Search results for: Doyle-Fuller-Newman battery model
11165 The Language of Landscape Architecture
Authors: Hosna Pourhashemi
Abstract:
Chahar Bagh, the symbol of the world, displayed around the pool of life in the centre, attempts to emulate Eden. It represents a duality concept based on the division of the universe into two perceptional insights, a celestial and an earthly one. Chahar Bagh garden pattern refers to the Garden of Eden, that was watered and framed by main four rivers. This microcosm is combined with a mystical love of flowers, sweet-scented trees, the variety of colors, and the sense of eternal life. This symbol of the integration of spontaneous expressivity of the natural elements and reasoning awareness of man strives for the ideal of divine perfection. Through collecting and analyzing the data, the prevalence and continuous influence of Chahar Bagh concept on selected historical gardens was elaborated and evaluated. After the conquest of Persia by the Arabs in the 7th century, Chahar Bagh was adopted and spread throughout the Islamic expansion, from the Middle East, westward across northern Africa to Morocco and the Iberian Peninsula, and eastward through Iran to Central Asia and India. Furthermore, its continuity to the mid of 16th century Renaissance period is shown. By adapting the semiotic theory of Peirce and Saussure on the Persian garden, Chahar Bagh was defined as the basic pattern language for the garden culture. The hypothesis of the continuous influence of Chahar Bagh pattern language on today’s landscape architecture was examined on selected works of Dieter Kienast, as the important and relevant protagonist of his time (end of twentieth ct.) and up to our time. Chahar Bagh pattern language offers collective cultural sensitive healing wisdom transmitted down through the millennia. Through my reflections in Dieter Kienast’s works, I transformed my personal experience into a transpersonal understanding regarding the Sufi philosophy and the Jung psychology, which brings me to define new design theories and methods to form a spiritual, as I call it” Quaternary Perception Model” for landscape architecture. Based on a cognition process through self-journeying in this holistic model, human consciousness can be developed to access to “higher” levels of being and embrace the unity. The self-purification and mindfulness through transpersonal confrontation in the ”Quaternary Perception Model” generates a form of heart-based treatment. I adapted the seven spiritual levels of Sufi self-development on the perception of landscape, representing the stages of the self, ranging from absolutely self-centered to pure spiritual humanity. I redefine and reread the elements and features of Chahar Bagh pattern language for today’s landscape architecture. The “lost paradise” lies in our heart and can be perceived by all humans in landscapes and cities designed in the spirit of” Quaternary Model”.Keywords: persian garden, pattern language of Chahar Bagh, wholistic Perception, dieter kienast, “quaternary model”
Procedia PDF Downloads 8211164 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach
Authors: Geraldine G. Granados Vazquez
Abstract:
Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability
Procedia PDF Downloads 22511163 Heavy Vehicles Crash Injury Severity at T-Intersections
Authors: Sivanandan Balakrishnan, Sara Moridpour, Richard Tay
Abstract:
Heavy vehicles make a significant contribution to many developed economies, including Australia, because they are a major means of transporting goods within these countries. With the increase in road freight, there will be an increase in the heavy vehicle traffic proportion, and consequently, an increase in the possibility of collisions involving heavy vehicles. Crashes involving heavy vehicles are a major road safety concern because of the higher likelihood of fatal and serious injury, especially to any small vehicle occupant involved. The primary objective of this research is to identify the factors influencing injury severity to occupants in vehicle collisions involving heavy vehicle at T- intersection using a binary logit model in Victoria, Australia. Our results show that the factors influencing injury severity include occupants' gender, age and restraint use. Also, vehicles' type, movement, point-of-impact and damage, time-of-day, day-of-week and season, higher percentage of trucks in traffic volume, hit pedestrians, number of occupants involved and type of collisions are associated with severe injury.Keywords: binary logit model, heavy vehicle, injury severity, T-intersections
Procedia PDF Downloads 39411162 Stabilizing a Failed Slope in Islamabad, Pakistan
Authors: Muhammad Umer Zubair, Kamran Akhtar, Muhammad Arsalan Khan
Abstract:
This paper is based on a research carried out on a failed slope in Defence Housing Authority (DHA) Phase I, Islamabad. The research included determination of Soil parameters, Site Surveying and Cost Estimation. Apart from these, the use of three dimensional (3D) slope stability analysis in conjunction with two dimensional (2D) analysis was used determination of slope conditions. In addition collection of soil reports, a detailed survey was carried out to create a 3D model in Surfer 8 software. 2D cross-sections that needed to be analyzed for stability were generated from 3D model. Slope stability softwares, Rocscience Slide 6.0 and Clara-W were employed for 2D and 3D Analyses respectively which have the ability to solve complex mathematical functions. Results of the analyses were used to confirm site conditions and the threats were identified to recommend suitable remedies.The most effective remedy was suggested for slope stability after analyzing all remedies in software Slide 6 and its feasibility was determined through cost benefit analysis. This paper should be helpful to Geotechnical engineers, design engineers and the organizations working with slope stability.Keywords: slope stability, Rocscience, Clara W., 2d analysis, 3D analysis, sensitivity analysis
Procedia PDF Downloads 52511161 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating
Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho
Abstract:
Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.Keywords: electric field, finite element method, microwave energy, natural rubber glove
Procedia PDF Downloads 26311160 Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop, Trat Province
Authors: Pradapet Krutchangthong, Jirawat Sudsawart
Abstract:
This research aims to study the health tourism administration and factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province. The sample in this research is 361 tourists who use the service and Ban Nam Chieo Community residents who provide the service. Sampling was done from a population size of 3,780 using Taro Yamane’s formula. The tools used in the study were questionnaires and interviews. The statistics used in this research are percentage, mean and standard deviation. The result of Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop , Trat Province shows that most of them are female with bachelor degree. They are government officers with an average income between 16,001-20,000 Baht. Suggested health system activities for health tourism development are: 1) health massage, 2) herbal compress, 3) exercise in the water by walking on shell. Meanwhile, factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province are: 1) understanding the context of the community and service providers, 2) cooperation from related government and private sectors.Keywords: health tourism, health system activities, promotion, administration
Procedia PDF Downloads 38911159 Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number
Authors: Younes El Khchine, Mohammed Sriti
Abstract:
A parametric study has been conducted to analyse the flow around S809 airfoil of wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds number by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using γ-Reθt turbulence model. Two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of laminar separation bubble and aerodynamic performances of wind turbine. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerate transition process and the turbulent reattachment point move closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase of the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to moves upstream to leading edge of the airfoil that causes earlier laminar separation.Keywords: laminar separation bubble, turbulence intensity, S809 airfoil, transition model, Reynolds number
Procedia PDF Downloads 8511158 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces
Authors: Martin Alexander Eder, Sergei Semenov
Abstract:
Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.Keywords: adhesive, fatigue, interface, multiaxial stress
Procedia PDF Downloads 16911157 The Impact of Organizational Justice on Organizational Loyalty Considering the Role of Spirituality and Organizational Trust Variable: Case Study of South Pars Gas Complex
Authors: Sima Radmanesh, Nahid Radmanesh, Mohsen Yaghmoor
Abstract:
The presence of large number of active rival gas companies on Persian Gulf border necessitates the adaptation and implementation of effective employee retention strategies as well as implementation of promoting loyalty and belonging strategies of specialized staffs in the South Pars gas company. Hence, this study aims at assessing the amount of organizational loyalty and explaining the effect of institutional justice on organizational justice with regard to the role of mediator variables of spirituality in the work place and organizational trust. Therefore, through reviewing the related literature, the researchers achieve a conceptual model for the effect of these factors on organizational loyalty. To this end, this model was assessed and tested through questionnaires in South Pars gas company. The research method was descriptive and correlation-structural equation modeling. The findings of the study indicated a significant relationship between the concepts addressed in the research and conceptual models were confirmed. Finally, according to the results to improve effectiveness factors affecting organizational loyalty, recommendations are provided.Keywords: organizational loyalty, organizational trust, organizational justice, organizational spirit, oil and gas company
Procedia PDF Downloads 47211156 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 26211155 The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar
Authors: Abdullah Abu-Tineh, Youmen Chaaban
Abstract:
This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.Keywords: initiative, professional development, school based support Program (SBSP), school reform
Procedia PDF Downloads 49611154 An Internet of Things-Based Weight Monitoring System for Honey
Authors: Zheng-Yan Ruan, Chien-Hao Wang, Hong-Jen Lin, Chien-Peng Huang, Ying-Hao Chen, En-Cheng Yang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Bees play a vital role in pollination. This paper focuses on the weighing process of honey. Honey is usually stored at the comb in a hive. Bee farmers brush bees away from the comb and then collect honey, and the collected honey is weighed afterward. However, such a process brings strong negative influences on bees and even leads to the death of bees. This paper therefore presents an Internet of Things-based weight monitoring system which uses weight sensors to measure the weight of honey and simplifies the whole weighing procedure. To verify the system, the weight measured by the system is compared to the weight of standard weights used for calibration by employing a linear regression model. The R2 of the regression model is 0.9788, which suggests that the weighing system is highly reliable and is able to be applied to obtain actual weight of honey. In the future, the weight data of honey can be used to find the relationship between honey production and different ecological parameters, such as bees’ foraging behavior and weather conditions. It is expected that the findings can serve as critical information for honey production improvement.Keywords: internet of things, weight, honey, bee
Procedia PDF Downloads 45911153 Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds
Authors: Mohammed Umar Manko
Abstract:
A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media.Keywords: activated carbon, pseudo second order, chromium, lead, Elovich model
Procedia PDF Downloads 32111152 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course
Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu
Abstract:
Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects
Procedia PDF Downloads 26211151 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic
Procedia PDF Downloads 70011150 Effects of Convective Momentum Transport on the Cyclones Intensity: A Case Study
Authors: José Davi Oliveira De Moura, Chou Sin Chan
Abstract:
In this study, the effect of convective momentum transport (CMT) on the life of cyclone systems and their organization is analyzed. A case of strong precipitation, in the southeast of Brazil, was simulated using Eta model with two kinds of convective parameterization: Kain-Fritsch without CMT and Kain-fritsch with CMT. Reanalysis data from CFSR were used to compare Eta model simulations. The Wind, mean sea level pressure, rain and temperature are included in analysis. The rain was evaluated by Equitable Threat Score (ETS) and Bias Index; the simulations were compared among themselves to detect the influence of CMT displacement on the systems. The result shows that CMT process decreases the intensity of meso cyclones (higher pressure values on nuclei) and change the positions and production of rain. The decrease of intensity in meso cyclones should be caused by the dissolution of momentum from lower levels from up levels. The rain production and rain distribution were altered because the displacement of the larger systems scales was changed. In addition, the inclusion of CMT process is very important to improve the simulation of life time of meteorological systems.Keywords: convection, Kain-Fritsch, momentum, parameterization
Procedia PDF Downloads 32511149 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks
Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo
Abstract:
In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm
Procedia PDF Downloads 22811148 The Location of Park and Ride Facilities Using the Fuzzy Inference Model
Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas
Abstract:
Contemporary cities are facing serious congestion and parking problems. In urban transport policy the introduction of the park and ride system (P&R) is an increasingly popular way of limiting vehicular traffic. The determining of P&R facilities location is a key aspect of the system. Criteria for assessing the quality of the selected location are formulated generally and descriptively. The research outsourced to specialists are expensive and time consuming. The most focus is on the examination of a few selected places. The practice has shown that the choice of the location of these sites in a intuitive way without a detailed analysis of all the circumstances, often gives negative results. Then the existing facilities are not used as expected. Methods of location as a research topic are also widely taken in the scientific literature. Built mathematical models often do not bring the problem comprehensively, e.g. assuming that the city is linear, developed along one important communications corridor. The paper presents a new method where the expert knowledge is applied to fuzzy inference model. With such a built system even a less experienced person could benefit from it, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed location can also be verified in a short time. The proposed method is intended for testing of car parks location in a city. The paper will show selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analysis of existing objects will also be shown in the paper and they will be confronted with the opinions of the system users, with particular emphasis on unpopular locations. The research are executed using the fuzzy inference model which was built and described in more detail in the earlier paper of the authors. The results of analyzes are compared to documents of P&R facilities location outsourced by the city and opinions of existing facilities users expressed on social networking sites. The research of existing facilities were conducted by means of the fuzzy model. The results are consistent with actual users feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. The performed studies show that the method has been confirmed. The method can be applied in urban planning of the P&R facilities location in relation to the accompanying functions. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.Keywords: fuzzy logic inference, park and ride system, P&R facilities, P&R location
Procedia PDF Downloads 32511147 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors
Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria
Abstract:
The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels
Procedia PDF Downloads 16711146 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 5611145 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini
Abstract:
In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor
Procedia PDF Downloads 6111144 Effects of Pre-Task Activities on the Writing Performance of Second Language Learners
Authors: Wajiha Fatima
Abstract:
Based on Rod Ellis’s (2002) the methodology of task-based teaching, this study explored the effects of pre-task activities on the Job Application letter of 102 ESL students (who were female and undergraduate learners). For this purpose, students were divided among three groups (Group A, Group B, and Group C), kept in control and experimental settings as well. Pre-task phase motivates the learners to perform the actual task. Ellis reportedly discussed four pre-task phases: (1) performing a similar task; (2) providing a model; (3) non-task preparation activities and (4) strategic planning. They were taught through above given three pre-task activities. Accordingly, the learners in control setting were supposed to write without any teaching aid while learners in an experimental situation were provided three different pre-task activities in each group. In order to compare the scores of the pre-test and post-test of the three groups, sample paired t-test was utilized. The obtained results of the written job application by the female students revealed that pre-task activities improved their performance in writing. On the other hand, the comparison of the three pre-task activities revealed that 'providing a model' outperformed the other two activities. For this purpose, ANOVA was utilized.Keywords: pre-task activities, second language learners, task based language teaching, writing
Procedia PDF Downloads 17811143 A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry
Authors: Didem Can
Abstract:
Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part.Keywords: constraint programming, goal programming, integer programming, sequence-dependent setup, single machine scheduling
Procedia PDF Downloads 23711142 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains
Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn
Abstract:
Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectivesKeywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design
Procedia PDF Downloads 36411141 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 26711140 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs
Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen
Abstract:
Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement
Procedia PDF Downloads 12411139 Influence of Temperature and Immersion on the Behavior of a Polymer Composite
Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli
Abstract:
This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical
Procedia PDF Downloads 11611138 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 6511137 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 11411136 Legal Judgment Prediction through Indictments via Data Visualization in Chinese
Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun
Abstract:
Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization
Procedia PDF Downloads 121