Search results for: solid Oxide Cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6302

Search results for: solid Oxide Cells

212 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity

Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim

Abstract:

Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.

Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin

Procedia PDF Downloads 231
211 Pisolite Type Azurite/Malachite Ore in Sandstones at the Base of the Miocene in Northern Sardinia: The Authigenic Hypothesis

Authors: S. Fadda, M. Fiori, C. Matzuzzi

Abstract:

Mineralized formations in the bottom sediments of a Miocene transgression have been discovered in Sardinia. The mineral assemblage consists of copper sulphides and oxidates suggesting fluctuations of redox conditions in neutral to high-pH restricted shallow-water coastal basins. Azurite/malachite has been observed as authigenic and occurs as loose spheroidal crystalline particles associated with the transitional-littoral horizon forming the bottom of the marine transgression. Many field observations are consistent with a supergenic circulation of metals involving terrestrial groundwater-seawater mixing. Both clastic materials and metals come from Tertiary volcanic edifices while the main precipitating anions, carbonates, and sulphides species are of both continental and marine origin. Formation of Cu carbonates as a supergene secondary 'oxide' assemblage, does not agree with field evidences, petrographic observations along with textural evidences in the host-rock types. Samples were collected along the sedimentary sequence for different analyses: the majority of elements were determined by X-ray fluorescence and plasma-atomic emission spectroscopy. Mineral identification was obtained by X-ray diffractometry and scanning electron microprobe. Thin sections of the samples were examined in microscopy while porosity measurements were made using a mercury intrusion porosimeter. Cu-carbonates deposited at a temperature below 100 C° which is consistent with the clay minerals in the matrix of the host rock dominated by illite and montmorillonite. Azurite nodules grew during the early diagenetic stage through reaction of cupriferous solutions with CO₂ imported from the overlying groundwater and circulating through the sandstones during shallow burial. Decomposition of organic matter in the bottom anoxic waters released additional carbon dioxide to pore fluids for azurite stability. In this manner localized reducing environments were also generated in which Cu was fixed as Cu-sulphide and sulphosalts. Microscopic examinations of textural features of azurite nodules give evidence of primary malachite/azurite deposition rather than supergene oxidation in place of primary sulfides. Photomicrographs show nuclei of azurite and malachite surrounded by newly formed microcrystalline carbonates which constitute the matrix. The typical pleochroism of crystals can be observed also when this mineral fills microscopic fissures or cracks. Sedimentological evidence of transgression and regression indicates that the pore water would have been a variable mixture of marine water and groundwaters with a possible meteoric component in an alternatively exposed and subaqueous environment owing to water-level fluctuation. Salinity data of the pore fluids, assessed at random intervals along the mineralised strata confirmed the values between about 7000 and 30,000 ppm measured in coeval sediments at the base of Miocene falling in the range of a more or less diluted sea water. This suggests a variation in mean pore-fluids pH between 5.5 and 8.5, compatible with the oxidized and reduced mineral paragenesis described in this work. The results of stable isotopes studies reflect the marine transgressive-regressive cyclicity of events and are compatibile with carbon derivation from sea water. During the last oxidative stage of diagenesis, under surface conditions of higher activity of H₂O and O₂, CO₂ partial pressure decreased, and malachite becomes the stable Cu mineral. The potential for these small but high grade deposits does exist.

Keywords: sedimentary, Cu-carbonates, authigenic, tertiary, Sardinia

Procedia PDF Downloads 127
210 Effect of Nigella Sativa Seeds and Ajwa Date on Blood Glucose Level in Saudi Patients with Type 2 Diabetes Mellitus

Authors: Reham Algheshairy, Khaled Tayeb, Christopher Smith, Rebecca Gregg, Haruna Musa

Abstract:

Background: Diabetes is a medical condition that refers to the pancreas’ inability to secrete sufficient insulin levels, a hormone responsible for controlling glucose levels in the body. Any surplus glucose in the blood stream is excreted through the urinary system. Insulin resistance in blood cells can also cause this condition despite the fact that the pancreas is producing the required amount of insulin A number of researchers claim that the prevalence of diabetes in Saudi Arabia has reached epidemic proportions, although one study did observe one positive in the rise in the awareness of diabetes, possibly indicative of Saudi Arabia’s improving healthcare system. While a number of factors can cause diabetes, the ever-increasing incidence of the disease in Saudi Arabia has been blamed primarily on low levels of physical activity and high levels of obesity. Objectives: The project has two aims. The first aim of the project is to investigate the regulatory effects of consumption of Nigella seeds and Ajwah dates on blood glucose levels in diabetic patients with type 2 diabetes. The second aim of the project is to investigate whether these dietary factors may have potentially beneficial effects in controlling the complications that associated with type 2 diabetes. Methods: This use a random-cross intervention trail of 75 Saudi male and female with type 2 diabetes in Al-Noor hospital in Makkah ( KSA) aged between 18 and 70 years were divided into 3 groups. Group 1 will consume 2g of Nigella Sativa seeds daily along with a modified diet for 12 weeks, group 2 will be given Ajwah dates daily with a modified diet for 12 weeks and group 3 will follow a modified diet for 12 weeks. Anthropometric measurements were taken at baseline, along with bloods for HbA1c, fasting blood sugar and at the end of 12 weeks. Results: This study found significant decrease in blood level (FBG & 2PPBG) and HbA1c in the groups with diet and Nigella seeds) compared to Ajwa date. However, there is no significant change were found in HbA1c, FBG and 2hrpp regarding Ajwa group. Conclusion: This study illustrated a significant improvement in some markers of glycaemia following 2 g of Ns and diet for 12 weeks. The dose of 2g/day of consumed Nigella seeds was found to be more effective in controlling BGL and HbA1c than control and Ajwa groups. This suggests that Nigella seeds and following a diet may have a potential effect (a role in controlling outcomes for type 2 diabetes and controlling the disease). Further research is needed on a large scale to determine the optimum dose and duration of Nigella and Ajwa in order to achieve the desired results.

Keywords: type 2 diabetes, Nigella seeds, Ajwa dates, fasting blood glucose, control

Procedia PDF Downloads 291
209 Determining the Threshold for Protective Effects of Aerobic Exercise on Aortic Structure in a Mouse Model of Marfan Syndrome Associated Aortic Aneurysm

Authors: Christine P. Gibson, Ramona Alex, Michael Farney, Johana Vallejo-Elias, Mitra Esfandiarei

Abstract:

Aortic aneurysm is the leading cause of death in Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1 gene (FBN1). MFS aneurysm is characterized by weakening of the aortic wall due to elastin fibers fragmentation and disorganization. The above-average height and distinct physical features make young adults with MFS desirable candidates for competitive sports; but little is known about the exercise limit at which they will be at risk for aortic rupture. On the other hand, aerobic cardiovascular exercise has been shown to have protective effects on the heart and aorta. We have previously reported that mild aerobic exercise can delay the formation of aortic aneurysm in a mouse model of MFS. In this study, we aimed to investigate the effects of various levels of exercise intensity on the progression of aortic aneurysm in the mouse model. Starting at 4 weeks of age, we subjected control and MFS mice to different levels of exercise intensity (8m/min, 10m/min, 15m/min, and 20m/min, corresponding to 55%, 65%, 75%, and 85% of VO2 max, respectively) on a treadmill for 30 minutes per day, five days a week for the duration of the study. At 24 weeks of age, aortic tissue were isolated and subjected to structural and functional studies using histology and wire myography in order to evaluate the effects of different exercise routines on elastin fragmentation and organization and aortic wall elasticity/stiffness. Our data shows that exercise training at the intensity levels between 55%-75% significantly reduces elastin fragmentation and disorganization, with less recovery observed in 85% MFS group. The reversibility of elasticity was also significantly restored in MFS mice subjected to 55%-75% intensity; however, the recovery was less pronounced in MFS mice subjected to 85% intensity. Furthermore, our data shows that smooth muscle cells (SMCs) contractilion in response to vasoconstrictor agent phenylephrine (100nM) is significantly reduced in MFS aorta (54.84 ± 1.63 mN/mm2) as compared to control (95.85 ± 3.04 mN/mm2). At 55% of intensity, exercise did not rescue SMCs contraction (63.45 ± 1.70 mN/mm2), while at higher intensity levels, SMCs contraction in response to phenylephrine was restored to levels similar to control aorta [65% (81.88 ± 4.57 mN/mm2), 75% (86.22 ± 3.84 mN/mm2), and 85% (83.91 ± 5.42 mN/mm2)]. This study provides the first time evidence that high intensity exercise (e.g. 85%) may not provide the most beneficial effects on aortic function (vasoconstriction) and structure (elastin fragmentation, aortic wall elasticity) during the progression of aortic aneurysm in MFS mice. On the other hand, based on our observations, medium intensity exercise (e.g. 65%) seems to provide the utmost protective effects on aortic structure and function in MFS mice. These findings provide new insights into the potential capacity, in which MFS patients could participate in various aerobic exercise routines, especially in young adults affected by cardiovascular complications particularly aortic aneurysm. This work was funded by Midwestern University Research Fund.

Keywords: aerobic exercise, aortic aneurysm, aortic wall elasticity, elastin fragmentation, Marfan syndrome

Procedia PDF Downloads 374
208 Knowledge and Practices on Waste Disposal Management Among Medical Technology Students at National University – Manila

Authors: John Peter Dacanay, Edison Ramos, Cristopher James Dicang

Abstract:

Waste management is a global concern due to increasing waste production from changing consumption patterns and population growth. Proper waste disposal management is a critical aspect of public health and environmental protection. In the healthcare industry, medical waste is generated in large quantities, and if not disposed of properly, it poses a significant threat to human health and the environment. Efficient waste management conserves natural resources and prevents harm to human health, and implementing an effective waste management system can save human lives. The study aimed to assess the level of awareness and practices on waste disposal management, highlighting the understanding of proper disposal, potential hazards, and environmental implications among Medical Technology students. This would help to provide more recommendations for improving waste management practices in healthcare settings as well as for better waste management practices in educational institutions. From the collected data, a female of 21 years of age stands out among the respondents. With the frequency and percentage of medical technology students' knowledge of laboratory waste management being high, it indicates that all respondents demonstrated a solid understanding of proper disposal methods, regulations, risks, and handling procedures related to laboratory waste. That said, the findings emphasize the significance of education and awareness programs in equipping individuals involved in laboratory practices with the necessary knowledge to handle and dispose of hazardous and infectious waste properly. Most respondents demonstrate positive practices or are highly mannered in laboratory waste management, including proper segregation and disposal in designated containers. However, there are concerns about the occasional mixing of waste types, emphasizing the reiteration of proper waste segregation. Students show a strong commitment to using personal protective equipment and promptly cleaning up spills. Some students admit to improper disposal due to rushing, highlighting the importance of time management and safety prioritization. Overall, students follow protocols for hazardous waste disposal, indicating a responsible approach. The school's waste management system is perceived as adequate, but continuous assessment and improvement are necessary. Encouraging reporting of issues and concerns is crucial for ongoing improvement and risk mitigation. The analysis reveals a moderate positive relationship between the respondents' knowledge and practices regarding laboratory waste management. The statistically significant correlation with a p-value of 0.26 (p-value 0.05) suggests that individuals with higher levels of knowledge tend to exhibit better practices. These findings align with previous research emphasizing the pivotal role of knowledge in influencing individuals' behaviors and practices concerning laboratory waste management. When individuals possess a comprehensive understanding of proper procedures, regulations, and potential risks associated with laboratory waste, they are more inclined to adopt appropriate practices. Therefore, fostering knowledge through education and training is essential in promoting responsible and effective waste management in laboratory settings.

Keywords: waste disposal management, knowledge, attitude, practices

Procedia PDF Downloads 84
207 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters

Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola

Abstract:

Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.

Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR

Procedia PDF Downloads 68
206 Upgrading of Bio-Oil by Bio-Pd Catalyst

Authors: Sam Derakhshan Deilami, Iain N. Kings, Lynne E. Macaskie, Brajendra K. Sharma, Anthony V. Bridgwater, Joseph Wood

Abstract:

This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts.

Keywords: bio-oil, catalyst, palladium, upgrading

Procedia PDF Downloads 170
205 Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts

Authors: Narayana Bhat, Majda Khalil, Hamad Al-Mansour, Anitha Manuvel, Vimla Yeddu

Abstract:

The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation.

Keywords: medicinal plants, secondary metabolites, phytochemical screening, bioprospecting, radical scavenging

Procedia PDF Downloads 168
204 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin

Authors: B. K. Kanungo, Monika Thakur, Minati Baral

Abstract:

8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.

Keywords: complexes, DFT, formation constant, TACH2OX

Procedia PDF Downloads 147
203 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique

Authors: Bhupendra G. Prajapati, Alpesh R. Patel

Abstract:

The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.

Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design

Procedia PDF Downloads 133
202 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition

Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen

Abstract:

Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.

Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains

Procedia PDF Downloads 99
201 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture

Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr

Abstract:

Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.

Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin

Procedia PDF Downloads 239
200 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity

Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos

Abstract:

Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.

Keywords: antarctic, bacteria, biosurfactants, hydrocarbons

Procedia PDF Downloads 274
199 Purple Spots on Historical Parchments: Confirming the Microbial Succession at the Basis of Biodeterioration

Authors: N. Perini, M. C. Thaller, F. Mercuri, S. Orlanducci, A. Rubechini, L. Migliore

Abstract:

The preservation of cultural heritage is one of the major challenges of today’s society, because of the fundamental right of future generations to inherit it as the continuity with their historical and cultural identity. Parchments, consisting of a semi-solid matrix of collagen produced from animal skin (i.e., sheep or goats), are a significant part of the cultural heritage, being used as writing material for many centuries. Due to their animal origin, parchments easily undergo biodeterioration. The most common biological damage is characterized by isolated or coalescent purple spots that often leads to the detachment of the superficial layer and the loss of the written historical content of the document. Although many parchments with the same biodegradative features were analyzed, no common causative agent has been found so far. Very recently, a study was performed on a purple-damaged parchment roll dated back 1244 A.D, the A.A. Arm. I-XVIII 3328, belonging to the oldest collection of the Vatican Secret Archive (Fondo 'Archivum Arcis'), by comparing uncolored undamaged and purple damaged areas of the same document. As a whole, the study gave interesting results to hypothesize a model of biodeterioration, consisting of a microbial succession acting in two main phases: the first one, common to all the damaged parchments, is characterized by halophilic and halotolerant bacteria fostered by the salty environment within the parchment maybe induced by bringing of the hides; the second one, changing with the individual history of each parchment, determines the identity of its colonizers. The design of this model was pivotal to this study, performed by different labs of the Tor Vergata University (Rome, Italy), in collaboration with the Vatican Secret Archive. Three documents, belonging to a collection of dramatically damaged parchments archived as 'Faldone Patrizi A 19' (dated back XVII century A.D.), were analyzed through a multidisciplinary approach, including three updated technologies: (i) Next Generation Sequencing (NGS, Illumina) to describe the microbial communities colonizing the damaged and undamaged areas, (ii) RAMAN spectroscopy to analyze the purple pigments, (iii) Light Transmitted Analysis (LTA) to evaluate the kind and entity of the damage to native collagen. The metagenomic analysis obtained from NGS revealed DNA sequences belonging to Halobacterium salinarum mainly in the undamaged areas. RAMAN spectroscopy detected pigments within the purple spots, mainly bacteriorhodopsine/rhodopsin-like pigments, a purple transmembrane protein containing retinal and present in Halobacteria. The LTA technique revealed extremely damaged collagen structures in both damaged and undamaged areas of the parchments. In the light of these data, the study represents a first confirmation of the microbial succession model described above. The demonstration of this model is pivotal to start any possible new restoration strategy to bring back historical parchments to their original beauty, but also to open opportunities for intervention on a huge amount of documents.

Keywords: biodeterioration, parchments, purple spots, ecological succession

Procedia PDF Downloads 164
198 Environmental Management Accounting Practices and Policies within the Higher Education Sector: An Exploratory Study of the University of KwaZulu Natal

Authors: Kiran Baldavoo, Mishelle Doorasamy

Abstract:

Universities have a role to play in the preservation of the environment, and the study attempted to evaluate the environmental management accounting (EMA) processes at UKZN. UKZN, a South African university, generates the same direct and indirect environmental impacts as the higher education sector worldwide. This is significant within the context of the South African environment which is constantly plagued by having to effectively manage the already scarce resources of water and energy, evident through the imposition of water and energy restrictions over the recent years. The study’s aim is to increase awareness of having a structured approach to environmental management in order to achieve the strategic environmental goals of the university. The research studied the experiences of key managers within UKZN, with the purpose of exploring the potential factors which influence the decision to adopt and apply EMA within the higher education sector. The study comprised two objectives, namely understanding the current state of accounting practices for managing major environmental costs and identifying factors influencing EMA adoption within the university. The study adopted a case study approach, comprising semi-structured interviews of key personnel involved in Management Accounting, Environmental Management, and Academic Schools within the university. Content analysis was performed on the transcribed interview data. A Theoretical Framework derived from literature was adopted to guide data collection and focus the study. Contingency and Institutional theory was the resultant basis of the derived framework. The findings of the first objective revealed that there was a distinct lack of EMA utilization within the university. There was no distinct policy on EMA, resulting in minimal environmental cost information being brought to the attention of senior management. The university embraced the principles of environmental sustainability; however, efforts to improve internal environmental accountability primarily from an accounting perspective was absent. The findings of the second objective revealed that five key barriers contributed to the lack of EMA utilization within the university. The barriers being attitudinal, informational, institutional, technological, and lack of incentives (financial). The results and findings of this study supported the use and application of EMA within the higher education sector. Participants concurred that EMA was underutilized and if implemented, would realize significant benefits for both the university and environment. Environmental management accounting is being widely acknowledged as a key management tool that can facilitate improved financial and environmental performance via the concept of enhanced environmental accountability. Historically research has been concentrated primarily on the manufacturing industry, due to it generating the greatest proportion of environmental impacts. Service industries are also an integral component of environmental management as they contribute significant environmental impacts, both direct and indirect. Educational institutions such as universities form part of the service sector and directly impact on the environment through the consumption of paper, energy, and water and solid waste generated, with the associated demands.

Keywords: environmental management accounting, environmental impacts, higher education, Southern Africa

Procedia PDF Downloads 115
197 Differentially Expressed Protein Biomarkers in Early and Advanced Stage Young Triple-Negative Breast Cancer Patients

Authors: Shamim Mushtaq, Moazzam Shahid

Abstract:

Breast cancer (BC) claims the lives of half a million women every year and is the most common cause of death in the developing world. In 2019, it was estimated that BC alone accounts for 15% of all cancer deaths in younger women (aged < 45 years old) with advanced-stage lung metastasis. According to the World Health Organization & International Union against Cancer, in Asia, a high number of cancer-related deaths will be observed in 2020, whereas the burden will be reduced in Western countries due to awareness about the disease, better health facilities and advanced treatments. In the last 15 years, it has been reported that the incidence of BC has increased by 1.1% among Asian compared to the US population from 2003 to 2012. To date, several BC biological subtypes have been reported so far, which are associated with different treatment responses. The heterogeneity and diversity of BC reflected these different subtypes, including Luminal A (23.7% prevalence) and B (38.8% prevalence) that have pathological estrogen receptor (ER+)-positive tumors, the human epidermal growth factor receptor 2 (HER2) (11.2% prevalence) and triple-negative breast cancer (TNBC) (25% prevalence). According to Shaukat Khanum Memorial Cancer Hospital and Research Centre – Pakistan, ten years of data showed that among 636 BC patients, 30.5% had TNBC who were <40 years of age, which is an extremely alarming situation. Therefore, there is a dire need to explore and develop therapeutic targets for the treatment of early TNBC. Since the last decade, unfortunately, there has been little success in understanding the complexity of TNBC and in discovering new biological therapeutic targets. However, conventional chemotherapy is the only choice of treatment for TNBC patients. Many investigators revealed advances in multi-omics (multiple "omes", e.g., genome, proteome, transcriptome, epigenome, and microbiome) which were later identified as actionable targets and increased prevalence in TNBC patients. However, various drugs have been identified so far which are related to a particular diagnostic and prognostic biomarker. For example, Epidermal growth factor receptor ( EGFR or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). Protein Transglin-2 (TAGLN 2 ) and Profilins-1 (Pfn-1 ) are the ubiquitously expressed large family of proteins present in all eukaryotes, enabling actin cytoskeletal reorganization. It is known that the oncogenic transformation of cells is accompanied by alteration in the actin cytoskeleton. There are causal connections between altered expression of actin cytoskeletal regulators and cancer progression. Our case-control study identified TAGLN-2 and Pfn-1 proteins in TNBC blood by mass spectrometry. Both TAGLN-2 and Pfn-1 proteins are differentially expressed in early and advanced stages of TNBS patients, which could be potential predictors or therapeutic targets for TNBC.

Keywords: TNBC, blood biomarkers, mass spectrometry, qPCR, ELISA

Procedia PDF Downloads 40
196 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 235
195 Inhibition of Food Borne Pathogens by Bacteriocinogenic Enterococcus Strains

Authors: Neha Farid

Abstract:

Due to the abuse of antimicrobial medications in animal feed, the occurrence of multi-drug resistant (MDR) pathogens in foods is currently a growing public health concern on a global scale. MDR infections have the potential to penetrate the food chain by posing a serious risk to both consumers and animals. Food pathogens are those biological agents that have the tendency to cause pathogenicity in the host body upon ingestion. The major reservoirs of foodborne pathogens include food-producing fauna like cows, pigs, goats, sheep, deer, etc. The intestines of these animals are highly condensed with several different types of food pathogens. Bacterial food pathogens are the main cause of foodborne disease in humans; almost 66% of the reported cases of food illness in a year are caused by the infestation of bacterial food pathogens. When ingested, these pathogens reproduce and survive or form different kinds of toxins inside host cells causing severe infections. The genus Listeria consists of gram-positive, rod-shaped, non-spore-forming bacteria. The disease caused by Listeria monocytogenes is listeriosis or gastroenteritis, which induces fever, vomiting, and severe diarrhea in the affected body. Campylobacter jejuni is a gram-negative, curved-rod-shaped bacteria causing foodborne illness. The major source of Campylobacter jejuni is livestock and poultry; particularly, chicken is highly colonized with Campylobacter jejuni. Serious public health concerns include the widespread growth of bacteria that are resistant to antibiotics and the slowing in the discovery of new classes of medicines. The objective of this study is to provide some potential antibacterial activities with certain broad-range antibiotics and our desired bacteriocins, i.e., Enterococcus faecium from specific strains preventing microbial contamination pathways in order to safeguard the food by lowering food deterioration, contamination, and foodborne illnesses. The food pathogens were isolated from various sources of dairy products and meat samples. The isolates were tested for the presence of Listeria and Campylobacter by gram staining and biochemical testing. They were further sub-cultured on selective media enriched with the growth supplements for Listeria and Campylobacter. All six strains of Listeria and Campylobacter were tested against ten antibiotics. Campylobacter strains showed resistance against all the antibiotics, whereas Listeria was found to be resistant only against Nalidixic Acid and Erythromycin. Further, the strains were tested against the two bacteriocins isolated from Enterococcus faecium. It was found that bacteriocins showed better antimicrobial activity against food pathogens. They can be used as a potential antimicrobial for food preservation. Thus, the study concluded that natural antimicrobials could be used as alternatives to synthetic antimicrobials to overcome the problem of food spoilage and severe food diseases.

Keywords: food pathogens, listeria, campylobacter, antibiotics, bacteriocins

Procedia PDF Downloads 63
194 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 268
193 The Temperature Degradation Process of Siloxane Polymeric Coatings

Authors: Andrzej Szewczak

Abstract:

Study of the effect of high temperatures on polymer coatings represents an important field of research of their properties. Polymers, as materials with numerous features (chemical resistance, ease of processing and recycling, corrosion resistance, low density and weight) are currently the most widely used modern building materials, among others in the resin concrete, plastic parts, and hydrophobic coatings. Unfortunately, the polymers have also disadvantages, one of which decides about their usage - low resistance to high temperatures and brittleness. This applies in particular thin and flexible polymeric coatings applied to other materials, such a steel and concrete, which degrade under varying thermal conditions. Research about improvement of this state includes methods of modification of the polymer composition, structure, conditioning conditions, and the polymerization reaction. At present, ways are sought to reflect the actual environmental conditions, in which the coating will be operating after it has been applied to other material. These studies are difficult because of the need for adopting a proper model of the polymer operation and the determination of phenomena occurring at the time of temperature fluctuations. For this reason, alternative methods are being developed, taking into account the rapid modeling and the simulation of the actual operating conditions of polymeric coating’s materials in real conditions. The nature of a duration is typical for the temperature influence in the environment. Studies typically involve the measurement of variation one or more physical and mechanical properties of such coating in time. Based on these results it is possible to determine the effects of temperature loading and develop methods affecting in the improvement of coatings’ properties. This paper contains a description of the stability studies of silicone coatings deposited on the surface of a ceramic brick. The brick’s surface was hydrophobized by two types of inorganic polymers: nano-polymer preparation based on dialkyl siloxanes (Series 1 - 5) and an aqueous solution of the silicon (series 6 - 10). In order to enhance the stability of the film formed on the brick’s surface and immunize it to variable temperature and humidity loading, the nano silica was added to the polymer. The right combination of the polymer liquid phase and the solid phase of nano silica was obtained by disintegration of the mixture by the sonification. The changes of viscosity and surface tension of polymers were defined, which are the basic rheological parameters affecting the state and the durability of the polymer coating. The coatings created on the brick’s surfaces were then subjected to a temperature loading of 100° C and moisture by total immersion in water, in order to determine any water absorption changes caused by damages and the degradation of the polymer film. The effect of moisture and temperature was determined by measurement (at specified number of cycles) of changes in the surface hardness (using a Vickers’ method) and the absorption of individual samples. As a result, on the basis of the obtained results, the degradation process of polymer coatings related to their durability changes in time was determined.

Keywords: silicones, siloxanes, surface hardness, temperature, water absorption

Procedia PDF Downloads 239
192 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field

Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.

Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli

Procedia PDF Downloads 152
191 Interactively Developed Capabilities for Environmental Management Systems: An Exploratory Investigation of SMEs

Authors: Zhuang Ma, Zihan Zhang, Yu Li

Abstract:

Environmental concerns from stakeholders (e.g., governments & customers) have pushed firms to integrate environmental management systems into business processes such as R&D, manufacturing, and marketing. Environmental systems include managing environmental risks and pollution control (e.g., air pollution control, waste-water treatment, noise control, energy recycling & solid waste treatment) through raw material management, the elimination and reduction of contaminants, recycling, and reuse in firms' operational processes. Despite increasing studies on firms' proactive adoption of environmental management, their focus is primarily on large corporations operating in developed economies. Investigations in the environmental management efforts of small and medium-sized enterprises (SMEs) are scarce. This is problematic for SMEs because, unlike large corporations, SMEs have limited awareness, resources, capabilities to adapt their operational routines to address environmental impacts. The purpose of this study is to explore how SMEs develop organizational capabilities through interactions with business partners (e.g., environmental management specialists & customers). Drawing on the resource-based view (RBV) and an organizational capabilities perspective, this study investigates the interactively developed capabilities that allow SMEs to adopt environmental management systems. Using an exploratory approach, the study includes 12 semi-structured interviews with senior managers from four SMEs, two environmental management specialists, and two customers in the pharmaceutical sector in Chongqing, China. Findings of this study include four key organizational capabilities: 1) ‘dynamic marketing’ capability, which allows SMEs to recoup the investments in environmental management systems by developing environmentally friendly products to address customers' ever-changing needs; 2) ‘process improvement’ capability, which allows SMEs to select and adopt the latest technologies from biology, chemistry, new material, and new energy sectors into the production system for improved environmental performance and cost-reductions; and 3) ‘relationship management’ capability which allows SMEs to improve corporate image among the public, social media, government agencies, and customers, who in turn help SMEs to overcome their competitive disadvantages. These interactively developed capabilities help SMEs to address larger competitors' foothold in the local market, reduce market constraints, and exploit competitive advantages in other regions (e.g., Guangdong & Jiangsu) of China. These findings extend the RBV and organizational capabilities perspective; that is, SMEs can develop the essential resources and capabilities required for environmental management through interactions with upstream and downstream business partners. While a limited number of studies did highlight the importance of interactions among SMEs, customers, suppliers, NGOs, industrial associations, and consulting firms, they failed to explore the specific capabilities developed through these interactions. Additionally, the findings can explain how a proactive adoption of environmental management systems could help some SMEs to overcome the institutional and market restraints on their products, thereby springboarding into larger, more environmentally demanding, yet more profitable markets compared with their existing market.

Keywords: capabilities, environmental management systems, interactions, SMEs

Procedia PDF Downloads 174
190 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery

Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek

Abstract:

Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.

Keywords: liposomes, siRNA, pH-sensitive, molecular switch

Procedia PDF Downloads 199
189 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 115
188 Regional Barriers and Opportunities for Developing Innovation Networks in the New Media Industry: A Comparison between Beijing and Bangalore Regional Innovation Systems

Authors: Cristina Chaminade, Mandar Kulkarni, Balaji Parthasarathy, Monica Plechero

Abstract:

The characteristics of a regional innovation system (RIS) and the specificity of the knowledge base of an industry may contribute to create peculiar paths for innovation and development of firms’ geographic extended innovation networks. However, the relative empirical evidence in emerging economies remains underexplored. The paper aims to fill the research gap by means of some recent qualitative research conducted in 2016 in Beijing (China) and Bangalore (India). It analyzes cases studies of firms in the new media industry, a sector that merges different IT competences with competences from other knowledge domains and that is emerging in those RIS. The results show that while in Beijing the new media sector results to be more in line with the existing institutional setting and governmental goals aimed at targeting specific social aspects and social problems of the population, in Bangalore it remains a more spontaneous firms-led process. In Beijing what matters for the development of innovation networks is the governmental setting and the national and regional strategies to promote science and technology in this sector, internet and mass innovation. The peculiarities of recent governmental policies aligned to the domestic goals may provide good possibilities for start-ups to develop innovation networks. However, due to the specificities of those policies targeting the Chinese market, networking outside the domestic market are not so promoted. Moreover, while some institutional peculiarities, such as a culture of collaboration in the region, may be favorable for local networking, regulations related to Internet censorship may limit the use of global networks particularly when based on virtual spaces. Mainly firms with already some foreign experiences and contact take advantage of global networks. In Bangalore, the role of government in pushing networking for the new media industry at the present stage is quite absent at all geographical levels. Indeed there is no particular strategic planning or prioritizing in the region toward the new media industry, albeit one industrial organization has emerged to represent the animation industry interests. This results in a lack of initiatives for sustaining the integration of complementary knowledge into the local portfolio of IT specialization. Firms actually involved in the new media industry face institutional constrains related to a poor level of local trust and cooperation, something that does not allow for full exploitation of local linkages. Moreover, knowledge-provider organizations in Bangalore remain still a solid base for the IT domain, but not for other domains. Initiatives to link to international networks seem therefore more the result of individual entrepreneurial actions aimed at acquiring complementary knowledge and competencies from different domains and exploiting potentiality in different markets. From those cases, it emerges that role of government, soft institutions and organizations in the two RIS differ substantially in the creation of barriers and opportunities for the development of innovation networks and their specific aim.

Keywords: regional innovation system, emerging economies, innovation network, institutions, organizations, Bangalore, Beijing

Procedia PDF Downloads 312
187 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species

Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa

Abstract:

Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.

Keywords: interspecies transmission, rotavirus, goat, human

Procedia PDF Downloads 281
186 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 45
185 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 229
184 A Case of Myelofibrosis-Related Arthropathy: A Rare and Underrecognized Entity

Authors: Geum Yeon Sim, Jasal Patel, Anand Kumthekar, Stanley Wainapel

Abstract:

A 65-year-old right-hand dominant African-American man, formerly employed as a security guard, was referred to Rehabilitation Medicine with bilateral hand stiffness and weakness. His past medical history was only significant for myelofibrosis, diagnosed 4 years earlier, for which he was receiving scheduled blood transfusions. Approximately 2 years ago, he began to notice stiffness and swelling in his non-dominant hand that progressed to pain and decreased strength, limiting his hand function. Similar but milder symptoms developed in his right hand several months later. There was no history of prior injury or exposure to cold. Physical examination showed enlargement of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints with finger flexion contractures, Swan-neck and Boutonniere deformities, and associated joint tenderness. Changes were more prominent in the left hand. X-rays showed mild osteoarthritis of several bilateral PIP joints. Anti-nuclear antibodies, rheumatoid factor, and cyclic citrullinated peptide antibodies were negative. MRI of the hand showed no erosions or synovitis. A rheumatology consultation was obtained, and the cause of his symptoms was attributed to myelofibrosis-related arthropathy with secondary osteoarthritis. The patient was tried on diclofenac cream and received a few courses of Occupational Therapy with limited functional improvement. Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells with variable morphologic maturity and hematopoietic efficiency. Rheumatic manifestations of malignancies include direct invasion, paraneoplastic presentations, secondary gout, or hypertrophic osteoarthropathy. PMF causes gradual bone marrow fibrosis with extramedullary metaplastic hematopoiesis in the liver, spleen, or lymph nodes. Musculoskeletal symptoms are not common and are not well described in the literature. The first reported case of myelofibrosis related arthritis was seronegative arthritis due to synovial invasion of myeloproliferative elements. Myelofibrosis has been associated with autoimmune diseases such as systemic lupus erythematosus, progressive systemic sclerosis, and rheumatoid arthritis. Gout has been reported in patients with myelofibrosis, and the underlying mechanism is thought to be related to the high turnover of nucleic acids that is greatly augmented in this disease. X-ray findings in these patients usually include erosive arthritis with synovitis. Treatment of underlying PMF is the treatment of choice, along with anti-inflammatory medications. Physicians should be cognizant of recognizing this rare entity in patients with PMF while maintaining clinical suspicion for more common causes of joint deformities, such as rheumatic diseases.

Keywords: myelofibrosis, arthritis, arthralgia, malignancy

Procedia PDF Downloads 92
183 Cross-cultural Training in International Cooperation Efforts

Authors: Shawn Baker-Garcia, Janna O. Schaeffer

Abstract:

As the global and national communities and governments strive to address ongoing and evolving threats to humanity and pervasive or emerging “shared” global priorities on environmental, economic, political, and security, it is more urgent than ever before to understand each other, communicate effectively with one another, identify models of cooperation that yield improved, mutually reinforcing outcomes across and within cultures. It is within the backdrop of this reality that the presentation examines whether cultural training as we have approached it in recent decades is sufficiently meeting our current needs and what changes may be applied to foster better and more productive and sustainable intercultural interactions. Domestic and global relations face multiple challenges to peaceable cooperation. The last two years, in particular, have been defined by a travel-restricted COVID-19 pandemic yielding increased intercultural interactions over virtual platforms, polarized politics dividing nations and regions, and the commensurate rise in weaponized social and traditional media communication. These societal and cultural fissures are noticeably challenging our collective and individual abilities to constructively interact both at home and abroad. It is within this pressure cooker environment that the authors believe it is time to reexamine existing and broadly accepted inter- and cross- cultural training approaches and concepts to determine their level of effectiveness in setting conditions for optimal human understanding and relationships both in the national and international context. In order to better understand the amount and the type of intercultural training practitioners professionally engaging in international partnership building have received throughout their careers and its perceived effectiveness, a survey was designed and distributed to US and international professionals presently engaged in the fields of diplomacy, military, academia, and international business. The survey questions were deigned to address the two primary research questions investigators posed in this exploratory study. Research questions aimed to examine practitioners’ view of the role and effectiveness of current and traditional cultural training and education as a means to fostering improved communication, interactions, understanding, and cooperation among inter, cross, or multi-cultural communities or efforts.Responses were then collected and analyzed for themes present in the participants’ reflections. In their responses, the practitioners identified the areas of improvement and desired outcomes in regards to intercultural training and awareness raising curricular approaches. They also raised issues directly and indirectly pertaining to the role of foreign language proficiency in intercultural interactions and a need for a solid grasp on cultural and regional issues (regional expertise) to facilitate such an interaction. Respondents indicated knowledge, skills, abilities, and capabilities that the participants were not trained on but learned through ad hoc personal and professional intercultural interactions, which they found most valuable and wished they had acquired prior to the intercultural experience.

Keywords: cultural training, improved communication, intercultural competence, international cooperation

Procedia PDF Downloads 127