Search results for: particle union optimization algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8134

Search results for: particle union optimization algorithm

2134 Design of Single Point Mooring Buoy System by Parametric Analysis

Authors: Chul-Hee Jo, Do-Youb Kim, Seok-Jin Cho, Yu-Ho Rho

Abstract:

The Catenary Anchor Leg Mooring (CALM) Single Point Mooring (SPM) buoy system is the most popular and widely used type of offshore loading terminals. SPM buoy mooring systems have been deployed worldwide for a variety of applications, water depths and vessel sizes ranging from small production carriers to Very Large Crude Carriers (VLCCs). Because of safe and easy berthing and un-berthing operations, the SPM buoy mooring system is also preferred for offshore terminals. The SPM buoy consists of a buoy that is permanently moored to the seabed by means of multiple mooring lines. The buoy contains a bearing system that allows a part of it to rotate around the moored geostatic part. When moored to the rotating part of the buoy, a vessel is able to freely weathervane around the buoy. This study was verified the effects of design variables in order to design an SPM buoy mooring system through parametric analysis. The design variables have independent and nonlinear characteristics. Using parametric analysis, this research was found that the fairlead departure angle, wave height and period, chain diameter and line length effect to the mooring top tension, buoy excursion and line layback.

Keywords: Single Point Mooring (SPM), Catenary Anchor Leg Mooring(CALM), design variables, parametric analysis, mooring system optimization

Procedia PDF Downloads 392
2133 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers

Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao

Abstract:

Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.

Keywords: fatigue life, pm spectrum, rain flow counting, triceratops, failure analysis

Procedia PDF Downloads 134
2132 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.

Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty

Procedia PDF Downloads 109
2131 Implementation of Lean Manufacturing in Some Companies in Colombia: A Case Study

Authors: Natalia Marulanda, Henry González, Gonzalo León, Alejandro Hincapié

Abstract:

Continuous improvement tools are the result of a set of studies that developed theories and methodologies. These methodologies enable organizations to increase their levels of efficiency, effectiveness, and productivity. Based on these methodologies, lean manufacturing philosophy, which is based on the optimization of resources, waste disposal, and generation of value to products and services, was developed. Lean application has been massive globally, but Colombian companies have been made it incipiently. Therefore, the purpose of this article is to identify the impacts generated by the implementation of lean manufacturing tools in five companies located in Colombia and Medellín metropolitan area. It also seeks to make a comparison of the results obtained from the implementation of lean philosophy and Theory of Constraints. The methodology is qualitative and quantitative, is based on the case study interview from dialogue with the leaders of the processes that used lean tools. The most used tools by research companies are 5's with 100% and TPM with 80%. The less used tool is the synchronous production with 20%. The main reason for the implementation of lean was supply chain management with 83.3%. For the application of lean and TOC, we did not find significant differences between the impact, in terms of methodology, areas of application, staff initiatives, supply chain management, planning, and training.

Keywords: business strategy, lean manufacturing, theory of constraints, supply chain

Procedia PDF Downloads 354
2130 Public-Private Partnership for Critical Infrastructure Resilience

Authors: Anjula Negi, D. T. V. Raghu Ramaswamy, Rajneesh Sareen

Abstract:

Road infrastructure is emphatically one of the top most critical infrastructure to the Indian economy. Road network in the country of around 3.3 million km is the second largest in the world. Nationwide statistics released by Ministry of Road, Transport and Highways reveal that every minute an accident happens and one death every 3.7 minutes. This reported scale in terms of safety is a matter of grave concern, and economically represents a national loss of 3% to the GDP. Union Budget 2016-17 has allocated USD 12 billion annually for development and strengthening of roads, an increase of 56% from last year. Thus, highlighting the importance of roads as critical infrastructure. National highway alone represent only 1.7% of the total road linkages, however, carry over 40% of traffic. Further, trends analysed from 2002 -2011 on national highways, indicate that in less than a decade, a 22 % increase in accidents have been reported, but, 68% increase in death fatalities. Paramount inference is that accident severity has increased with time. Over these years many measures to increase road safety, lessening damage to physical assets, reducing vulnerabilities leading to a build-up for resilient road infrastructure have been taken. In the context of national highway development program, policy makers proposed implementation of around 20 % of such road length on PPP mode. These roads were taken up on high-density traffic considerations and for qualitative implementation. In order to understand resilience impacts and safety parameters, enshrined in various PPP concession agreements executed with the private sector partners, such highway specific projects would be appraised. This research paper would attempt to assess such safety measures taken and the possible reasons behind an increase in accident severity through these PPP case study projects. Delving further on safety features to understand policy measures adopted in these cases and an introspection on reasons of severity, whether an outcome of increased speeds, faulty road design and geometrics, driver negligence, or due to lack of discipline in following lane traffic with increased speed. Assessment exercise would study these aspects hitherto to PPP and post PPP project structures, based on literature review and opinion surveys with sectoral experts. On the way forward, it is understood that the Ministry of Road, Transport and Highway’s estimate for strengthening the national highway network is USD 77 billion within next five years. The outcome of this paper would provide an understanding of resilience measures adopted, possible options for accessible and safe road network and its expansion to policy makers for possible policy initiatives and funding allocation in securing critical infrastructure.

Keywords: national highways, policy, PPP, safety

Procedia PDF Downloads 257
2129 Application of Medium High Hydrostatic Pressure in Preserving Textural Quality and Safety of Pineapple Compote

Authors: Nazim Uddin, Yohiko Nakaura, Kazutaka Yamamoto

Abstract:

Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.

Keywords: compote of pineapple, RTE, medium high hydrostatic pressure, postharvest loss, texture

Procedia PDF Downloads 135
2128 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 102
2127 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: neural networks, pattern learning, security, wireless sensor networks

Procedia PDF Downloads 404
2126 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu

Abstract:

This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.

Keywords: swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity

Procedia PDF Downloads 605
2125 A Fuzzy Logic Based Health Assesment Platform

Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana

Abstract:

Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.

Keywords: healthcare, fuzzy logic, MEWS, RFID

Procedia PDF Downloads 346
2124 Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System

Authors: Rahmat Purwoko, Bambang Riyanto Trilaksono

Abstract:

This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC.

Keywords: kalman filter, loosely coupled, navigation system, tightly coupled

Procedia PDF Downloads 307
2123 Pure Scalar Equilibria for Normal-Form Games

Authors: Herbert W. Corley

Abstract:

A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable.

Keywords: compromise equilibrium, greedy equilibrium, normal-form game, parity equilibrium, pure strategies, satisficing equilibrium, scalar equilibria, utility function, weighted equilibrium

Procedia PDF Downloads 112
2122 Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield

Authors: Wen Ma, Yong Peng, Zhixiang Li

Abstract:

Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.

Keywords: constitutive model, impact response, mechanism properties, PVB film, tempered glass

Procedia PDF Downloads 146
2121 Examining the European Central Bank's Marginal Attention to Human Rights Concerns during the Eurozone Crisis through the Lens of Organizational Culture

Authors: Hila Levi

Abstract:

Respect for human rights is a fundamental element of the European Union's (EU) identity and law. Surprisingly, however, the protection of human rights has been significantly restricted in the austerity programs ordered by the International Monetary Fund (IMF), the European Central Bank (ECB) and the European Commission (EC) (often labeled 'the Troika') in return for financial aid to the crisis-hit countries. This paper focuses on the role of the ECB in the crisis management. While other international financial institutions, such as the IMF or the World Bank, may opt to neglect human rights obligations, one might expect a greater respect of human rights from the ECB, which is bound by the EU Charter of Fundamental Rights. However, this paper argues that ECB officials made no significant effort to protect human rights or strike an adequate balance between competing financial and human rights needs while coping with the crisis. ECB officials were preoccupied with the need to stabilize the economy and prevent a collapse of the Eurozone, and paid only marginal attention to human rights concerns in the design and implementation of Troikas' programs. This paper explores the role of Organizational Culture (OC) in explaining this marginalization. While International Relations (IR) research on Intergovernmental Organizations (IGOs) behavior has traditionally focused on external interests of powerful member states, and on national and economic considerations, this study focuses on particular institutions' internal factors and independent processes. OC characteristics have been identified in OC literature as an important determinant of organizational behavior. This paper suggests that cultural characteristics are also vital for the examination of IGOs, and particularly for understanding the ECB's behavior during the crisis. In order to assess the OC of the ECB and the impact it had on its policies and decisions during the Eurozone crisis, the paper uses the results of numerous qualitative interviews conducted with high-ranking officials and staff members of the ECB involved in the crisis management. It further reviews primary sources of the ECB (such as ECB statutes, and the Memoranda of Understanding signed between the crisis countries and the Troika), and secondary sources (such as the report of the UN High Commissioner for Human Rights on Austerity measures and economic, social, and cultural rights). It thus analyzes the interaction between the ECBs culture and the almost complete absence of human rights considerations in the Eurozone crisis resolution scheme. This paper highlights the importance and influence of internal ideational factors on IGOs behavior. From a more practical perspective, this paper may contribute to understanding one of the obstacles in the process of human rights implementation in international organizations, and provide instruments for better protection of social and economic rights.

Keywords: European central bank, eurozone crisis, intergovernmental organizations, organizational culture

Procedia PDF Downloads 153
2120 Molecular Characterization of Listeria monocytogenes from Fresh Fish and Fish Products

Authors: Beata Lachtara, Renata Szewczyk, Katarzyna Bielinska, Kinga Wieczorek, Jacek Osek

Abstract:

Listeria monocytogenes is an important human and animal pathogen that causes foodborne outbreaks. The bacteria may be present in different types of food: cheese, raw vegetables, sliced meat products and vacuum-packed sausages, poultry, meat, fish. The most common method, which has been used for the investigation of genetic diversity of L. monocytogenes, is PFGE. This technique is reliable and reproducible and established as gold standard for typing of L. monocytogenes. The aim of the study was characterization by molecular serotyping and PFGE analysis of L. monocytogenes strains isolated from fresh fish and fish products in Poland. A total of 301 samples, including fresh fish (n = 129) and fish products (n = 172) were, collected between January 2014 and March 2016. The bacteria were detected using the ISO 11290-1 standard method. Molecular serotyping was performed with PCR. The isolates were tested with the PFGE method according to the protocol developed by the European Union Reference Laboratory for L. monocytogenes with some modifications. Based on the PFGE profiles, two dendrograms were generated for strains digested separately with two restriction enzymes: AscI and ApaI. Analysis of the fingerprint profiles was performed using Bionumerics software version 6.6 (Applied Maths, Belgium). The 95% of similarity was applied to differentiate the PFGE pulsotypes. The study revealed that 57 of 301 (18.9%) samples were positive for L. monocytogenes. The bacteria were identified in 29 (50.9%) ready-to-eat fish products and in 28 (49.1%) fresh fish. It was found that 40 (70.2%) strains were of serotype 1/2a, 14 (24.6%) 1/2b, two (4.3%) 4b and one (1.8%) 1/2c. Serotypes 1/2a, 1/2b, and 4b were presented with the same frequency in both categories of food, whereas serotype 1/2c was detected only in fresh fish. The PFGE analysis with AscI demonstrated 43 different pulsotypes; among them 33 (76.7%) were represented by only one strain. The remaining 10 profiles contained more than one isolate. Among them 8 pulsotypes comprised of two L. monocytogenes isolates, one profile of three isolates and one restriction type of 5 strains. In case of ApaI typing, the PFGE analysis showed 27 different pulsotypes including 17 (63.0%) types represented by only one strain. Ten (37.0%) clusters contained more than one strain among which four profiles covered two strains; three had three isolates, one with five strains, one with eight strains and one with ten isolates. It was observed that the isolates assigned to the same PFGE type were usually of the same serotype (1/2a or 1/2b). The majority of the clusters had strains of both sources (fresh fish and fish products) isolated at different time. Most of the strains grouped in one cluster of the AscI restriction was assigned to the same groups in ApaI investigation. In conclusion, PFGE used in the study showed a high genetic diversity among L. monocytogenes. The strains were grouped into varied clonal clusters, which may suggest different sources of contamination. The results demonstrated that 1/2a serotype was the most common among isolates from fresh fish and fish products in Poland.

Keywords: Listeria monocytogenes, molecular characteristic, PFGE, serotyping

Procedia PDF Downloads 287
2119 Electrochemical Detection of Polycyclic Aromatic Hydrocarbons in Urban Air by Exfoliated Graphite Based Electrode

Authors: A. Sacko, H. Nyoni, T. A. M. Msagati, B. Ntsendwana

Abstract:

Carbon based materials to target environmental pollutants have become increasingly recognized in science. Electrochemical methods using carbon based materials are notable methods for high sensitive detection of organic pollutants in air. It is therefore in this light that exfoliated graphite electrode was fabricated for electrochemical analysis of PAHs in urban atmospheric air. The electrochemical properties of the graphite electrode were studied using CV and EIS in the presence of acetate buffer supporting electrolyte with 2 Mm ferricyanide as a redox probe. The graphite electrode showed enhanced current response which confirms facile kinetics and enhanced sensitivity. However, the peak to peak (DE) separation increased as a function of scan rate. The EIS showed a high charger transfer resistance. The detection phenanthrene on the exfoliated graphite was studied in the presence of acetate buffer solution at PH 3.5 using DPV. The oxidation peak of phenanthrene was observed at 0.4 V. Under optimized conditions (supporting electrolyte, pH, deposition time, etc.). The detection limit observed was at 5x 10⁻⁸ M. Thus the results demonstrate with further optimization and modification lower concentration detection can be achieved.

Keywords: electrochemical detection, exfoliated graphite, PAHs (polycyclic aromatic hydrocarbons), urban air

Procedia PDF Downloads 202
2118 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine

Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao

Abstract:

The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.

Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)

Procedia PDF Downloads 342
2117 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 193
2116 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 110
2115 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 348
2114 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 337
2113 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 207
2112 Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species

Authors: Mukesh Kumar, Mahendra Pal Sharma

Abstract:

Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation.

Keywords: fuel quality, methyl ester yield, microalgae, transesterification

Procedia PDF Downloads 214
2111 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency

Procedia PDF Downloads 220
2110 The Comparison and Optimization of the Analytic Method for Canthaxanthin, Food Colorants

Authors: Hee-Jae Suh, Kyung-Su Kim, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee

Abstract:

Canthaxanthin is keto-carotenoid produced from beta-carotene and it has been approved to be used in many countries as a food coloring agent. Canthaxanthin has been analyzed using High Performance Liquid Chromatography (HPLC) system with various ways of pretreatment methods. Four official methods for verification of canthaxanthin at FSA (UK), AOAC (US), EFSA (EU) and MHLW (Japan) were compared to improve its analytical and the pretreatment method. The Linearity, the limit of detection (LOD), the limit of quantification (LOQ), the accuracy, the precision and the recovery ratio were determined from each method with modification in pretreatment method. All HPLC methods exhibited correlation coefficients of calibration curves for canthaxanthin as 0.9999. The analysis methods from FSA, AOAC, and MLHW showed the LOD of 0.395 ppm, 0.105 ppm, and 0.084 ppm, and the LOQ of 1.196 ppm, 0.318 ppm, 0.254 ppm, respectively. Among tested methods, HPLC method of MHLW with modification in pretreatments was finally selected for the analysis of canthaxanthin in lab, because it exhibited the resolution factor of 4.0 and the selectivity of 1.30. This analysis method showed a correlation coefficients value of 0.9999 and the lowest LOD and LOQ. Furthermore, the precision ratio was lower than 1 and the accuracy was almost 100%. The method presented the recovery ratio of 90-110% with modification in pretreatment method. The cross-validation of coefficient variation was 5 or less among tested three institutions in Korea.

Keywords: analytic method, canthaxanthin, food colorants, pretreatment method

Procedia PDF Downloads 681
2109 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube

Authors: Dan Kanmegne

Abstract:

Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.

Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification

Procedia PDF Downloads 144
2108 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 65
2107 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 401
2106 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control

Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin

Abstract:

The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.

Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics

Procedia PDF Downloads 74
2105 Implementation of the Circular Economy Concept in Greenhouse Production Systems: Microalgae and Biostimulant Production Using Soilless Crops’ Drainage Nutrient Solution

Authors: Nikolaos Katsoulas, Sofia Faliagka, George Kountrias, Eleni Dimitriou, Eleftheria Pechlivani

Abstract:

The challenges to feed the world in 2050 are becoming more and more apparent. This calls for producing more with fewer inputs (most of them under scarcity), higher resource efficiency, minimum or zero effect on the environment, and higher sustainability. Therefore, increasing the circularity of production systems is highly significant for their sustainability. Protected horticulture offers opportunities for maximum resource efficiency across various levels within and between farms and at the regional level), high-quality production, and contributes significantly to the nutrition security as part of the world food production. In greenhouses, closed soilless cultivation systems give the opportunity to increase the water and nutrient use efficiency and reduce the environmental impact of the cultivation system by the reuse of the drained water and nutrients. However, due to the low quality of the water used in the Mediterranean countries, a completely closed system is not feasible. Partial discharge of the drainage nutrient solution when the levels of electrical conductivity (EC) or of the toxic ions in the system are reached is still a necessity. Thus, in the frame of the circular economy concept, this work presents the utilisation of the drainage solution of soilless cultivation systems for microalgae and biofertilisers production. The system includes a greenhouse equipped with a soilless cultivation system, a drainage solution collection tank, a closed bioreactor for microalgae production, and a biocatalysis tank. The bioreactor tested in the frame of this work includes two closed tube loops of a capacity of 1000 L each where, after the initial inoculation, the microalgae is developed using as a growth medium the drainage solution collected from the greenhouse crops. The bioreactor includes light and temperature control while pH is still manually regulated. As soon as the microalgae culture reaches a certain density level, 20% of the culture is harvested, and the culture system is refiled by a drainage nutrient solution. The microalgae produced goes through a biocatalysis process, which leads to the production of a rich aminoacids (and nitrogen) biofertiliser. The produced biofertiliser is then used for the fertilisation of greenhouse crops. The complete production cycle along with the effects of the biofertiliser produced on crop growth and yield are presented and discussed in this manuscript. Acknowledgment: This work was carried out under the PestNu project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Green Deal grant agreement No. 101037128 — PestNu.

Keywords: soilless, water use efficiency, nutrients use efficiency, biostimulant

Procedia PDF Downloads 87