to highlight the key core obstacles that face public organisations to implement continuous improvement programmes. Approach: Based on the literature, this paper reviews 66 papers that were published between 2000 and 2013 and that focused on the concept of continuous improvement and improvement methodologies in the context of public sector organisations. The methodologies for continuous improvement covered in these papers include Total Quality Management, Six Sigma, process re-engineering, lean thinking and Kaizen. Findings: Of the 24 obstacles found in the literature, 11 barriers were seen as core barriers that frequently occurred in public sector organisations. The findings indicate that lack of top management commitment; organisational culture and political issues and resistance to change are significant obstacles for improvement programmes. Moreover, this review found that improvement methodologies share some core barriers to successful implementation within public organisations. These barriers as well are common in the different geographic area. For instance lack of top management commitment and training that found in the education sector in Albanian are common barriers of improvement studies in Kuwait, Saudi Arabia, Spain, UK and US. Practical implications: Understanding these core issues and barriers will help managers of public organisations to improve their strategies with respect to continuous improvement. Thus, this review highlights the core issues that prevent a successful continuous improvement journey within the public sector. Value: Identifying and understanding the common obstacles to successfully implementing continuous improvement in the public sector will help public organisations to learn how to improve in launching and successfully sustaining such programmes. However, this is not the end; rather, it is just the beginning of a longer improvement journey. Thus, it is intended that this review will identify key learning opportunities for public sector organisations in developing nations which will then be tested via further research.Keywords: continuous improvement, total quality management, obstacles, public sector
Procedia PDF Downloads 3557917 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol
Authors: S. B. R. Slagmulder
Abstract:
Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive
Procedia PDF Downloads 707916 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 987915 Brand Identity Creation for Thai Halal Brands
Authors: Pibool Waijittragum
Abstract:
The purpose of this paper is to synthesize the research result of brand Identities of Thai Halal brands which related to the way of life for Thai Muslims. The results will be transforming to Thai Halal Brands packaging and label design. The expected benefit is an alternative of marketing strategy for brand building process for Halal products in Thailand. Four elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products. The results will explain some suitable approach for brand Identities of Thai Halal brands as are: 1) Benefit approach as the characteristics of the product with its benefit. The brand identity created transform to the packaging design should be clear and display a fresh product 2) Value approach as the value of products that affect to consumers’ perception. The brand identity created transform to the packaging design should be simply look and using a trustful image 3) Personality approach as the reflection of consumers thought. The brand identity created transform to the packaging design should be sincere, enjoyable, merry, flamboyant look and using a humoristic image.Keywords: marketing strategies, brand identity, packaging and label design, Thai Halal products
Procedia PDF Downloads 4397914 Winery Owners’ Perceptions of Social Media in Promoting Wine Tourism: Case Study of Langhe, Italy
Authors: Magali Canovi, Francesca Pucciarelli
Abstract:
Over the past decade Langhe has developed as a wine tourism destination and has become increasingly popular on an international basis. Wine tourism has been recognized as an important business driver for wineries in Langhe and wine owners have taken advantage of this opportunity through developing a variety of tourism-related activities at their wineries, notably winery visits, wine tastings, cellar-door sales, B&Bs and/or restaurants. In order to promote these tourism-related activities and attract an increasing number of wine tourists, wineries have started to engage in social media. While tourism scholars are now well aware of the benefits social media provides to both travellers and service providers, the existing literature on social media from supplier’s perspective remains limited. Accordingly, this paper aims to fill this gap through providing new insights into how service providers, that is winery owners, exploit social media to promote tourism online. The paper explores the importance and the role of social media as part of wineries’ marketing strategies to promote wine tourism online. The focus lies on understanding, which motives drive winery owners to activate and implement social media activities in promoting wine tourism. A case study approach is adopted, using the North Italian wine region of Langhe in Piedmont. Empirical evidence is provided by a sample of 28 winery owners. An interpretivist approach to research is adopted in order to extend current understandings of social media within the context of wine tourism. In line with the interpretivist perspective, this paper uses discourse analysis (DA) as a methodological approach for analyzing and interpreting winery owners’ accounts. Three key findings emerge from this research. First, there is a general understanding among winery owners what social media represents an opportunity in promoting wine tourism – if not even a must have. Second, the majority of interviewed winery owners are currently applying to some extent social media to promote wine tourism online as well as to interact and engage with tourists directly. Lastly, a varying degree of usage of social media amongst wineries is identified, with some wineries not recognizing social media as a crucial tool in marketing communication strategies. On the other extent, some commonalities in strategies and platforms chosen can be detected by these wineries that actively participate in social media. In conclusion, the main contribution of this paper is that it extends current understandings of social media in the wine tourism context by offering valuable insights into how service providers perceive and engage in social media.Keywords: langhe, promotion, social media, wine tourism
Procedia PDF Downloads 1847913 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 997912 Duration of Isolated Vowels in Infants with Cochlear Implants
Authors: Paris Binos
Abstract:
The present work investigates developmental aspects of the duration of isolated vowels in infants with normal hearing compared to those who received cochlear implants (CIs) before two years of age. Infants with normal hearing produced shorter vowel duration since this find related with more mature production abilities. First isolated vowels are transparent during the protophonic stage as evidence of an increased motor and linguistic control. Vowel duration is a crucial factor for the transition of prelexical speech to normal adult speech. Despite current knowledge of data for infants with normal hearing more research is needed to unravel productions skills in early implanted children. Thus, isolated vowel productions by two congenitally hearing-impaired Greek infants (implantation ages 1:4-1:11; post-implant ages 0:6-1:3) were recorded and sampled for six months after implantation with a Nucleus-24. The results compared with the productions of three normal hearing infants (chronological ages 0:8-1:1). Vegetative data and vocalizations masked by external noise or sounds were excluded. Participants had no other disabilities and had unknown deafness etiology. Prior to implantation the infants had an average unaided hearing loss of 95-110 dB HL while the post-implantation PTA decreased to 10-38 dB HL. The current research offers a methodology for the processing of the prelinguistic productions based on a combination of acoustical and auditory analyses. Based on the current methodological framework, duration measured through spectrograms based on wideband analysis, from the voicing onset to the end of the vowel. The end marked by two co-occurring events: 1) The onset of aperiodicity with a rapid change in amplitude in the waveform and 2) a loss in formant’s energy. Cut-off levels of significance were set at 0.05 for all tests. Bonferroni post hoc tests indicated that difference was significant between the mean duration of vowels of infants wearing CIs and their normal hearing peers. Thus, the mean vowel duration of CIs measured longer compared to the normal hearing peers (0.000). The current longitudinal findings contribute to the existing data for the performance of children wearing CIs at a very young age and enrich also the data of the Greek language. The above described weakness for CI’s performance is a challenge for future work in speech processing and CI’s processing strategies.Keywords: cochlear implant, duration, spectrogram, vowel
Procedia PDF Downloads 2657911 Leadership Effectiveness Compared among Three Cultures Using Voice Pitches
Authors: Asena Biber, Ates Gul Ergun, Seda Bulut
Abstract:
Based on the literature, there are large numbers of studies investigating the relationship between culture and leadership effectiveness. Although giving effective speeches is vital characteristic for a leader to be perceived as effective, to our knowledge, there is no research study the determinants of perceived effective leader speech. The aim of this study is to find the effects of both culture and voice pitch on perceptions of leader's speech effectiveness. Our hypothesis is that people from high power distance countries will perceive leaders' speech effective when the leader's voice pitch is high, comparing with people from relatively low power distance countries. The participants of the study were 36 undergraduate students (12 Pakistanis, 12 Nigerians, and 12 Turks) who are studying in Turkey. National power distance scores of Nigerians ranked as first, Turks ranked as second and Pakistanis ranked as third. There are two independent variables in this study; three nationality groups that representing three levels of power distance and voice pitch of the leader which is manipulated as high and low levels. Researchers prepared an audio to manipulate high and low conditions of voice pitch. A professional whose native language is English read the predetermined speech in high and low voice pitch conditions. Voice pitch was measured using Hertz (Hz) and Decibel (dB). Each nationality group (Pakistan, Nigeria, and Turkey) were divided into groups of six students who listened to either the low or high pitch conditions in the cubicles of the laboratory. It was expected from participants to listen to the audio and fill in the questionnaire which was measuring the leadership effectiveness on a response scale ranging from 1 to 5. To determine the effects of nationality and voice pitch on perceived effectiveness of leader' voice pitch, 3 (Pakistani, Nigerian, and Turk) x 2 (low voice pitch and high voice pitch) two way between subjects analysis of variances was carried out. The results indicated that there was no significant main effect of voice pitch and interaction effect on perceived effectiveness of the leader’s voice pitch. However, there was a significant main effect of nationality on perceived effectiveness of the leader's voice pitch. Based on the results of Turkey’s HSD post-hoc test, only the perceived effectiveness of the leader's speech difference between Pakistanis and Nigerians was statistically significant. The results show that the hypothesis of this study was not supported. As limitations of the study, it is of importance to mention that the sample size should be bigger. Also, the language of the questionnaire and speech should be in the participant’s native language in further studies.Keywords: culture, leadership effectiveness, power distance, voice pitch
Procedia PDF Downloads 1857910 Adaptive Strategies of Clonal Shrub to Sand Dune Environment in Desert-Oasis Transitional Zone
Authors: Weicheng Luo, Wenzhi Zhao
Abstract:
Plants growth in desert often suffered from stresses like water deficit, wind erosion and sand burial. Thus, plants in desert always have unique strategies to adapt these stresses. However, data regarding how clonal shrubs withstand wind erosion and sand burial in natural habitats remain relatively scarce. Therefore, we selected a common clonal shrub Calligonum arborescens to study the adaptive strategies of clonal plants to sand dune environment in a transitional zone of desert and Hexi Oasis of China. Our results show that sand burial is one of the essential prerequisites for the survival of C. arborescens rhizome fragments. Both the time and degrees of sand burial and wind erosion had significantly effects on clonal reproduction and growth of C. arborescens. With increasing burial depth, the number of ramets and biomass production significantly decreased. There is same change trend in severe erosion treatments. However, the number of ramets and biomass production significantly increased in moderate erosion treatments. Rhizome severed greatly decreased ramet number and biomass production under both sand burial and severe erosion treatments. That indicated that both sand burial and severe erosion had negative effects on the clonal growth of C. arborescens, but moderate wind erosion had positive effects. And rhizome connections alleviated the negative effects of sand burial and of severe erosion on the growth and performance of C. arborescens. Most fragments of C. arborescens grew in the directions of northeastern and southwestern. Ramet number and biomass, rhizome length and biomass in these two directions were significantly higher than those found in other directions. Interestingly, these directions were perpendicular to the prevailing wind direction. Distribution of C. arborescens differed in different habitats. The total number of individuals was significantly higher in inter-dune areas and on windward slopes than on the top and leeward slopes of dunes; more clonal ramets were produced on the top of dunes than elsewhere, and a few were found on leeward slopes. The mainly reason is that ramets on windward and top of dunes can easily suffered with moderated wind erosion which promoted clonal growth and reproduction of C. arborescens. These results indicated that C. arborescens adapted sand dune environment through directional growth and patchy distribution, and sand-burial and wind erosion were the key factors which led to the directional growth and patchiness of C. arborescens.Keywords: adaptive strategy, Calligonum arborescens Litv, clonal fragment, desert-oasis transitional zone, sand burial and wind erosion
Procedia PDF Downloads 2427909 Artificial Intelligence for Cloud Computing
Authors: Sandesh Achar
Abstract:
Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things
Procedia PDF Downloads 1127908 Analysis of the Development of Communicative Skills After Participating in the Equine-Assisted-Therapy Program Step-By-Step in Communication
Authors: Leticia Souza Guirra, Márcia Eduarda Vieira Ramos, Edlaine Souza Pereira, Leticia Correa Celeste
Abstract:
Introduction: Studies indicate that equine-assisted therapy enables improvements in several areas of functioning that are impaired in children with autism spectrum disorder (ASD), such as social interaction and communication. Objective: The study proposes to analyze the development of dialogic skills of a verbal child with ASD after participating in the equine-assisted therapy Step By Step in Communication. Method: This is quantitative and qualitative research through a case study. It refers to a 6 years old child diagnosed with ASD belonging to a group of practitioners of the Brazilian National Equine-Assited-Therapy Association. The Behavioral Observation Protocol (PROC) was used to evaluate communicative skills before and after the intervention, which consisted of 24 sessions once a week. Results: All conversational skills increased their frequency, with participation in dialogue and initiation of interaction. The child also increases the habit of waiting for his turn and answering the interlocutor. The emission of topics not related to conversation and echolalia showed a significant decrease after the intervention. Conclusion: The studied child showed improvement in communicative skills after participating in the equine-assisted therapy Step By Step in Communication. Contributions: This study contributes to a greater understanding of the impact of equine-assisted therapy on the communicative abilities of children with ASD.Keywords: equine-assisted-therapy, autism spectrum disorder, language, communication, language and hearing sciences
Procedia PDF Downloads 86