Search results for: thermal response parameter (TRP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10128

Search results for: thermal response parameter (TRP)

4038 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers

Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao

Abstract:

Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.

Keywords: fatigue life, pm spectrum, rain flow counting, triceratops, failure analysis

Procedia PDF Downloads 121
4037 Optimization the Freeze Drying Conditions of Olive Seeds

Authors: Alev Yüksel Aydar, Tuncay Yılmaz, Melisa Özçeli̇k, Tuba Aydın, Elif Karabaş

Abstract:

In this study, response surface methodology (RSM) was used to obtain the optimum conditions for the freeze-drying of Gemlik variety olive seeds of to achieve the desired quality characteristics. The Box Behnken Design (BBD) was applied with three-variable and three replications in the center point. The effects of the different drying parameters including initial temperature of olive seed, pressure and time for freezing on the DPPH activity, total phenolic contents, and oleuropein absorbance value of the samples were investigated. Temperature (50 – 82 °C), pressure (0.2-0.5 mbar), time (6-10 hours) were chosen as independent variables. The analysis revealed that, while the temperature of the product prior to lyophilization and the drying time had no statistically significant effect on DPPH activity (p>0.05), the pressure was more important than the other two variables , and the quadratic effect of pressure had a significant effect on DPPH activity (p<0.05). The R2 and Adj-R2 values of the DPPH activity model were calculated to be 0.8962 and 0.7045, respectively.

Keywords: olive seed, gemlik variety, DPPH, phenolics, optimization

Procedia PDF Downloads 71
4036 Sustainable Traditional Architecture and Urban Planning in Hot-Arid Climate of Iran

Authors: Farnaz Nazem

Abstract:

The aim of sustainable architecture is to design buildings with the least adverse effects on the environment and provide better conditions for people. What building forms make the best use of land? This question was addressed in the late 1960s at the center of Land Use and Built Form Studies in Cambridge. This led to a number of influential papers which had a great influence on the practice of urban design. This paper concentrates on the results of sustainability caused by climatic conditions in Iranian traditional architecture in hot-arid regions. As people spent a significant amount of their time in houses, it was very important to have such houses to fulfill their needs physically and spiritually as well as satisfying their cultural and religious aspects of their lifestyles. In a vast country such as Iran with different climatic zones, traditional builders have presented series of logical solutions for human comfort. These solutions have been able to response to the environmental problems for a long period of time. As a result, by considering the experience in traditional architecture of hot–arid climate in Iran, it is possible to attain sustainable architecture.

Keywords: hot-arid climate, Iran, sustainable traditional architecture, urban planning

Procedia PDF Downloads 452
4035 Impulsive Synchronization of Periodically Forced Complex Duffing's Oscillators

Authors: Shaban Aly, Ali Al-Qahtani, Houari B. Khenous

Abstract:

Synchronization is an important phenomenon commonly observed in nature. A system of periodically forced complex Duffings oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using impulsive synchronization techniques. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

Keywords: complex nonlinear oscillators, impulsive synchronization, chaotic systems, global exponential synchronization

Procedia PDF Downloads 430
4034 The Influence on Sexual Minorities of School-Related Gender-Based Violence and Strategies to Respond

Authors: KangQi Jin

Abstract:

School-Related Gender-Based Violence (SRGBV) seriously impacts the victim's physical and mental health and academic and employment prospects. Due to the lack of protective policies for sexual minority students in mainland China at present, the well-being of those students in China is seriously endangered by SRGBV, and their physical and mental health is at great risk. By analyzing the current situation of stigmatization of sexual minority students and the harm brought to them by gender violence, this study proposes some strategies to reduce SRGBV on sexual minorities. First, the nation should set laws to protect the rights and interests of sexual minorities, and second, universities should make multifaceted efforts to reduce these violent phenomena. The violence experienced by students of sexual minorities has a crucial impact on their future physiology and psychology, and through the research, in this paper, the author hope can provide suggestions for scholars who try to study related fields in the future.

Keywords: sexual minority, school-related gender-based violence, response, strategies

Procedia PDF Downloads 91
4033 Analysing Social Media Coverage of Political Speeches in Relation to Discourse and Context

Authors: Yaser Mohammed Altameemi

Abstract:

This research looks at the representation of the social media for the Saudi Government decrees regarding the developmental projects of the Saudi 2030 vision. The paper analyses a television interview with the Crown Prince Mohammed Bin Salman who talks about the progress of the Saudi vision of 2030, and how the government had acted as response to the COVID-19 pandemic. The interview was on 28/4/2021. The paper analyses the tweets on Twitter that cover the interview for the purpose of investigating the development of concepts and meanings regarding the Saudi peoples’ orientations towards the Saudi projects. The data include all related tweets from the day of the interview and the following seven days after the interview. The finding of the collocation analysis suggests that nationalism notion is explicitly expressed by users in Twitter. The main finding of this paper suggests the importance of further analyses for the concordance lines. However, the collocation network suggests that there is a clear highlight for nationalism.

Keywords: social media, twitter, political interview, prince Mohammed Bin Salman, Saudi vision 2030

Procedia PDF Downloads 174
4032 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 517
4031 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 148
4030 Studies on the Immunostimulatory Effect of Extract of Solanum Trilobatum and Ocimum Sanctum in Mystus Keletius

Authors: Subeena Begum, Navaraj Perumalsamy

Abstract:

The freshwater catfish Mystus keletius was injected with the methanolic extract (water soluble fraction) of Solanum trilobatum and Ocimum sanctum alone and in combination in 3mg, 30mg.300mg/Kg body weight. Serum was collected every 7 days interval. Fishes were fed with normal diet for the entire period of the experiment. The nonspecific immune response such as Total WBC count, phagocytic activity and serum antiprotease activity were observed. They were enhanced (p<0.05) in fish injected with methanolic extract (water soluble fraction) S.trilobatum and O. sanctum alone and in combination than control group. Highest level of WBC count, phagocytic activity and serum antiprotease activity were confirmed when the fish injected with the mixed extract of 1:1 ratio of S.trilobatum and O.sanctum in 30mg/kg (b.w).The effect of mixture of methanolic extract of medicinal plant in M. keletius is highlighted.

Keywords: Immunology, Fish, Stimulatory effect, Medicinal plants

Procedia PDF Downloads 8
4029 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt

Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim

Abstract:

A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.

Keywords: expert system, knowledge management, pipeline projects, risk mismanagement

Procedia PDF Downloads 298
4028 Pahlevāni and Zoorkhāneh Rituals as Creative Cultural Product in Tourism; Case Study: Isfahan, Iran

Authors: Neda Torabi Farsani, Mohammad Mortazavi, Maryam Masaeli

Abstract:

Nowadays intangible heritage as a creative product plays an important role in promoting tourism. The intangible heritage is transmitted from past generation to the present and future generation and constantly recreated by communities and groups in response to their environment, nature and history. In recent decade, intangible heritage especially Pahlevāni and Zoorkhāneh rituals as creative cultural product attract many tourists to a destination and they well-known as tourist attractions in Iran. The study was conducted in Isfahan city. This research has two major purposes: 1) to introduce Pahlevāni and Zoorkhāneh ritual as tourist attraction and, 2) to investigate the attitude of domestic tourists towards Pahlevāni and Zoorkhāneh ritual in Isfahan city. On the basis of the results of this study, it can be concluded that the domestic tourists are interested in gaining experience and increasing their knowledge in Pahlevāni and Zoorkhāneh ritual.

Keywords: Isfahan, Pahlevāni and Zoorkhāneh ritual, tourist attitude, Iran

Procedia PDF Downloads 181
4027 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 108
4026 Infusion Pump Historical Development, Measurement and Parts of Infusion Pump

Authors: Samuel Asrat

Abstract:

Infusion pumps have become indispensable tools in modern healthcare, allowing for precise and controlled delivery of fluids, medications, and nutrients to patients. This paper provides an overview of the historical development, measurement, and parts of infusion pumps. The historical development of infusion pumps can be traced back to the early 1960s when the first rudimentary models were introduced. These early pumps were large, cumbersome, and often unreliable. However, advancements in technology and engineering over the years have led to the development of smaller, more accurate, and user-friendly infusion pumps. Measurement of infusion pumps involves assessing various parameters such as flow rate, volume delivered, and infusion duration. Flow rate, typically measured in milliliters per hour (mL/hr), is a critical parameter that determines the rate at which fluids or medications are delivered to the patient. Accurate measurement of flow rate is essential to ensure the proper administration of therapy and prevent adverse effects. Infusion pumps consist of several key parts, including the pump mechanism, fluid reservoir, tubing, and control interface. The pump mechanism is responsible for generating the necessary pressure to push fluids through the tubing and into the patient's bloodstream. The fluid reservoir holds the medication or solution to be infused, while the tubing serves as the conduit through which the fluid travels from the reservoir to the patient. The control interface allows healthcare providers to program and adjust the infusion parameters, such as flow rate and volume. In conclusion, infusion pumps have evolved significantly since their inception, offering healthcare providers unprecedented control and precision in delivering fluids and medications to patients. Understanding the historical development, measurement, and parts of infusion pumps is essential for ensuring their safe and effective use in clinical practice.

Keywords: dip, ip, sp, is

Procedia PDF Downloads 44
4025 The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame

Authors: Mahdi Shokrollahi

Abstract:

Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes.

Keywords: vertical earthquake acceleration, near-fault area, steel frame, horizontal and vertical component of earthquake, buckling-restrained brace

Procedia PDF Downloads 165
4024 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 197
4023 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium

Authors: Pradeepa Teegala, Ramreddy Chitteti

Abstract:

This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method

Procedia PDF Downloads 267
4022 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.

Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon

Procedia PDF Downloads 358
4021 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 243
4020 The Effect of Stress on Job Performance of Frontline Employees of Hotels: Reference to Star Class Hotels in North Central Province, Sri Lanka

Authors: W. M. M. Weerasooriya, K. T. N. P. Abeywickrama

Abstract:

There has been some research on stress in the hotel industry in Sri Lanka and elsewhere. Still, the amount is not proportionate to the severity of the issue. This paper examined the effect of stress on job performance of frontline employees of Sri Lankan hotel context. Duly completed 70 self-administered questionnaires filled by frontline employees of star class hotels in North Central Province in Sri Lanka were used for the purpose with a response rate of 70%. The researcher employed empirical analysis using statistical tools such as regression analysis of Pearson’s correlation of coefficient. It was found that there is a high level of workload and role ambiguity existing among the frontline employees of hotels located in North Central Province and existing role ambiguity significantly reduce the job performance of the frontline employees of star class hotels while the existing low level of physical work environment also leads to a low level of job performance.

Keywords: hotel front line employees, job stress, job performance, Sri Lanka

Procedia PDF Downloads 111
4019 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: gas sensor, GSWR, micromechanical system, UWT, volatile emissions

Procedia PDF Downloads 471
4018 Scenario Based Reaction Time Analysis for Seafarers

Authors: Umut Tac, Leyla Tavacioglu, Pelin Bolat

Abstract:

Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities.

Keywords: cognitive abilities, human factor, neurocognitive test battery, reaction time

Procedia PDF Downloads 288
4017 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 333
4016 Measures Adopted by FIFA and UEFA against Russian Athletes: A Human Rights Perspective

Authors: Ayyoub Jamali, Alena Kozlova

Abstract:

The Russian invasion of Ukraine has tested the mettle of the international community, prompting not only States but also non-state actors to take deterrent action in response. Indeed, international sports organisations, namely FIFA and UEFA, have been rather successful in shifting the power dynamics by introducing a complete ban on the Russian national and club teams. This article aims to inquire into the human rights implications of such actions taken by international sports organisations. First, the article departs from an assessment of the legal status of FIFA and UEFA under international law and reflects on how a legal link could be established vis-à-vis their human rights obligations. Second, it examines the human rights aspects of the impugned measures by FIFA and UEFA on the part of the Russian athletes, further scrutinising them against the international human rights law principle of non-discrimination through a proportionality test. Last, it draws basic pathways for how possible human rights violations committed in the context of measures adopted by such organisations could be remedied, outlining the challenges of arbitration and litigation in Switzerland.

Keywords: FIFA, UEFA, FUR, ban, human rights, Russia, Ukraine, non-state actors

Procedia PDF Downloads 72
4015 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 391
4014 Climate Change and Tourism: A Scientometric Analysis Using Citespace

Authors: Yan Fang, Jie Yin, Bihu Wu

Abstract:

The interaction between climate change and tourism is one of the most promising research areas of recent decades. In this paper, a scientometric analysis of 976 academic publications between 1990 and 2015 related to climate change and tourism is presented in order to characterize the intellectual landscape by identifying and visualizing the evolution of the collaboration network, the co-citation network, and emerging trends of citation burst and keyword co-occurrence. The results show that the number of publications in this field has increased rapidly and it has become an interdisciplinary and multidisciplinary topic. The research areas are dominated by Australia, USA, Canada, New Zealand, and European countries, which have the most productive authors and institutions. The hot topics of climate change and tourism research in recent years are further identified, including the consequences of climate change for tourism, necessary adaptations, the vulnerability of the tourism industry, tourist behaviour and demand in response to climate change, and emission reductions in the tourism sector. The work includes an in-depth analysis of a major forum of climate change and tourism to help readers to better understand global trends in this field in the past 25 years.

Keywords: climate change, tourism, scientometrics, CiteSpace

Procedia PDF Downloads 395
4013 Influence of Environmental Conditions on a Solar Assisted Mashing Process

Authors: Ana Fonseca, Stefany Villacis

Abstract:

In this paper, the influence of several scenarios on a model of solar assisted mashing process in a brewery, while applying the model to different locations and therefore changing the environmental conditions, was analyzed. Assorted beer producer locations in different countries around the globe with contrasting climatic zones such as Guayaquil (Ecuador), Bangkok (Thailand), Mumbai (India), Veracruz (Mexico) and Brisbane (Australia) were evaluated and compared with a base case study Oldenburg (Germany), and results were drawn. The evaluation was restricted to the results obtained using TRNSYS 16 as simulating tool. On the base case, an annual Solar Fraction (SF) of 0.50 was encountered, results showed highly affection when modifying the pump control of the primary circuit and when increasing the area of collectors. A sensitivity analysis of the system for the selected locations was performed, resulting in Guayaquil the highest annual SF with a ratio of 2.5 times the expected value as compared with the base case. In contrast, Brisbane presented the lowest ratio, resulting in half of the expected one due to its lower irradiance. In conclusion, cities in Sunbelt countries have the technical potential to apply solar heat for their low-temperature industrial processes, in this case implementing a green brewery in Guayaquil.

Keywords: evacuated tubular solar collector, irradiance, mashing process, solar fraction, solar thermal

Procedia PDF Downloads 123
4012 The Influence of E-Health Education on Professional Practice: A Qualitative Study

Authors: Sisira Edirippulige, Anthony C. Smith, Sumudu Wickramasinghe, Nigel R. Armfield

Abstract:

Background: E-Health is steadily integrating into modern health services, making significant changes in the way health services are traditionally delivered. To work in this new environment, healthcare workers are required to have new knowledge, skills, and competencies specific to e-Health. The aim of this study was to understand the self-reported perceptions of graduates regarding the influence of an e-Health postgraduate program on their professional careers. Methods: All graduates from 2005 to 2015 were surveyed using an online questionnaire that consisted of a mixture of closed and open-ended questions. Results: The number of participants in the study was 32. Response rate was 62%. Graduates thought that the postgraduate e-Health program had an influence on their professional practice. The majority of the participants mentioned that they had worked in the e-Health field since their graduation. Their professional roles mainly involved implementation of e-Health in health service settings and the use of e-Health in clinical practice. Conclusions: While e-Health may be steadily integrating into modern health services, e-Health specific job opportunities are still relatively limited. E-Health workforce development must be given priority.

Keywords: e-health, postgraduate education, clinical practice, curriculum

Procedia PDF Downloads 140
4011 Structural Performance of a Bridge Pier on Dubious Deep Foundation

Authors: Víctor Cecilio, Roberto Gómez, J. Alberto Escobar, Héctor Guerrero

Abstract:

The study of the structural behavior of a support/pier of an elevated viaduct in Mexico City is presented. Detection of foundation piles with uncertain integrity prompted the review of possible situations that could jeopardy the structural safety of the pier. The objective of this paper is to evaluate the structural conditions of the support, taking into account the type of anomaly reported and the depth at which it is located, the position of the pile with uncertain integrity in the foundation system, the stratigraphy of the surrounding soil and the geometry and structural characteristics of the pier. To carry out the above, dynamic analysis, spectral modal, and step-by-step, with elastic and inelastic material models, were performed. Results were evaluated in accordance with the standards used for the design of the original structural project and with the Construction Regulations for Mexico’s Federal District (RCDF-2017, 2017). Comments on the response of the analyzed models are issued, and the conclusions are presented from a structural point of view.

Keywords: dynamic analysis, inelastic models, dubious foundation, bridge pier

Procedia PDF Downloads 122
4010 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 115
4009 Preparation of Core-Shell AgBr/Cationic Polymer Nanocomposite with Dual Biocidal Modes and Sustained Release of Ag+ Ions

Authors: Rongzhou Wang

Abstract:

Research on designing nano-antibacterial agent with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a core-shell AgBr/cationic polymer nanocomposite (AgBr/NPVP-H10) were synthesized and its structure confirmed by Fourier Transform Infrared Spectrometer (FT-IR), Nuclear Magnetic Resonance (1H NMR) and X-ray diffraction (XRD), and the cationic polymer contents were determined with Thermal Gravimetric Analyzer (TGA). The morphology was directly observed by Transmission Electron Microscope (TEM) which showed that the nanoparticle contains single core and organic shell and had an average diameter of 30.1 nm. The antibacterial test against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli illuminated that this nanocomposite had potent bactericidal activity, which can be attributed to the contact-killing of cationic polymers and releasing-killing of Ag+ ions. In addition, cationic polymer encapsulating AgBr cores gave the resin discs sustained release of Ag+ ions, which may result in long-lasting bactericidal activity. The AgBr/NPVP-H10 nanoparticle with the dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing bacterial infection.

Keywords: core-shell nanocomposite, cationic polymer, dual antibacterial capability, long-lasting antibacterial activity

Procedia PDF Downloads 179