Search results for: fuzzy genetic network programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7513

Search results for: fuzzy genetic network programming

1393 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University

Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat

Abstract:

Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.

Keywords: big data platforms, cloudera manager, Hadoop, MapReduce

Procedia PDF Downloads 362
1392 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 241
1391 Virtual and Visual Reconstructions in Museum Expositions

Authors: Ekaterina Razuvalova, Konstantin Rudenko

Abstract:

In this article the most successful examples of international visual and virtual reconstructions of historical and culture objects, which are based on informative and communicative technologies, are represented. 3D reconstructions can demonstrate outward appearance, visualize different hypothesis, connected to represented object. Virtual reality can give us any daytime and season, any century and environment. We can see how different people from different countries and different era lived; we can get different information about any object; we can see historical complexes in real city environment, which are damaged or vanished. These innovations confirm the fact, that 3D reconstruction is important in museum development. Considering the most interesting examples of visual and virtual reconstructions, we can notice, that visual reconstruction is a 3D image of different objects, historical complexes, buildings and phenomena. They are constant and we can see them only as momentary objects. And virtual reconstruction is some environment with its own time, rules and phenomena. These reconstructions are continuous; seasons, daytime and natural conditions can change there. They can demonstrate abilities of virtual world existence. In conclusion: new technologies give us opportunities to expand the boundaries of museum space, improve abilities of museum expositions, create emotional atmosphere of game immersion, which can interest visitor. Usage of network sources allows increasing the number of visitors and virtual reconstruction opportunities show creative side of museum business.

Keywords: computer technologies, historical reconstruction, museums, museum expositions, virtual reconstruction

Procedia PDF Downloads 332
1390 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 77
1389 Saudi Human Awareness Needs: A Survey in How Human Causes Errors and Mistakes Leads to Leak Confidential Data with Proposed Solutions in Saudi Arabia

Authors: Amal Hussain Alkhaiwani, Ghadah Abdullah Almalki

Abstract:

Recently human errors have increasingly become a very high factor in security breaches that may affect confidential data, and most of the cyber data breaches are caused by human errors. With one individual mistake, the attacker will gain access to the entire network and bypass the implemented access controls without any immediate detection. Unaware employees will be vulnerable to any social engineering cyber-attacks. Providing security awareness to People is part of the company protection process; the cyber risks cannot be reduced by just implementing technology; the human awareness of security will significantly reduce the risks, which encourage changes in staff cyber-awareness. In this paper, we will focus on Human Awareness, human needs to continue the required security education level; we will review human errors and introduce a proposed solution to avoid the breach from occurring again. Recently Saudi Arabia faced many attacks with different methods of social engineering. As Saudi Arabia has become a target to many countries and individuals, we needed to initiate a defense mechanism that begins with awareness to keep our privacy and protect the confidential data against possible intended attacks.

Keywords: cybersecurity, human aspects, human errors, human mistakes, security awareness, Saudi Arabia, security program, security education, social engineering

Procedia PDF Downloads 166
1388 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online

Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal

Abstract:

This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.

Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion

Procedia PDF Downloads 73
1387 Investigating Selected Traditional African Medicinal Plants for Anti-fibrotic Potential: Identification and Characterization of Bioactive Compounds Through Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry Analysis

Authors: G. V. Manzane, S. J. Modise

Abstract:

Uterine fibroids, also known as leiomyomas or myomas, are non-cancerous growths that develop in the muscular wall of the uterus during the reproductive years. The cause of uterine fibroids includes hormonal, genetic, growth factors, and extracellular matrix factors. Common symptoms of uterine fibroids include heavy and prolonged menstrual bleeding which can lead to a high risk of anemia, lower abdominal pains, pelvic pressure, infertility, and pregnancy loss. The growth of this tumor is a concern because of its negative impact on women’s health and the increase in their economic burden. Traditional medicinal plants have long been used in Africa for their potential therapeutic effects against various ailments. In this study, we aimed to identify and characterize bioactive compounds from selected African medicinal plants with potential anti-fibrotic properties using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. Two medicinal plant species known for their traditional use in fibrosis-related conditions were selected for investigation. Aqueous extracts were prepared from the plant materials, and FTIR analysis was conducted to determine the functional groups present in the extracts. GCMS analysis was performed to identify the chemical constituents of the extracts. The FTIR analysis revealed the presence of various functional groups, such as phenols, flavonoids, terpenoids, and alkaloids, known for their potential therapeutic activities. These functional groups are associated with antioxidant, anti-inflammatory, and anti-fibrotic properties. The GCMS analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic compounds, which are known for their pharmacological activities. The discovery of bioactive compounds in African medicinal plants that exhibit anti-fibrotic effects, opens up promising avenues for further research and development of potential treatments for fibrosis. This suggests the potential of these plants as a valuable source of novel therapeutic agents for treating fibrosis-related conditions. In conclusion, our study identified and characterized bioactive compounds from selected African medicinal plants using FTIR and GCMS analysis. The presence of compounds with known antifibrotic properties suggests that these plants hold promise as a potential source of natural products for the development of novel anti-fibrotic therapies.

Keywords: uterine fibroids, african medicinal plants, bioactive compounds, identify and characterized

Procedia PDF Downloads 106
1386 Utilization of Traditional Medicine for Treatment of Selected Illnesses among Crop-Farming Households in Edo State, Nigeria

Authors: Adegoke A. Adeyelu, Adeola T. Adeyelu, S. D. Y. Alfred, O. O. Fasina

Abstract:

This study examines the use of traditional medicines for the treatment of selected illnesses among crop-farming households in Edo State, Nigeria. A sample size of ninety (90) households were randomly selected for the study. Data were collected with a structured questionnaire alongside focus group discussions (FGD). Result shows that the mean age was 50 years old, the majority (76.7%) of the sampled farmers were below 60 years old. The majority (80.0%) of the farmers were married, about (92.2%) had formal education. It exposes that the majority of the respondents (76.7%) had household size of between 1-10 persons, about 55.6% had spent 11 years and above in crop farming. malaria (8th ), waist pains (7th ), farm injuries ( 6th ), cough (5th), acute headache(4th), skin infection (3rd), typhoid (2nd) and tuberculosis (1st ) were the most and least treated illness. Respondents (80%) had spent N10,000.00 ($27) and less on treatment of illnesses, 8.9% had spent N10,000.00-N20,000.0027 ($27-$55) 4.4% had spent between N20,100-N30,000.00 ($27-$83) while 6.7% had spent more than N30,100.00 ($83) on treatment of illnesses in the last one (1) year prior to the study. Age, years of farming, farm size, household size, level of income, cost of treatment, level of education, social network, and culture are some of the statistically significant factors influencing the utilization of traditional medicine. Farmers should be educated on methods of preventing illnesses, which is far cheaper than the curative.

Keywords: crop farming-households, selected illnesses, traditional medicines, Edo State

Procedia PDF Downloads 213
1385 Enhancement of Energy Harvesting-Enabled Decode and Forward Cooperative Cognitive Radio System

Authors: Ojo Samson Iyanda, Adeleke Oluseye A., Ojo Oluwaseun A.

Abstract:

Recent developments in the Wireless communication (WC) community has necessitated a paradigm shift in the effective usage of network resources to provide better Quality of Service (QoS) to wireless subscribers. However, the daily increase in the number of users accessing WC services makes frequency spectrum a valuable yet limited resource. Energy harvesting-enabled Decode and Forward Cooperative Cognitive Radio (DFCCR) used to solve this problem faced significant challenges in achieving efficient performance and signal insecurity due to channel fading and broadcast nature of the transmitted signal. Hence, this paper enhanced the performance of the existing DFCCR. PU signal is propagated from the source at different time slots using time diversity. The different versions of the transmitted signal are received at the SU’s transceiver. The received signal at the SU transceiver is decoded and SU superimposes its own information on the decoded signal using exclusive OR (XOR) rule. Jamming signal is created at the SU node and added to the SU transmitting signal. Outage Probability (OP) and Secrecy Capacity (SC) are derived to evaluate the performance of the proposed technique. The proposed energy harvesting-enabled DFCCR enhanced the performance of existing technique with 65% reduction in OP and 50% improvement in SC.

Keywords: cognitive radio, RF energy harvesting, decode and forward, secrecy capacity

Procedia PDF Downloads 14
1384 Scenario of Some Minerals and Impact of Promoter Hypermethylation of DAP-K Gene in Gastric Carcinoma Patients of Kashmir Valley

Authors: Showkat Ahmad Bhat, Iqra Reyaz, Falaque ul Afshan, Ahmad Arif Reshi, Muneeb U. Rehman, Manzoor R. Mir, Sabhiya Majid, Sonallah, Sheikh Bilal, Ishraq Hussain

Abstract:

Background: Gastric cancer is the fourth most common cancer and the second leading cause of worldwide cancer-related deaths, with a wide variation in incidence rates across different geographical areas. The current view of cancer is that a malignancy arises from a transformation of the genetic material of a normal cell, followed by successive mutations and by chain of alterations in genes such as DNA repair genes, oncogenes, Tumor suppressor genes. Minerals are necessary for the functioning of several transcriptional factors, proteins that recognize certain DNA sequences and have been found to play a role in gastric cancer. Material Methods:The present work was a case control study and its aim was to ascertain the role of minerals and promoter hypermethylation of CpG islands of DAP-K gene in Gastric cancer patients among the Kashmiri population. Serum was extracted from all the samples and mineral estimation was done by AAS from serum, DNA was also extracted and was modified using bisulphite modification kit. Methylation-specific PCR was used for the analysis of the promoter hypermethylation status of DAP-K gene. The epigenetic analysis revealed that unlike other high risk regions, Kashmiri population has a different promoter hypermethylation profile of DAP-K gene and has different mineral profile. Results: In our study mean serum copper levels were significantly different for the two genders (p<0.05), while as no significant differences were observed for iron and zinc levels. In Methylation-specific PCR the methylation status of the promoter region of DAP-K gene was as 67.50% (27/40) of the gastric cancer tissues showed methylated DAP-K promoter and 32.50% (13/40) of the cases however showed unmethylated DAP-K promoter. Almost all 85% (17/20) of the histopathologically confirmed normal tissues showed unmethylated DAP-K promoter except only in 3 cases where DAP-K promoter was found to be methylated. The association of promoter hypermethylation with gastric cancer was evaluated by χ2 (Chi square) test and was found to be significant (P=0.0006). Occurrence of DAP-K methylation was found to be unequally distributed in males and females with more frequency in males than in females but the difference was not statistically significant (P =0.7635, Odds ratio=1.368 and 95% C.I=0.4197 to 4.456). When the frequency of DAP-K promoter methylation was compared with clinical staging of the disease, DAP-K promoter methylation was found to be certainly higher in Stage III/IV (85.71%) compared to Stage I/ II (57.69%) but the difference was not statistically significant (P =0.0673). These results suggest that DAP-K aberrant promoter hypermethylation in Kashmiri population contributes to the process of carcinogenesis in Gastric cancer and is reportedly one of the commonest epigenetic changes in the development of Gastric cancer.

Keywords: gastric cancer, minerals, AAS, hypermethylation, CpG islands, DAP-K gene

Procedia PDF Downloads 521
1383 Treatment of Greywater at Household by Using Ceramic Tablet Membranes

Authors: Abdelkader T. Ahmed

Abstract:

Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network.

Keywords: ceramic membranes, filtration, greywater, wastewater treatment

Procedia PDF Downloads 334
1382 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil

Procedia PDF Downloads 363
1381 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 162
1380 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 370
1379 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 282
1378 Ecosystems: An Analysis of Generation Z News Consumption, Its Impact on Evolving Concepts and Applications in Journalism

Authors: Bethany Wood

Abstract:

The world pandemic led to a change in the way social media was used by audiences, with young people spending more hours on the platform due to lockdown. Reports by Ofcom have demonstrated that the internet is the second most popular platform for accessing news after television in the UK with social media and the internet ranked as the most popular platform to access news for those aged between 16-24. These statistics are unsurprising considering that at the time of writing, 98 percent of Generation Z (Gen Z) owned a smartphone and the subsequent ease and accessibility of social media. Technology is constantly developing and with this, its importance is becoming more prevalent with each generation: the Baby Boomers (1946-1964) consider it something useful whereas millennials (1981-1997) believe it a necessity for day to day living. Gen Z, otherwise known as the digital native, have grown up with this technology at their fingertips and social media is a norm. It helps form their identity, their affiliations and opens gateways for them to engage with news in a new way. It is a common misconception that Gen Z do not consume news, they are simply doing so in a different way to their predecessors. Using a sample of 800 18-20 year olds whilst utilising Generational theory, Actor Network Theory and the Social Shaping of Technology, this research provides a critical analyse regarding how Gen Z’s news consumption and engagement habits are developing along with technology to sculpture the future format of news and its distribution. From that perspective, allied with the empirical approach, it is possible to provide research orientated advice for the industry and even help to redefine traditional concepts of journalism.

Keywords: journalism, generation z, digital, social media

Procedia PDF Downloads 88
1377 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 371
1376 Lessons Learned from Covid19 - Related ERT in Universities

Authors: Sean Gay, Cristina Tat

Abstract:

This presentation will detail how a university in Western Japan has implemented its English for Academic Purposes (EAP) program during the onset of CoViD-19 in the spring semester of 2020. In the spring semester of 2020, after a 2 week delay, all courses within the School of Policy Studies EAP Program at Kwansei Gakuin University were offered in an online asynchronous format. The rationale for this decision was not to disadvantage students who might not have access to devices necessary for taking part in synchronous online lessons. The course coordinators were tasked with consolidating the materials originally designed for face-to-face14 week courses for a 12 week asynchronous online semester and with uploading the modified course materials to Luna, the university’s network, which is a modified version of Blackboard. Based on research to determine the social and academic impacts of this CoViD-19 ERT approach on the students who took part in this EAP program, this presentation explains how future curriculum design and implementation can be managed in a post-CoViD world. There are a wide variety of lessons that were salient. The role of the classroom as a social institution was very prominent; however, awareness of cognitive burdens and strategies to mitigate that burden may be more valuable for teachers. The lessons learned during this period of ERT can help teachers moving forward.

Keywords: asynchronous online learning, emergency remote teaching (ERT), online curriculum design, synchronous online learning

Procedia PDF Downloads 207
1375 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection

Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud

Abstract:

A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.

Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique

Procedia PDF Downloads 179
1374 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies

Authors: Maximilian Richter

Abstract:

Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.

Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider

Procedia PDF Downloads 128
1373 Thermal Comfort in Office Rooms in a Historic Building with Modernized Heating, Ventilation and Air Conditioning Systems

Authors: Hossein Bakhtiari, Mathias Cehlin, Jan Akander

Abstract:

Envelopes with low thermal performance is a common characteristic in many European historic buildings which leads to higher energy demand for heating and cooling as well as insufficient thermal comfort for the occupants. This paper presents the results of a study on the thermal comfort in the City Hall (Rådhuset) in Gävle, Sweden. This historic building is currently used as an office building. It is equipped with two relatively modern mechanical heat recovery ventilation systems with displacement ventilation supply devices in the offices. The district heating network heats the building via pre-heat supply air and radiators. Summer cooling comes from an electric heat pump that rejects heat into the exhaust ventilation air. A building management system controls HVAC equipment (heating, ventilation and air conditioning). The methodology is based on on-site measurements, data logging on the management system and evaluating the occupants’ perception of a summer and a winter period indoor environment using a standardized questionnaire. The main aim of the study is to investigate whether or not it is enough to have modernized HVAC systems to get adequate thermal comfort in a historic building with poor envelope performance used as an office building in Nordic climate conditions.

Keywords: historic buildings, on-site measurements, standardized questionnaire, thermal comfort

Procedia PDF Downloads 375
1372 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 89
1371 The Effect of Molecular Weight on the Cross-Linking of Two Different Molecular Weight LLDPE Samples

Authors: Ashkan Forootan, Reza Rashedi

Abstract:

Polyethylene has wide usage areas such as blow molding, pipe, film, cable insulation. However, regardless to its growing applications, it has some constraints such as the limited 70C operating temperature. Polyethylene thermo setting procedure whose molecules are knotted and 3D-molecular-network formed , is developed to conquer the above problem and to raise the applicable temperature of the polymer. This paper reports the cross-linking for two different molecular weight grades of LLDPE by adding 0.5, 1, and 2% of DCP (Dicumyl Peroxide). DCP was chosen for its prevalence among various cross-linking agents. Structural parameters such as molecular weight, melt flow index, comonomer, number of branches,etc. were obtained through the use of relative tests as Gel Permeation Chromatography and Fourier Transform Infra Red spectrometer. After calculating the percentage of gel content, properties of the pure and cross-linked samples were compared by thermal and mechanical analysis with DMTA and FTIR and the effects of cross-linking like viscous and elastic modulus were discussed by using various structural paprameters such as MFI, molecular weight, short chain branches, etc. Studies showed that cross-linked polymer, unlike the pure one, had a solid state with thermal mechanical properties in the range of 110 to 120C and this helped overcome the problem of using polyethylene in temperatures near the melting point.

Keywords: LLDPE, cross-link, structural parameters, DCP, DMTA, GPC

Procedia PDF Downloads 306
1370 Culturally Relevant Education Challenges and Threats in the US Secondary Classroom

Authors: Owen Cegielski, Kristi Maida, Danny Morales, Sylvia L. Mendez

Abstract:

This study explores the challenges and threats US secondary educators experience in incorporating culturally relevant education (CRE) practices in their classrooms. CRE is a social justice pedagogical practice used to connect student’s cultural references to academic skills and content, to promote critical reflection, to facilitate cultural competence, and to critique discourses of power and oppression. Empirical evidence on CRE demonstrates positive student educational outcomes in terms of achievement, engagement, and motivation. Additionally, due to the direct focus on uplifting diverse cultures through the curriculum, students experience greater feelings of belonging, increased interest in the subject matter, and stronger racial/ethnic identities. When these teaching practices are in place, educators develop deeper relationships with their students and appreciate the multitude of gifts they (and their families) bring to the classroom environment. Yet, educators regularly report being unprepared to incorporate CRE in their daily teaching practice and identify substantive gaps in their knowledge and skills in this area. Often, they were not exposed to CRE in their educator preparation program, nor do they receive adequate support through school- or district-wide professional development programming. Through a descriptive phenomenological research design, 20 interviews were conducted with a diverse set of secondary school educators to explore the challenges and threats they experience in incorporating CRE practices in their classrooms. The guiding research question for this study is: What are the challenges and threats US secondary educators face when seeking to incorporate CRE practices in their classrooms? Interviews were grounded by the theory of challenge and threat states, which highlights the ways in which challenges and threats are appraised and how resources factor into emotional valence and perception, as well as the potential to meet the task at hand. Descriptive phenomenological data analysis strategies were utilized to develop an essential structure of the educators’ views of challenges and threats in regard to incorporating CRE practices in their secondary classrooms. The attitude of the phenomenological reduction method was adopted, and the data were analyzed through five steps: sense of the whole, meaning units, transformation, structure, and essential structure. The essential structure that emerged was while secondary educators display genuine interest in learning how to successfully incorporate CRE practices, they perceive it to be a challenge (and not a threat) due to lack of exposure which diminishes educator capacity, comfort, and confidence in employing CRE practices. These findings reveal the value of attending to emotional valence and perception of CRE in promoting this social justice pedagogical practice. Findings also reveal the importance of appropriately resourcing educators with CRE support to ensure they develop and utilize this practice.

Keywords: culturally relevant education, descriptive phenomenology, social justice practice, US secondary education

Procedia PDF Downloads 190
1369 Conceptualizing a Biomimetic Fablab Based on the Makerspace Concept and Biomimetics Design Research

Authors: Petra Gruber, Ariana Rupp, Peter Niewiarowski

Abstract:

This paper presents a concept for a biomimetic fablab as a physical space for education, research and development of innovation inspired by nature. Biomimetics as a discipline finds increasing recognition in academia and has started to be institutionalized at universities in programs and centers. The Biomimicry Research and Innovation Center was founded in 2012 at the University of Akron as an interdisciplinary venture for the advancement of innovation inspired by nature and is part of a larger community fostering the approach of bioimimicry in the Great Lakes region of the US. With 30 faculty members the center has representatives from Colleges of Arts and Sciences (e.g., biology, chemistry, geoscience, and philosophy) Engineering (e.g., mechanical, civil, and biomedical), Polymer Science, and Myers School of Arts. A platform for training PhDs in Biomimicry (17 students currently enrolled) is co-funded by educational institutions and industry partners. Research at the center touches on many areas but is also currently biased towards materials and structures, with highlights being materials based on principles found in spider silk and gecko attachment mechanisms. As biomimetics is also a novel scientific discipline, there is little standardisation in programming and the equipment of research facilities. As a field targeting innovation, design and prototyping processes are fundamental parts of the developments. For experimental design and prototyping, MIT's maker space concept seems to fit well to the requirements, but facilities need to be more specialised in terms of accessing biological systems and knowledge, specific research, production or conservation requirements. For the education and research facility BRIC we conceptualize the concept of a biomimicry fablab, that ties into the existing maker space concept and creates the setting for interdisciplinary research and development carried out in the program. The concept takes on the process of biomimetics as a guideline to define core activities that shall be enhanced by the allocation of specific spaces and tools. The limitations of such a facility and the intersections to further specialised labs housed in the classical departments are of special interest. As a preliminary proof of concept two biomimetic design courses carried out in 2016 are investigated in terms of needed tools and infrastructure. The spring course was a problem based biomimetic design challenge in collaboration with an innovation company interested in product design for assisted living and medical devices. The fall course was a solution based biomimetic design course focusing on order and hierarchy in nature with the goal of finding meaningful translations into art and technology. The paper describes the background of the BRIC center, identifies and discusses the process of biomimetics, evaluates the classical maker space concept and explores how these elements can shape the proposed research facility of a biomimetic fablab by examining two examples of design courses held in 2016.

Keywords: biomimetics, biomimicry, design, biomimetic fablab

Procedia PDF Downloads 298
1368 The Ontological Memory in Bergson as a Conceptual Tool for the Analysis of the Digital Conjuncture

Authors: Douglas Rossi Ramos

Abstract:

The current digital conjuncture, called by some authors as 'Internet of Things' (IoT), 'Web 2.0' or even 'Web 3.0', consists of a network that encompasses any communication of objects and entities, such as data, information, technologies, and people. At this juncture, especially characterized by an "object socialization," communication can no longer be represented as a simple informational flow of messages from a sender, crossing a channel or medium, reaching a receiver. The idea of communication must, therefore, be thought of more broadly in which it is possible to analyze the process communicative from interactions between humans and nonhumans. To think about this complexity, a communicative process that encompasses both humans and other beings or entities communicating (objects and things), it is necessary to constitute a new epistemology of communication to rethink concepts and notions commonly attributed to humans such as 'memory.' This research aims to contribute to this epistemological constitution from the discussion about the notion of memory according to the complex ontology of Henri Bergson. Among the results (the notion of memory in Bergson presents itself as a conceptual tool for the analysis of posthumanism and the anthropomorphic conjuncture of the new advent of digital), there was the need to think about an ontological memory, analyzed as a being itself (being itself of memory), as a strategy for understanding the forms of interaction and communication that constitute the new digital conjuncture, in which communicating beings or entities tend to interact with each other. Rethinking the idea of communication beyond the dimension of transmission in informative sequences paves the way for an ecological perspective of the digital dwelling condition.

Keywords: communication, digital, Henri Bergson, memory

Procedia PDF Downloads 169
1367 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 181
1366 Formal Implementation of Routing Information Protocol Using Event-B

Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura

Abstract:

The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.

Keywords: dynamic rout RIP, formal method, event-B, pro-B

Procedia PDF Downloads 407
1365 A Data-Mining Model for Protection of FACTS-Based Transmission Line

Authors: Ashok Kalagura

Abstract:

This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.

Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC

Procedia PDF Downloads 426
1364 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 576