Search results for: agricultural applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7986

Search results for: agricultural applications

1776 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images

Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek

Abstract:

Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.

Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection

Procedia PDF Downloads 310
1775 Characterization of Biocomposites Based on Mussel Shell Wastes

Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk

Abstract:

Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.

Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties

Procedia PDF Downloads 297
1774 Ilizarov's External Fixator. A Bone Regeneration Method Little Used in Africa. Our Experience of 20 Years in Cameroon.

Authors: Ibrahima Farikou, Kolontchang Gatchou Alberic Lionel, Tsiagadgui Jean Gustave, Ngo Yamben Marie-Ange, Handy Eone Daniel

Abstract:

Introduction: It was in 1956 that Ilizarov pioneered the concept of osteogenesis in distraction by the device that bears his name to help produce bone and soft tissue regeneration and bone consolidation. This technique is not widely used in Africa where, however, its applications are numerous (loss of bone substances, congenital or acquired malformations). Our goal is to bring the indications of Ilizarov's device back to our practice conditions. Methods: Our study was conducted in 2 hospitals over a period of 20 years. For the retrospective phase, this study included all complete usable records of patients operated on in the Ilizarov external fixator department, and for the prospective phase, all patients operated on in the departments with complete usable records. Our sample was consecutive and not exhaustive. Data were analyzed by SPSS software version 23.0. Results: A total of 52 patients were reviewed. The average age of our patients was 14.7 years. The sex ratio was 1.6 in favor of men. The lower limb was the most affected (49), with a predominance of the tibia (62.4%). The average elongation was 6.4 cm. Traumatic acquired pathologies (delayed union, malunion) represented 60.6%. The mean time to union was seven months. Correction of the limb length discrepancy or filling of loss of bone substance was obtained in 75% of cases. Functionally, 80.8% of the patients treated had regained autonomy at the end of treatment, but in 17.3% of the patients, pain and limping persisted. Conclusion: This technique should be popularized in Africa because the benefit that would accrue to patients is invaluable and would be an attractive alternative to many amputations sometimes carried out in Africa by despair.

Keywords: ilizarov, external fixator, limb lengthening, bone regeneration, africa

Procedia PDF Downloads 75
1773 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 172
1772 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 196
1771 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 299
1770 Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression

Authors: Ercan Karadogan, Fatih Usta

Abstract:

Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures.

Keywords: auxetic materials, compressive behavior, metamaterials, negative Poisson’s ratio

Procedia PDF Downloads 76
1769 A Sustainable Design Model by Integrated Evaluation of Closed-loop Design and Supply Chain Using a Mathematical Model

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

The paper presented a sustainable design model for integrated evaluation of the design and supply chain of a product for the sustainable objectives. To design a product, there can be alternative ways to assign the detailed specifications to fulfill the same design objectives. In the design alternative cases, different material and manufacturing processes with various supply chain activities may be required for the production. Therefore, it is required to evaluate the different design cases based on the sustainable objectives. In this research, a closed-loop design model is developed by integrating the forward design model and reverse design model. From the supply chain point of view, the decisions in the forward design model are connected with the forward supply chain. The decisions in the reverse design model are connected with the reverse supply chain considering the sustainable objectives. The purpose of this research is to develop a mathematical model for analyzing the design cases by integrated evaluating the criteria in the closed-loop design and the closed-loop supply chain. The decision variables are built to represent the design cases of the forward design and reverse design. The cost parameters in a forward design include the costs of material and manufacturing processes. The cost parameters in a reverse design include the costs of recycling, disassembly, reusing, remanufacturing, and disposing. The mathematical model is formulated to minimize the total cost under the design constraints. In practical applications, the decisions of the mathematical model can be used for selecting a design case for the purpose of sustainable design of a product. An example product is demonstrated in the paper. The test result shows that the sustainable design model is useful for integrated evaluation of the design and the supply chain to achieve the sustainable objectives.

Keywords: closed-loop design, closed-loop supply chain, design evaluation, supply chain management, sustainable design model

Procedia PDF Downloads 402
1768 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices

Authors: Mohammed Saleh Rezk, Reza Kashani

Abstract:

Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.

Keywords: viscoelastic, damper, distributed damping, tuned mass damper

Procedia PDF Downloads 86
1767 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic

Procedia PDF Downloads 405
1766 Design and Optimisation of 2-Oxoglutarate Dioxygenase Expression in Escherichia coli Strains for Production of Bioethylene from Crude Glycerol

Authors: Idan Chiyanzu, Maruping Mangena

Abstract:

Crude glycerol, a major by-product from the transesterification of triacylglycerides with alcohol to biodiesel, is known to have a broad range of applications. For example, its bioconversion can afford a wide range of chemicals including alcohols, organic acids, hydrogen, solvents and intermediate compounds. In bacteria, the 2-oxoglutarate dioxygenase (2-OGD) enzymes are widely found among the Pseudomonas syringae species and have been recognized with an emerging importance in ethylene formation. However, the use of optimized enzyme function in recombinant systems for crude glycerol conversion to ethylene is still not been reported. The present study investigated the production of ethylene from crude glycerol using engineered E. coli MG1655 and JM109 strains. Ethylene production with an optimized expression system for 2-OGD in E. coli using a codon optimized construct of the ethylene-forming gene was studied. The codon-optimization resulted in a 20-fold increase of protein production and thus an enhanced production of the ethylene gas. For a reliable bioreactor performance, the effect of temperature, fermentation time, pH, substrate concentration, the concentration of methanol, concentration of potassium hydroxide and media supplements on ethylene yield was investigated. The results demonstrate that the recombinant enzyme can be used for future studies to exploit the conversion of low-priced crude glycerol into advanced value products like light olefins, and tools including recombineering techniques for DNA, molecular biology, and bioengineering can be used to allowing unlimited the production of ethylene directly from the fermentation of crude glycerol. It can be concluded that recombinant E.coli production systems represent significantly secure, renewable and environmentally safe alternative to thermochemical approach to ethylene production.

Keywords: crude glycerol, bioethylene, recombinant E. coli, optimization

Procedia PDF Downloads 264
1765 Finite Deformation of a Dielectric Elastomeric Spherical Shell Based on a New Nonlinear Electroelastic Constitutive Theory

Authors: Odunayo Olawuyi Fadodun

Abstract:

Dielectric elastomers (DEs) are a type of intelligent materials with salient features like electromechanical coupling, lightweight, fast actuation speed, low cost and high energy density that make them good candidates for numerous engineering applications. This paper adopts a new nonlinear electroelastic constitutive theory to examine radial deformation of a pressurized thick-walled spherical shell of soft dielectric material with compliant electrodes on its inner and outer surfaces. A general formular for the internal pressure, which depends on the deformation and a potential difference between boundary electrodes or uniform surface charge distributions, is obtained in terms of special function. To illustrate the effects of an applied electric field on the mechanical behaviour of the shell, three different energy functions with distinct mechanical properties are employed for numerical purposes. The observed behaviour of the shells is preserved in the presence of an applied electric field, and the influence of the field due to a potential difference declines more slowly with the increasing deformation to that produced by a surface charge. Counterpart results are then presented for the thin-walled shell approximation as a limiting case of a thick-walled shell without restriction on the energy density. In the absence of internal pressure, it is obtained that inflation is caused by the application of an electric field. The resulting numerical solutions of the theory presented in this work are in agreement with those predicted by the generally adopted Dorfmann and Ogden model.

Keywords: constitutive theory, elastic dielectric, electroelasticity, finite deformation, nonlinear response, spherical shell

Procedia PDF Downloads 60
1764 Corrosion Resistance of 17-4 Precipitation Hardenable Stainless Steel Fabricated by Selective Laser Melting

Authors: Michella Alnajjar, Frederic Christien, Krzysztof Wolski, Cedric Bosch

Abstract:

Additive manufacturing (AM) has gained more interest in the past few years because it allows 3D parts often having a complex geometry to be directly fabricated, layer by layer according to a CAD model. One of the AM techniques is the selective laser melting (SLM) which is based on powder bed fusion. In this work, the corrosion resistance of 17-4 PH steel obtained by SLM is investigated. Wrought 17-4 PH steel is a martensitic precipitation hardenable stainless steel. It is widely used in a variety of applications such as aerospace, medical and food industries, due to its high strength and relatively good corrosion resistance. However, the combined findings of X-Ray diffraction and electron backscatter diffraction (EBSD) proved that SLM-ed 17-4 PH steel has a fully ferritic microstructure, more specifically δ ferrite. The microstructure consists of coarse ferritic grains elongated along the build direction, with a pronounced solidification crystallographic texture. These results were associated with the high cooling and heating rates experienced throughout the SLM process (10⁵-10⁶ K/s) that suppressed the austenite formation and produced a 'by-passing' phenomenon of this phase during the numerous thermal cycles. Furthermore, EDS measurements revealed a uniform distribution of elements without any dendritic structure. The extremely high cooling kinetics induced a diffusionless solidification, resulting in a homogeneous elemental composition. Consequently, the corrosion properties of this steel are altered from that of conventional ones. By using electrochemical means, it was found that SLM-ed 17-4 PH is more resistant to general corrosion than the wrought steel. However, the SLM-ed material exhibits metastable pitting due to its high porosity density. In addition, the hydrogen embrittlement of SLM-ed 17-4 PH steel is investigated, and a correlation between its behavior and the observed microstructure is made.

Keywords: corrosion resistance, 17-4 PH stainless steel, selective laser melting, hydrogen embrittlement

Procedia PDF Downloads 125
1763 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: natural fiber reinforced composites, delamination, thrust force, machinability

Procedia PDF Downloads 114
1762 Exploration of the Psychological Aspect of Empowerment of Marginalized Women Working in the Unorganized Sector

Authors: Sharmistha Chanda, Anindita Choudhuri

Abstract:

This exploratory study highlights the psychological aspects of women's empowerment to find the importance of the psychological dimension of empowerment, such as; meaning, competence, self-determination, impact, and assumption, especially in the weaker marginalized section of women. A large proportion of rural, suburban, and urban poor survive by working in unorganized sectors of metropolitan cities. Relative Poverty and lack of employment in rural areas and small towns drive many people to the metropolitan city for work and livelihood. Women working in that field remain unrecognized as people of low socio-economic status. They are usually willing to do domestic work as daily wage workers, single wage earners, street vendors, family businesses like agricultural activities, domestic workers, and self-employed. Usually, these women accept such jobs because they do not have such an opportunity as they lack the basic level of education that is required for better-paid jobs. The unorganized sector, on the other hand, has no such clear-cut employer-employee relationships and lacks most forms of social protection. Having no fixed employer, these workers are casual, contractual, migrant, home-based, own-account workers who attempt to earn a living from whatever meager assets and skills they possess. Women have become more empowered both financially and individually through small-scale business ownership or entrepreneurship development and in household-based work. In-depth interviews have been done with 10 participants in order to understand their living styles, habits, self-identity, and empowerment in their society in order to evaluate the key challenges that they may face following by qualitative research approach. Transcription has been done from the collected data. The three-layer coding technique guides the data analysis process, encompassing – open coding, axial coding, and selective coding. Women’s Entrepreneurship is one of the foremost concerns as the Government, and non-government institutions are readily serving this domain with the primary objectives of promoting self-employment opportunities in general and empowering women in specific. Thus, despite hardship and unrecognition unorganized sector provides a huge array of opportunities for rural and sub-urban poor to earn. Also, the upper section of society tends to depend on this working force. This study gave an idea about the well-being, and meaning in life, life satisfaction on the basis of their lived experience.

Keywords: marginalized women, psychological empowerment, relative poverty, unorganized sector

Procedia PDF Downloads 49
1761 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent

Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya

Abstract:

Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.

Keywords: sol-gel, allethrin, TEOS, biochemistry

Procedia PDF Downloads 349
1760 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 472
1759 Encapsulation of Flexible OLED with an Auxiliary Sealing Line

Authors: Hanjun Yun, Gun Bae, Nabin Paul, Cheolhee Moon

Abstract:

Flexible OLED is an important technology for the next generation display over various kinds of applications. However, the organic materials of OLEDs degrade rapidly under the invasion of oxygen and water moisture. The degradation causes the formation of non-emitting areas which gradually suppress the device brightness, ultimately the lifetime of the device decreasing rapidly. Until now, the most suitable sealing process of the flexible OLED devices is a thin film encapsulation (TFE). However, TFE consists of a multilayer thin-film structure with organic-inorganic materials, so the cost is expensive and the process time is long. Another problem is that the blocking characteristics from the moisture and oxygen are not perfect. Therefore, the encapsulation of the flexible OLED device is a still key technical issue for the successful market entry. In this study, we are to introduce an auxiliary sealing line between the two flexible substrates. The electrode lines were formed on the substrates which have a SiNx barrier coating layer. To induce the solid phase diffusion process between the SiNx layer and the electrode lines, the electrode materials were determined as Al-Si composition. Thermal energy was supplied for both the SiNx layer and Al-Si electrode lines within the furnace to induce the interfacial bonding through the solid phase diffusion of Si. We printed a test pattern for the edge of the flexible PET substrate of 3cm*3cm size. Experimental conditions such as heating temperature, heating time were optimized to get enough adhesion strength which was estimated through the competitive bending test. Finally, OLED devices with flexible PET substrate of 3cm*3cm size were manufactured to investigate the blocking characteristics as an encapsulation layer.

Keywords: barrier, encapsulation, OLED, solid phase diffusion

Procedia PDF Downloads 218
1758 Quaternized PPO/PSF Anion Exchange Membranes Doped with ZnO-Nanoparticles for Fuel Cell Application

Authors: P. F. Msomi, P. T. Nonjola, P. G. Ndungu, J. Ramontja

Abstract:

In view of the projected global energy demand and increasing levels of greenhouse gases and pollutants issues have inspired an intense search for alternative new energy technologies, which will provide clean, low cost and environmentally friendly solutions to meet the end user requirements. Alkaline anion exchange membrane fuel cells (AAEMFC) have been recognized as ideal candidates for the generation of such clean energy for future stationary and mobile applications due to their many advantages. The key component of the AAEMFC is the anion exchange membrane (AEM). In this report, a series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anionic exchange membranes (AEM) were successfully fabricated and characterized for alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. The characteristic properties of the QPPO/PSF and QPPO/PSF-ZnO blend membrane were investigated with X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and contact angle (CA). To confirm successful quaternisation, FT-IR spectroscopy and proton nuclear magnetic resonance (1H NMR) were used. Other properties such as ion exchange capacity (IEC), water uptake, contact angle and ion conductivity (IC) were also undertaken to check if the prepared nanocomposite materials are suitable for fuel cell application. The membrane intrinsic properties were found to be enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a highest IEC of 3.72 mmol/g and a 30-fold IC increase of the nanocomposite due to its lower methanol permeability. The above results indicate that QPPO/PSF-ZnO is a good candidate for AAEMFC application.

Keywords: anion exchange membrane, fuel cell, zinc oxide nanoparticle, nanocomposite

Procedia PDF Downloads 397
1757 Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)

Authors: Shiwani Bhatnagar, K. K. Srivastava, Sangeeta Singh, Ameen Ullah Khan, Bundesh Kumar, Lokendra Singh Rathore

Abstract:

From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed.

Keywords: azadirachta indica, alternaria leaf spot, laspeyresia koenigana, management

Procedia PDF Downloads 450
1756 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes

Authors: Omolola A. Tajelawi, Hari L. Garbharran

Abstract:

Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.

Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses

Procedia PDF Downloads 316
1755 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 286
1754 Behavior of Printing Inks on Historical Documents Subjected to Cold RF Plasma Discharges

Authors: Dorina Rusu, Emil Ghiocel Ioanid, Marta Ursescu, Ana Maria Vlad, Mihaela Popescu

Abstract:

During the last decades the cold plasma discharges made the subject of numerous studies concerning the applications in the cultural heritage field, especially concentrated on ecological and non-invasive aspect of these conservation procedures. The conservation treatment using cold plasma is based, on the one hand, on the well-known property of plasma discharges to inactivate the contaminant biological species and, on the other hand, on the surface cleaning effect. Moreover the plasma discharge produces the functionalization of the treated surface, allowing subsequent deposition of protective layers. The paper presents the behavior of printing inks on historical documents treated in cold RF plasma. Two types of printing inks were studied, namely red and black ink, used on a religious book published in 19 century. SEM-EDX analysis results in the identification of the two inks as carbon black ink (C presence in the EDX spectrum) and cinnabar based red ink (Hg and S lines in the spectrum), result confirmed by XRF analysis. The experiments have been performed on paper samples written with laboratory- made inks, of similar composition with the inks identified on historical documents. The samples were subjected to RF plasma discharge, operating in nitrogen gaseous medium, at 1.2 MHz frequency and low-pressure (0.5 mbar), performed in a self-designed equipment for the application of conservation treatments on naturally aged paper supports. The impact of plasma discharge on the inks has been evaluated by SEM, XRD and color analysis. The color analysis revealed a slight discoloration of cinnabar ink on the historical document. SEM and XRD analyses have been carried out in an attempt to elucidate the process responsable for color modification.

Keywords: RF plasma, printing inks, historical documents, surface cleaning effect

Procedia PDF Downloads 419
1753 Genetic Variations of Two Casein Genes among Maghrabi Camels Reared in Egypt

Authors: Othman E. Othman, Amira M. Nowier, Medhat El-Denary

Abstract:

Camels play an important socio-economic role within the pastoral and agricultural system in the dry and semidry zones of Asia and Africa. Camels are economically important animals in Egypt where they are dual purpose animals (meat and milk). The analysis of chemical composition of camel milk showed that the total protein contents ranged from 2.4% to 5.3% and it is divided into casein and whey proteins. The casein fraction constitutes 52% to 89% of total camel milk protein and it divided into 4 fractions namely αs1, αs2, β and κ-caseins which are encoded by four tightly genes. In spite of the important role of casein genes and the effects of their genetic polymorphisms on quantitative traits and technological properties of milk, the studies for the detection of genetic polymorphism of camel milk genes are still limited. Due to this fact, this work focused - using PCR-RFP and sequencing analysis - on the identification of genetic polymorphisms and SNPs of two casein genes in Maghrabi camel breed which is a dual purpose camel breed in Egypt. The amplified fragments at 488-bp of the camel κ-CN gene were digested with AluI endonuclease. The results showed the appearance of three different genotypes in the tested animals; CC with three digested fragments at 203-, 127- and 120-bp, TT with three digested fragments at 203-, 158- and 127-bp and CT with four digested fragments at 203-, 158-, 127- and 120-bp. The frequencies of three detected genotypes were 11.0% for CC, 48.0% for TT and 41.0% for CT genotypes. The sequencing analysis of the two different alleles declared the presence of a single nucleotide polymorphism (C→T) at position 121 in the amplified fragments which is responsible for the destruction of a restriction site (AG/CT) in allele T and resulted in the presence of two different alleles C and T in tested animals. The nucleotide sequences of κ-CN alleles C and T were submitted to GenBank with the accession numbers; KU055605 and KU055606, respectively. The primers used in this study amplified 942-bp fragments spanning from exon 4 to exon 6 of camel αS1-Casein gene. The amplified fragments were digested with two different restriction enzymes; SmlI and AluI. The results of SmlI digestion did not show any restriction site whereas the digestion with AluI endonuclease revealed the presence of two restriction sites AG^CT at positions 68^69 and 631^632 yielding the presence of three digested fragments with sizes 68-, 563- and 293-bp.The nucleotide sequences of this fragment from camel αS1-Casein gene were submitted to GenBank with the accession number KU145820. In conclusion, the genetic characterization of quantitative traits genes which are associated with the production traits like milk yield and composition is considered an important step towards the genetic improvement of livestock species through the selection of superior animals depending on the favorable alleles and genotypes; marker assisted selection (MAS).

Keywords: genetic polymorphism, SNP polymorphism, Maghrabi camels, κ-Casein gene, αS1-Casein gene

Procedia PDF Downloads 587
1752 Photocatalytic Degradation of Organic Polluant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics

Authors: A. Taoufyq, B. Bakiz, A. Benlhachemi, L. Patout, D. V. Chokouadeua, F. Guinneton, G. Nolibe, A. Lyoussi, J-R. Gavarri

Abstract:

Currently, the photo catalytic reactions occurring under solar illumination have attracted worldwide attentions due to a tremendous set of environmental problems. Taking the sunlight into account, it is indispensable to develop highly effective visible-light-driver photo catalysts. Nano structured materials such as MxM’1-xWO6 system are widely studied due to its interesting piezoelectric, dielectric and catalytic properties. These materials can be used in photo catalysis technique for environmental applications, such as waste water treatments. The aim of this study was to investigate the photo catalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photo catalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photo catalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photo catalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB.

Keywords: Bismuth tungstate, crystallite sizes, electron microscopy, photocatalytic activity, X-ray diffraction.

Procedia PDF Downloads 425
1751 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 244
1750 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 374
1749 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator

Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau

Abstract:

Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.

Keywords: FFFluid, dry foam, anti-vibration devices, elastomeric polymer foam

Procedia PDF Downloads 319
1748 Double Gaussian Distribution of Nonhomogeneous Barrier Height in Metal/n-type GaN Schottky Contacts

Authors: M. Mamor

Abstract:

GaN-based compounds have attracted much interest in the fabrication of high-power, high speed and high-frequency electronic devices. Other examples of GaN-based applications are blue and ultraviolet (UV) light-emitting diodes (LEDs). All these devices require high-quality ohmic and Schottky contacts. Gaining an understanding of the electrical characteristics of metal/GaN contacts is of fundamental and technological importance for developing GaN-based devices. In this work, the barrier characteristics of Pt and Pd Schottky contacts on n-type GaN were studied using temperature-dependent forward current-voltage (I-V) measurements over a wide temperature range 80–400 K. Our results show that the barrier height and ideality factor, extracted from the forward I-V characteristics based on thermionic emission (TE) model, exhibit an abnormal dependence with temperature; i.e., by increasing temperature, the barrier height increases whereas the ideality factor decreases. This abnormal behavior has been explained based on the TE model by considering the presence of double Gaussian distribution (GD) of nonhomogeneous barrier height at the metal/GaN interface. However, in the high-temperature range (160-400 K), the extracted value for the effective Richardson constant A* based on the barrier inhomogeneity (BHi) model is found in fair agreement with the theoretically predicted value of about 26.9 A.cm-2 K-2 for n-type GaN. This result indicates that in this temperature range, the conduction current transport is dominated by the thermionic emission mode. On the other hand, in the lower temperature range (80-160 K), the corresponding effective Richardson constant value according to the BHi model is lower than the theoretical value, suggesting the presence of other current transport, such as tunneling-assisted mode at lower temperatures.

Keywords: Schottky diodes, inhomogeneous barrier height, GaN semiconductors, Schottky barrier heights

Procedia PDF Downloads 37
1747 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 127