Search results for: finite element models
3969 Dental Implant Survival in Patients with Osteoporosis
Authors: Mohammad ASadian, Samira RajiAsadabadi
Abstract:
Osteoporosis is very common, particularly in post-menopausal women and is characterized by a decrease in bone mass and strength. Osteoporosis also affects the jawbone and it is considered a potential contraindication to the placement of dental implants. The present paper reviews the literature regarding the effect of osteoporosis on the osseointegration of implants. Experimental models have shown that osteoporosis affects the process of osseointegration, which can be reversed by treatment. However, studies in subjects with osteoporosis have shown no differences in the survival of the implants compared to healthy individuals. Therefore, osteoporosis cannot be considered a contraindication for implant placement. Oral bisphosphonates are the most commonly used pharmacological agents in the treatment of osteoporosis. Although there have been cases of osteonecrosis of the jaw in patients treated with bisphosphonates, they are very rare and it is more usually associated with intravenous bisphosphonates in patients with neoplasms or other serious diseases. Nevertheless, patients treated with bisphosphonates must be informed in writing about the possibility of this complication and must give informed consent. Ceasing to use of bisphosphonates before implant placement does not seem to be necessary.Keywords: Osteoporosis, dental implant, bisphosphonates, survival
Procedia PDF Downloads 1023968 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1253967 Effective Affordable Housing Finance in Developing Economies: An Integration of Demand and Supply Solutions
Authors: Timothy Akinwande, Eddie Hui, Karien Dekker
Abstract:
Housing the urban poor remains a persistent challenge, despite evident research attention over many years. It is, therefore, pertinent to investigate affordable housing provision challenges with novel approaches. For innovative solutions to affordable housing constraints, it is apposite to thoroughly examine housing solutions vis a vis the key elements of the housing supply value chain (HSVC), which are housing finance, housing construction and land acquisition. A pragmatic analysis will examine affordable housing solutions from demand and supply perspectives to arrive at consolidated solutions from bilateral viewpoints. This study thoroughly examined informal housing finance strategies of the urban poor and diligently investigated expert opinion on affordable housing finance solutions. The research questions were: (1) What mutual grounds exist between informal housing finance solutions of the urban poor and housing expert solutions to affordable housing finance constraints in developing economies? (2) What are effective approaches to affordable housing finance in developing economies from an integrated demand - supply perspective? Semi-structured interviews were conducted in the 5 largest slums of Lagos, Nigeria, with 40 informal settlers for demand-oriented solutions, while focus group discussion and in-depth interviews were conducted with 12 housing experts in Nigeria for supply-oriented solutions. Following a rigorous thematic, content and descriptive analyses of data using NVivo and Excel, findings ascertained mutual solutions from both demand and supply standpoints that can be consolidated into more effective affordable housing finance solutions in Nigeria. Deliberate finance models that recognise and include the finance realities of the urban poor was found to be the most significant supply-side housing finance solution, representing 25.4% of total expert responses. Findings also show that 100% of sampled urban poor engage in vocations where they earn little irregular income or zero income, limiting their housing finance capacities and creditworthiness. Survey revealed that the urban poor are involved in community savings and employ microfinance institutions within the informal settlements to tackle their housing finance predicaments. These are informal finance models of the urban poor, revealing common grounds between demand and supply solutions for affordable housing financing. Effective, affordable housing approach will be to modify, institutionalise and incorporate the informal finance strategies of the urban poor into deliberate government policies. This consolidation of solutions from demand and supply perspectives can eliminate the persistent misalliance between affordable housing demand and affordable housing supply. This study provides insights into mutual housing solutions from demand and supply perspectives, and findings are informative for effective, affordable housing provision approaches in developing countries. This study is novel in consolidating affordable housing solutions from demand and supply viewpoints, especially in relation to housing finance as a key component of HSVC. The framework for effective, affordable housing finance in developing economies from a consolidated viewpoint generated in this study is significant for the achievement of sustainable development goals, especially goal 11 for sustainable, resilient and inclusive cities. Findings are vital for future housing studies.Keywords: affordable housing, affordable housing finance, developing economies, effective affordable housing, housing policy, urban poor, sustainable development goal, sustainable affordable housing
Procedia PDF Downloads 743966 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator
Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong
Abstract:
Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce
Procedia PDF Downloads 363965 Query in Grammatical Forms and Corpus Error Analysis
Authors: Katerina Florou
Abstract:
Two decades after coined the term "learner corpora" as collections of texts created by foreign or second language learners across various language contexts, and some years following suggestion to incorporate "focusing on form" within a Task-Based Learning framework, this study aims to explore how learner corpora, whether annotated with errors or not, can facilitate a focus on form in an educational setting. Argues that analyzing linguistic form serves the purpose of enabling students to delve into language and gain an understanding of different facets of the foreign language. This same objective is applicable when analyzing learner corpora marked with errors or in their raw state, but in this scenario, the emphasis lies on identifying incorrect forms. Teachers should aim to address errors or gaps in the students' second language knowledge while they engage in a task. Building on this recommendation, we compared the written output of two student groups: the first group (G1) employed the focusing on form phase by studying a specific aspect of the Italian language, namely the past participle, through examples from native speakers and grammar rules; the second group (G2) focused on form by scrutinizing their own errors and comparing them with analogous examples from a native speaker corpus. In order to test our hypothesis, we created four learner corpora. The initial two were generated during the task phase, with one representing each group of students, while the remaining two were produced as a follow-up activity at the end of the lesson. The results of the first comparison indicated that students' exposure to their own errors can enhance their grasp of a grammatical element. The study is in its second stage and more results are to be announced.Keywords: Corpus interlanguage analysis, task based learning, Italian language as F1, learner corpora
Procedia PDF Downloads 563964 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 3523963 An Investigation into the Use of Overset Mesh for a Vehicle Aerodynamics Case When Driving in Close Proximity
Authors: Kushal Kumar Chode, Remus Miahi Cirstea
Abstract:
In recent times, the drive towards more efficient vehicles and the increase in the number of vehicle on the roads has driven the aerodynamic researchers from studying the vehicle in isolation towards understanding the benefits of vehicle platooning. Vehicle platooning is defined as a series of vehicles traveling in close proximity. Due to the limitations in size and load measurement capabilities for the wind tunnels facilities, it is very difficult to perform this investigation experimentally. In this paper, the use of chimera or overset meshing technique is used within the STARCCM+ software to model the flow surrounding two identical vehicle models travelling in close proximity and also during an overtaking maneuver. The results are compared with data obtained from a polyhedral mesh and identical physics conditions. The benefits in terms of computational time and resources and the accuracy of the overset mesh approach are investigated.Keywords: chimera mesh, computational accuracy, overset mesh, platooning vehicles
Procedia PDF Downloads 3543962 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)
Authors: Zeki Oralhan, Mahmut Tokmakçı
Abstract:
SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP
Procedia PDF Downloads 2683961 Critical Factors Influencing Effective Communication Among Stakeholders on Construction Project Delivery in Jigawa State, Nigeria
Authors: Shazali Abdulahi
Abstract:
Project planning is the first phase in project life cycle which relates to the use of schedules such as Gantt charts to plan and subsequently report the project progress within the project environment. Likewise, project execution is the third phase in project lifecycle, is the phase where the work of the project must get done correctly and it’s the longest phase in the project lifecycle therefore, they must be effectively communicated, now today Communication has become the crucial element of every organization. During construction project delivery, information needs to be accurately and timely communicating among project stakeholders in order to realize the project objective. Effective communication among stakeholders during construction project delivery is one of the major factors that impact construction project delivery. Therefore, the aim of the research work is to examine the critical factors influencing effective communication among stakeholders on construction project delivery from the perspective of construction professionals (Architects, Builders, Quantity surveyors, and Civil engineers). A quantitative approach was adopted. This entailed the used of structured questionnaire to one (108) construction professionals in public and private organization within dutse metropolis. Frequency, mean, ranking and multiple linear regression using SPSS vision 25 software were used to analyses the data. The results show that Leadership, Trust, Communication tools, Communication skills, Stakeholders involvement, Cultural differences, and Communication technology were the most critical factors influencing effective communication among stakeholders on construction project delivery. The hypothesis revealed that, effective communication among stakeholders has significant effects on construction project delivery. This research work will profit the construction stakeholders in construction industry, by providing adequate knowledge regarding the factors influencing effective communication among stakeholders, so that necessary steps to be taken to improve project performance. Also, it will provide knowledge about the appropriate strategies to employ in order to improve communication among stakeholders.Keywords: effetive communication, ineffective communication, stakeholders, project delivery
Procedia PDF Downloads 563960 Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting
Authors: Armin Rahmatfam, Mohammad Zehsaz, Farid Vakili Tahami, Nasser Ghassembaglou
Abstract:
In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented.Keywords: combined hardening model, kinematic hardening, isotropic hardening, cyclic tests
Procedia PDF Downloads 4843959 Neuro-Connectivity Analysis Using Abide Data in Autism Study
Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha
Abstract:
Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model
Procedia PDF Downloads 2933958 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures
Authors: Chiara Cesali
Abstract:
The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.Keywords: climate change, hydraulic design, precipitation, railway
Procedia PDF Downloads 1853957 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery
Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft
Abstract:
Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics
Procedia PDF Downloads 5733956 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities
Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho
Abstract:
Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.Keywords: spatial panel, specification, splm, agricultural productivity growth
Procedia PDF Downloads 1763955 A Proposal for a Combustion Model Considering the Lewis Number and Its Evaluation
Authors: Fujio Akagi, Hiroaki Ito, Shin-Ichi Inage
Abstract:
The aim of this study is to develop a combustion model that can be applied uniformly to laminar and turbulent premixed flames while considering the effect of the Lewis number (Le). The model considers the effect of Le on the transport equations of the reaction progress, which varies with the chemical species and temperature. The distribution of the reaction progress variable is approximated by a hyperbolic tangent function, while the other distribution of the reaction progress variable is estimated using the approximated distribution and transport equation of the reaction progress variable considering the Le. The validity of the model was evaluated under the conditions of propane with Le > 1 and methane with Le = 1 (equivalence ratios of 0.5 and 1). The estimated results were found to be in good agreement with those of previous studies under all conditions. A method of introducing a turbulence model into this model is also described. It was confirmed that conventional turbulence models can be expressed as an approximate theory of this model in a unified manner.Keywords: combustion model, laminar flame, Lewis number, turbulent flame
Procedia PDF Downloads 1293954 Predicting National Football League (NFL) Match with Score-Based System
Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor
Abstract:
This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.Keywords: game prediction, NFL, football, artificial neural network
Procedia PDF Downloads 893953 The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia
Authors: Wong Hock Tsen
Abstract:
This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia.Keywords: exchange rate volatility, autoregressive distributed lag, export, Malaysia
Procedia PDF Downloads 3303952 Cadmium Separation from Aqueous Solutions by Natural Biosorbents
Authors: Z. V. P. Murthy, Preeti Arunachalam, Sangeeta Balram
Abstract:
Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging.Keywords: chitin, chitosan, cadmium, isotherm, kinetics
Procedia PDF Downloads 4163951 Determining the Information Technologies Usage and Learning Preferences of Construction
Authors: Naci Büyükkaracığan, Yıldırım Akyol
Abstract:
Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.Keywords: information technologies, computer, construction, internet, learning systems
Procedia PDF Downloads 3013950 The Performance of Natural Light by Roof Systems in Cultural Buildings
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting
Procedia PDF Downloads 2143949 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall
Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.Keywords: building energy management, machine learning, operation planning, simulation-based optimization
Procedia PDF Downloads 3273948 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry
Authors: Dominik Halstrup, Marlene Schriever
Abstract:
The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry
Procedia PDF Downloads 2273947 Strategies for the Oral Delivery of Oligonucleotides
Authors: Venkat Garigapati
Abstract:
To date, more than a dozen oligonucleotide products are approved as injectable products for clinical use. However, there is no single oligo nucleotide product approved for clinical use. Oral delivery of oligo nucleotides is patient friendly administration however, many challenges involved in the development of oral formulation. Over the course of last twenty plus years, the research in this space aimed to address these challenges. This paper describes the issues involved in solubility, stability, enzymatic (nuclease) induced degradation, and permeation of nucleotides in the Gastrointestinal (GI) and how to overcome these challenges. Also, the translation of in vitro data to in vivo models hinders the formulation development. This paper describes the challenges involved in the development of Oligo Nucleotide products for oral administration. It also discusses the chemistry and formulation strategies for oral administration of oligonucleotides.Keywords: oral adminstration, oligo nucleotides, stability, permeation, gastrointestinal tract
Procedia PDF Downloads 913946 The Galactic Magnetic Field in the Light of Starburst-Generated Ultrahigh-Energy Cosmic Rays
Authors: Luis A. Anchordoqui, Jorge F. Soriano, Diego F. Torres
Abstract:
Auger data show evidence for a correlation between ultrahigh-energy cosmic rays (UHECRs) and nearby starburst galaxies. This intriguing correlation is consistent with data collected by the Telescope Array, which have revealed a much more pronounced directional 'hot spot' in arrival directions not far from the starburst galaxy M82. In this work, we assume starbursts are sources of UHECRs, and we investigate the prospects to use the observed distribution of UHECR arrival directions to constrain galactic magnetic field models. We show that if the Telescope Array hot spot indeed originates on M82, UHECR data would place a strong constraint on the turbulent component of the galactic magnetic field.Keywords: galactic magnetic field, Pierre Auger observatory, telescope array, ultra-high energy cosmic rays
Procedia PDF Downloads 1543945 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 273944 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room
Authors: Nguyen Van Que, Nguyen Huy The
Abstract:
This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions
Procedia PDF Downloads 3363943 A False Introduction: Teaching in a Pandemic
Authors: Robert Michael, Kayla Tobin, William Foster, Rachel Fairchild
Abstract:
The COVID-19 pandemic has caused significant disruptions in education, particularly in the teaching of health and physical education (HPE). This study examined a cohort of teachers that experienced being a preservice and first-year teacher during various stages of the pandemic. Qualitative data collection was conducted by interviewing six teachers from different schools in the Eastern U.S. over a series of structured interviews. Thematic analysis was employed to analyze the data. The pandemic significantly impacted the way HPE was taught as schools shifted to virtual and hybrid models. Findings revealed five major themes: (a) You want me to teach HOW?, (b) PE without equipment and six feet apart, (c) Behind the Scenes, (d) They’re back…I became a behavior management guru, and (e) The Pandemic Crater. Overall, this study highlights the significant challenges faced by preservice and first-year teachers in teaching physical education during the pandemic and underscores the need for ongoing support and resources to help them adapt and succeed in these challenging circumstances.Keywords: teacher education, preservice teachers, first year teachers, health and physical education
Procedia PDF Downloads 1943942 Description of Decision Inconsistency in Intertemporal Choices and Representation of Impatience as a Reflection of Irrationality: Consequences in the Field of Personalized Behavioral Finance
Authors: Roberta Martino, Viviana Ventre
Abstract:
Empirical evidence has, over time, confirmed that the behavior of individuals is inconsistent with the descriptions provided by the Discounted Utility Model, an essential reference for calculating the utility of intertemporal prospects. The model assumes that individuals calculate the utility of intertemporal prospectuses by adding up the values of all outcomes obtained by multiplying the cardinal utility of the outcome by the discount function estimated at the time the outcome is received. The trend of the discount function is crucial for the preferences of the decision maker because it represents the perception of the future, and its trend causes temporally consistent or temporally inconsistent preferences. In particular, because different formulations of the discount function lead to various conclusions in predicting choice, the descriptive ability of models with a hyperbolic trend is greater than linear or exponential models. Suboptimal choices from any time point of view are the consequence of this mechanism, the psychological factors of which are encapsulated in the discount rate trend. In addition, analyzing the decision-making process from a psychological perspective, there is an equivalence between the selection of dominated prospects and a degree of impatience that decreases over time. The first part of the paper describes and investigates the anomalies of the discounted utility model by relating the cognitive distortions of the decision-maker to the emotional factors that are generated during the evaluation and selection of alternatives. Specifically, by studying the degree to which impatience decreases, it’s possible to quantify how the psychological and emotional mechanisms of the decision-maker result in a lack of decision persistence. In addition, this description presents inconsistency as the consequence of an inconsistent attitude towards time-delayed choices. The second part of the paper presents an experimental phase in which we show the relationship between inconsistency and impatience in different contexts. Analysis of the degree to which impatience decreases confirms the influence of the decision maker's emotional impulses for each anomaly in the utility model discussed in the first part of the paper. This work provides an application in the field of personalized behavioral finance. Indeed, the numerous behavioral diversities, evident even in the degrees of decrease in impatience in the experimental phase, support the idea that optimal strategies may not satisfy individuals in the same way. With the aim of homogenizing the categories of investors and to provide a personalized approach to advice, the results proven in the experimental phase are used in a complementary way with the information in the field of behavioral finance to implement the Analytical Hierarchy Process model in intertemporal choices, useful for strategic personalization. In the construction of the Analytic Hierarchy Process, the degree of decrease in impatience is understood as reflecting irrationality in decision-making and is therefore used for the construction of weights between anomalies and behavioral traits.Keywords: analytic hierarchy process, behavioral finance, financial anomalies, impatience, time inconsistency
Procedia PDF Downloads 703941 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3793940 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling
Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche
Abstract:
High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations
Procedia PDF Downloads 438