Search results for: soil organic matter incorporation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6815

Search results for: soil organic matter incorporation

845 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.

Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM

Procedia PDF Downloads 134
844 Evaluation Of The Incorporation Of Modified Starch In Puff Pastry Dough By Mixolab Rheological Analysis

Authors: Alejandra Castillo-Arias, Carlos A. Fuenmayor, Carlos M. Zuluaga-Domínguez

Abstract:

The connection between health and nutrition has driven the food industry to explore healthier and more sustainable alternatives. Key strategies to enhance nutritional quality and extend shelf life include reducing saturated fats and incorporating natural ingredients. One area of focus is the use of modified starch in baked goods, which has attracted significant interest in food science and industry due to its functional benefits. Modified starches are commonly used for their gelling, thickening, and water-retention properties. Derived from sources like waxy corn, potatoes, tapioca, or rice, these polysaccharides improve thermal stability and resistance to dough. The use of modified starch enhances the texture and structure of baked goods, which is crucial for consumer acceptance. In this study, it was evaluated the effects of modified starch inclusion on dough used for puff pastry elaboration, measured with Mixolab analysis. This technique assesses flour quality by examining its behavior under varying conditions, providing a comprehensive profile of its baking properties. The analysis included measurements of water absorption capacity, dough development time, dough stability, softening, final consistency, and starch gelatinization. Each of these parameters offers insights into how the flour will perform during baking and the quality of the final product. The performance of wheat flour with varying levels of modified starch inclusion (10%, 20%, 30%, and 40%) was evaluated through Mixolab analysis, with a control sample consisting of 100% wheat flour. Water absorption, gluten content, and retrogradation indices were analyzed to understand how modified starch affects dough properties. The results showed that the inclusion of modified starch increased the absorption index, especially at levels above 30%, indicating a dough with better handling qualities and potentially improved texture in the final baked product. However, the reduction in wheat flour resulted in a lower kneading index, affecting dough strength. Conversely, incorporating more than 20% modified starch reduced the retrogradation index, indicating improved stability and resistance to crystallization after cooling. Additionally, the modified starch improved the gluten index, contributing to better dough elasticity and stability, providing good structural support and resistance to deformation during mixing and baking. As expected, the control sample exhibited a higher amylase index, due to the presence of enzymes in wheat flour. However, this is of low concern in puff pastry dough, as amylase activity is more relevant in fermented doughs, which is not the case here. Overall, the use of modified starch in puff pastry enhanced product quality by improving texture, structure, and shelf life, particularly when used at levels between 30% and 40%. This research underscores the potential of modified starches to address health concerns associated with traditional starches and to contribute to the development of higher-quality, consumer-friendly baked products. Furthermore, the findings suggest that modified starches could play a pivotal role in future innovations within the baking industry, particularly in products aiming to balance healthfulness with sensory appeal. By incorporating modified starch into their formulations, bakeries can meet the growing demand for healthier, more sustainable products while maintaining the indulgent qualities that consumers expect from baked goods.

Keywords: baking quality, dough properties, modified starch, puff pastry

Procedia PDF Downloads 17
843 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake

Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe

Abstract:

The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.

Keywords: earthquake, finite element method, landslide, stability

Procedia PDF Downloads 341
842 Reconstructing the Segmental System of Proto-Graeco-Phrygian: a Bottom-Up Approach

Authors: Aljoša Šorgo

Abstract:

Recent scholarship on Phrygian has begun to more closely examine the long-held belief that Greek and Phrygian are two very closely related languages. It is now clear that Graeco-Phrygian can be firmly postulated as a subclade of the Indo-European languages. The present paper will focus on the reconstruction of the phonological and phonetic segments of Proto-Graeco-Phrygian (= PGPh.) by providing relevant correspondence sets and reconstructing the classes of segments. The PGPh. basic vowel system consisted of ten phonemic oral vowels: */a e o ā ē ī ō ū/. The correspondences of the vowels are clear and leave little open to ambiguity. There were four resonants and two semi-vowels in PGPh.: */r l m n i̯ u̯/, which could appear in both a consonantal and a syllabic function, with the distribution between the two still being phonotactically predictable. Of note is the fact that the segments *m and *n seem to have merged when their phonotactic position would see them used in a syllabic function. Whether the segment resulting from this merger was a nasalized vowel (most likely *[ã]) or a syllabic nasal *[N̥] (underspecified for place of articulation) cannot be determined at this stage. There were three fricatives in PGPh.: */s h ç/. *s and *h are easily identifiable. The existence of *ç, which may seem unexpected, is postulated on the basis of the correspondence Gr. ὄς ~ Phr. yos/ιος. It is of note that Bozzone has previously proposed the existence of *ç ( < PIE *h₁i̯-) in an early stage of Greek even without taking into account Phrygian data. Finally, the system of stops in PGPh. distinguished four places of articulation (labial, dental, velar, and labiovelar) and three phonation types. The question of which three phonation types were actually present in PGPh. is one of great importance for the ongoing debate on the realization of the three series in PIE. Since the matter is still very much in dispute, we ought to, at this stage, endeavour to reconstruct the PGPh. system without recourse to the other IE languages. The three series of correspondences are: 1. Gr. T (= tenuis) ~ Phr. T; 2. Gr. D (= media) ~ Phr. T; 3. Gr. TA (= tenuis aspirata) ~ Phr. M. The first series must clearly be reconstructed as composed of voiceless stops. The second and third series are more problematic. With a bottom-up approach, neither the second nor the third series of correspondences are compatible with simple modal voicing, and the reflexes differ greatly in voice onset time. Rather, the defining feature distinguishing the two series was [±spread glottis], with ancillary vibration of the vocal cords. In PGPh. the second series was undergoing further spreading of the glottis. As the two languages split, this process would continue, but be affected by dissimilar changes in VOT, which was ultimately phonemicized in both languages as the defining feature distinguishing between their series of stops.

Keywords: bottom-up reconstruction, Proto-Graeco-Phrygian, spread glottis, syllabic resonant

Procedia PDF Downloads 46
841 The Integrated Urban Regeneration Implemented through the Reuse, Enhancement and Transformation of Disused Industrial Areas

Authors: Sara Piccirillo

Abstract:

The integrated urban regeneration represents a great opportunity to deliver correct management of the territory if implemented through the reuse, enhancement, and transformation of abandoned industrial areas, according to sustainability strategies. In environmental terms, recycling abandoned sites by demolishing buildings and regenerating the urban areas means promoting adaptation to climate change and a new sensitivity towards city living. The strategic vision of 'metabolism' can be implemented through diverse actions made on urban settlements, and planning certainly plays a primary role. Planning an urban transformation in a sustainable way is more than auspicable. It is necessary to introduce innovative urban soil management actions to mitigate the environmental costs associated with current land use and to promote projects for the recovery/renaturalization of urban or non-agricultural soils. However, by freeing up these through systematic demolition of the disused heritage, new questions open up in terms of environmental costs deriving from the inevitable impacts caused by the disposal of waste. The mitigation of these impacts involves serious reflection on the recycling supply chains aimed at the production and reuse of secondary raw materials in the construction industry. The recent developments in R&D of recycling materials are gradually becoming more and more pivotal in consideration of environmental issues such as increasing difficulties in exploiting natural quarries or strict regulations for the management and disposal of waste sites. Therefore, this contribution, set as a critical essay, presents the reconstruction outputs of the regulatory background on the material recycling chain up to the 'end of waste' stage, both at a national and regional scale. This extended approach to this urban design practice goes beyond the cultural dimension that has relegated urban regeneration to pure design only. It redefines its processes through an interdisciplinary system that affects human, environmental and financial resources.

Keywords: waste management, C&D waste, recycling, urban trasformation

Procedia PDF Downloads 205
840 Geothermal Resources to Ensure Energy Security During Climate Change

Authors: Debasmita Misra, Arthur Nash

Abstract:

Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.

Keywords: exploration, geothermal, renewable energy, sustainable

Procedia PDF Downloads 149
839 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: analytics, digitization, industry 4.0, manufacturing

Procedia PDF Downloads 110
838 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility

Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata

Abstract:

Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.

Keywords: chemical processing facility, medium- and long-term management plan of JAEA facilities, STRAD project, treatment of radioactive waste

Procedia PDF Downloads 141
837 Fahr Dsease vs Fahr Syndrome in the Field of a Case Report

Authors: Angelis P. Barlampas

Abstract:

Objective: The confusion of terms is a common practice in many situations of the everyday life. But, in some circumstances, such as in medicine, the precise meaning of a word curries a critical role for the health of the patient. Fahr disease and Fahr syndrome are often falsely used interchangeably, but they are two different conditions with different physical histories of different etiology and different medical management. A case of the seldom Fahr disease is presented, and a comparison with the more common Fahr syndrome follows. Materials and method: A 72 years old patient came to the emergency department, complaining of some kind of non specific medal disturbances, like anxiety, difficulty of concentrating, and tremor. The problems had a long course, but he had the impression of getting worse lately, so he decided to check them. Past history and laboratory tests were unremarkable. Then, a computed tomography examination was ordered. Results: The CT exam showed bilateral, hyperattenuating areas of heavy, dense calcium type deposits in basal ganglia, striatum, pallidum, thalami, the dentate nucleus, and the cerebral white matter of frontal, parietal and iniac lobes, as well as small areas of the pons. Taking into account the absence of any known preexisting illness and the fact that the emergency laboratory tests were without findings, a hypothesis of the rare Fahr disease was supposed. The suspicion was confirmed with further, more specific tests, which showed the lack of any other conditions which could probably share the same radiological image. Differentiating between Fahr disease and Fahr syndrome. Fahr disease: Primarily autosomal dominant Symmetrical and bilateral intracranial calcifications The patient is healthy until the middle age Absence of biochemical abnormalities. Family history consistent with autosomal dominant Fahr syndrome :Earlier between 30 to 40 years old. Symmetrical and bilateral intracranial calcifications Endocrinopathies: Idiopathic hypoparathyroidism, secondary hypoparathyroidism, hyperparathyroidism, pseudohypoparathyroidism ,pseudopseudohypoparathyroidism, e.t.c The disease appears at any age There are abnormal laboratory or imaging findings. Conclusion: Fahr disease and Fahr syndrome are not the same illness, although this is not well known to the inexperienced doctors. As clinical radiologists, we have to inform our colleagues that a radiological image, along with the patient's history, probably implies a rare condition and not something more usual and prompt the investigation to the right route. In our case, a genetic test could be done earlier and reveal the problem, and thus avoiding unnecessary and specific tests which cost in time and are uncomfortable to the patient.

Keywords: fahr disease, fahr syndrome, CT, brain calcifications

Procedia PDF Downloads 59
836 Application Research of Stilbene Crystal for the Measurement of Accelerator Neutron Sources

Authors: Zhao Kuo, Chen Liang, Zhang Zhongbing, Ruan Jinlu. He Shiyi, Xu Mengxuan

Abstract:

Stilbene, C₁₄H₁₂, is well known as one of the most useful organic scintillators for pulse shape discrimination (PSD) technique for its good scintillation properties. An on-line acquisition system and an off-line acquisition system were developed with several CAMAC standard plug-ins, NIM plug-ins, neutron/γ discriminating plug-in named 2160A and a digital oscilloscope with high sampling rate respectively for which stilbene crystals and photomultiplier tube detectors (PMT) as detector for accelerator neutron sources measurement carried out in China Institute of Atomic Energy. Pulse amplitude spectrums and charge amplitude spectrums were real-time recorded after good neutron/γ discrimination whose best PSD figure-of-merits (FoMs) are 1.756 for D-D accelerator neutron source and 1.393 for D-T accelerator neutron source. The probability of neutron events in total events was 80%, and neutron detection efficiency was 5.21% for D-D accelerator neutron sources, which were 50% and 1.44% for D-T accelerator neutron sources after subtracting the background of scattering observed by the on-line acquisition system. Pulse waveform signals were acquired by the off-line acquisition system randomly while the on-line acquisition system working. The PSD FoMs obtained by the off-line acquisition system were 2.158 for D-D accelerator neutron sources and 1.802 for D-T accelerator neutron sources after waveform digitization off-line processing named charge integration method for just 1000 pulses. In addition, the probabilities of neutron events in total events obtained by the off-line acquisition system matched very well with the probabilities of the on-line acquisition system. The pulse information recorded by the off-line acquisition system could be repetitively used to adjust the parameters or methods of PSD research and obtain neutron charge amplitude spectrums or pulse amplitude spectrums after digital analysis with a limited number of pulses. The off-line acquisition system showed equivalent or better measurement effects compared with the online system with a limited number of pulses which indicated a feasible method based on stilbene crystals detectors for the measurement of prompt neutrons neutron sources like prompt accelerator neutron sources emit a number of neutrons in a short time.

Keywords: stilbene crystal, accelerator neutron source, neutron / γ discrimination, figure-of-merits, CAMAC, waveform digitization

Procedia PDF Downloads 183
835 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi

Abstract:

This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization

Procedia PDF Downloads 263
834 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 65
833 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 128
832 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'

Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.

Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics

Procedia PDF Downloads 309
831 Screening and Optimization of Conditions for Pectinase Production by Aspergillus Flavus

Authors: Rumaisa Shahid, Saad Aziz Durrani, Shameel Pervez, Ibatsam Khokhar

Abstract:

Food waste is a prevalent issue in Pakistan, with over 40 percent of food discarded annually. Despite their decay, rotting fruits retain residual nutritional value consumed by microorganisms, notably fungi and bacteria. Fungi, preferred for their extracellular enzyme release, are gaining prominence, particularly for pectinase production. This enzyme offers several advantages, including clarifying juices by breaking down pectic compounds. In this study, three Aspergillus flavus isolates derived from decomposed fruits and manure were selected for pectinase production. The primary aim was to isolate fungi from diverse waste sources, identify the isolates and assess their capacity for pectinase production. The identification was done through morphological characteristics with the help of Light microscopy and Scanning Electron Microscopy (SEM). Pectinolytic potential was screened using pectin minimal salt agar (PMSA) medium, comparing clear zone diameters among isolates. Identification relied on morphological characteristics. Optimizing substrate (lemon and orange peel powder) concentrations, pH, temperature, and incubation period aimed to enhance pectinase yield. Spectrophotometry enabled quantitative analysis. The temperature was set at room temperature (28 ºC). The optimal conditions for Aspergillus flavus strain AF1(isolated from mango) included a pH of 5, an incubation period of 120 hours, and substrate concentrations of 3.3% for orange peels and 6.6% for lemon peels. For AF2 and AF3 (both isolated from soil), the ideal pH and incubation period were the same as AF1 i.e. pH 5 and 120 hours. However, their optimized substrate concentrations varied, with AF2 showing maximum activity at 3.3% for orange peels and 6.6% for lemon peels, while AF3 exhibited its peak activity at 6.6% for orange peels and 8.3% for lemon peels. Among the isolates, AF1 demonstrated superior performance under these conditions, comparatively.

Keywords: pectinase, lemon peel, orange peel, aspergillus flavus

Procedia PDF Downloads 66
830 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth

Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid

Abstract:

Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.

Keywords: rhizobacteria, chili, phytophthora, root rot

Procedia PDF Downloads 259
829 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties

Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic

Abstract:

Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.

Keywords: nanomaterials, industrial waste, chile, recycling

Procedia PDF Downloads 92
828 An Institutional Mapping and Stakeholder Analysis of ASEAN’s Preparedness for Nuclear Power Disaster

Authors: Nur Azha Putra Abdul Azim, Denise Cheong, S. Nivedita

Abstract:

Currently, there are no nuclear power reactors among the Association of Southeast Asian Nations (ASEAN) member states (AMS) but there are seven operational nuclear research reactors, and Indonesia is about to construct the region’s first experimental power reactor by the end of the decade. If successful, the experimental power reactor will lay the foundation for the country’s and region’s first nuclear power plant. Despite projecting confidence during the period of nuclear power renaissance in the region in the last decade, none of the AMS has committed to a political decision on the use of nuclear energy and this is largely due to the Fukushima nuclear power accident in 2011. Of the ten AMS, Vietnam, Indonesia and Malaysia have demonstrated the most progress in developing nuclear energy based on the nuclear power infrastructure development assessments made by the International Atomic Energy Agency. Of these three states, Vietnam came closest to building its first nuclear power plant but decided to delay construction further due to safety and security concerns. Meanwhile, Vietnam along with Indonesia and Malaysia continue with their nuclear power infrastructure development and the remaining SEA states, with the exception of Brunei and Singapore, continue to build their expertise and capacity for nuclear power energy. At the current rate of progress, Indonesia is expected to make a national decision on the use of nuclear power by 2023 while Malaysia, the Philippines, and Thailand have included the use of nuclear power in their mid to long-term power development plans. Vietnam remains open to nuclear power but has not placed a timeline. The medium to short-term power development projection in the region suggests that the use of nuclear energy in the region is a matter of 'when' rather than 'if'. In lieu of the prospects for nuclear energy in Southeast Asia (SEA), this presentation will review the literature on ASEAN radiological emergency and preparedness response (EPR) plans and examine ASEAN’s disaster management and emergency framework. Through a combination of institutional mapping and stakeholder analysis methods, which we examine in the context of the international EPR, and nuclear safety and security regimes, we will identify the issues and challenges in developing a regional radiological EPR framework in the SEA. We will conclude with the observation that ASEAN faces serious structural, institutional and governance challenges due to the AMS inherent political structures and history of interstate conflicts, and propose that ASEAN should either enlarge the existing scope of its disaster management and response framework or that its radiological EPR framework should exist as a separate entity.

Keywords: nuclear power, nuclear accident, ASEAN, Southeast Asia

Procedia PDF Downloads 147
827 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: finite elements, Lagrangian, optimal stress location, serendipity

Procedia PDF Downloads 104
826 Building up Regional Innovation Systems (RIS) for Development: The Case Study of the State of Mexico, México

Authors: Jose Luis Solleiro, Rosario Castanon, Laura Elena Martinez

Abstract:

The State of Mexico is an administrative entity of Mexico, and it is one of the most important territories due to its great economic and social impact for the whole country, especially since it contributes with more than eight of the national Gross Domestic Product (GDP). The State of Mexico has a population of over seventeen million people and host very important business and productive industries such as Automotive, Chemicals, Pharmaceutical, and Agri-food. In 2017, the State Development Plan (Plan Estatal de Desarrollo in Spanish) which is a policy document that rules State's economic actions and integrates the bases for sectoral and regional programs to achieve regional development), raised innovation as a key aspect to boost competitiveness and productivity of the State of Mexico. Therefore, in line with this proposal, in 2018 the Mexican Council for Science and Technology (COMECYT for its acronym in Spanish), an institution in charge of promoting public science and technology policies in the State of Mexico, took actions towards building up the State´s Innovation System. Hence, the main objective of this paper is to review and analyze the process to create RIS in the State of Mexico. We focus on the key elements of the process, the diverse actors that were involved in it, the activities that were carried out and the identification of the challenges, findings, successes, and failures of the intended exercise. The methodology used to analyze the structure of the Innovation System of the State of Mexico is based on two elements: the case study and the research-action approach. The main objective of the paper, the case study was based on semi-structured interviews with key actors who have participated in the process of launching the RIS of the State of Mexico. Additionally, we analyzed the information reports and other documents that were elaborated during the process of shaping the State's innovation system. Finally, the results obtained in the process were also examined. The relevance of this investigation fundamentally rests in two elements: 1) keeping documental record of the process of building a RIS in Mexico; and 2) carrying out the analysis of this case study recognizing the importance of knowledge extraction and dissemination, so that lessons on this matter may be useful for similar experiences in the future. We conclude that in Mexico, documentation and analysis efforts related to the formation of RIS and interaction processes between innovation ecosystem actors are scarce, so documents like are of great importance, especially since it generates a series of findings and recommendations for the building of RIS.

Keywords: regional innovation systems, innovation, development, competitiveness

Procedia PDF Downloads 115
825 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 193
824 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 66
823 Changing Employment Relations Practices in Hong Kong: Cases of Two Multinational Retail Banks since 1997

Authors: Teresa Shuk-Ching Poon

Abstract:

This paper sets out to examine the changing employment relations practices in Hong Kong’s retail banking sector over a period of more than 10 years. The major objective of the research is to examine whether and to what extent local institutional influences have overshadowed global market forces in shaping strategic management decisions and employment relations practices in Hong Kong, with a view to drawing implications to comparative employment relations studies. Examining the changing pattern of employment relations, this paper finds the industrial relations strategic choice model (Kochan, McKersie and Cappelli, 1984) appropriate to use as a framework for the study. Four broad aspects of employment relations are examined, including work organisation and job design; staffing and labour adjustment; performance appraisal, compensation and employee development; and labour unions and employment relations. Changes in the employment relations practices in two multinational retail banks operated in Hong Kong are examined in detail. The retail banking sector in Hong Kong is chosen as a case to examine as it is a highly competitive segment in the financial service industry very much susceptible to global market influences. This is well illustrated by the fact that Hong Kong was hit hard by both the Asian and the Global Financial Crises. This sector is also subject to increasing institutional influences, especially after the return of Hong Kong’s sovereignty to the People’s Republic of China (PRC) since 1997. The case study method is used as it is a suitable research design able to capture the complex institutional and environmental context which is the subject-matter to be examined in the paper. The paper concludes that operation of the retail banks in Hong Kong has been subject to both institutional and global market changes at different points in time. Information obtained from the two cases examined tends to support the conclusion that the relative significance of institutional as against global market factors in influencing retail banks’ operation and their employment relations practices is depended very much on the time in which these influences emerged and the scale and intensity of these influences. This case study highlights the importance of placing comparative employment relations studies within a context where employment relations practices in different countries or different regions/cities within the same country could be examined and compared over a longer period of time to make the comparison more meaningful.

Keywords: employment relations, institutional influences, global market forces, strategic management decisions, retail banks, Hong Kong

Procedia PDF Downloads 397
822 Developing Curricula for Signaling and Communication Course at Malaysia Railway Academy (MyRA) through Industrial Collaboration Program

Authors: Mohd Fairus Humar, Ibrahim Sulaiman, Pedro Cruz, Hasry Harun

Abstract:

This paper presents the propose knowledge transfer program on railway signaling and communication by Original Equipment Manufacturer (OEM) Thales Portugal. The fundamental issue is that there is no rail related course offered by local universities and colleges in Malaysia which could be an option to pursue student career path. Currently, dedicated trainings related to the rail technology are provided by in-house training academies established by the respective rail operators such as Malaysia Railway Academy (MyRA) and Rapid Rail Training Centre. In this matter, the content of training and facilities need to be strengthened to keep up-to-date with the dynamic evolvement of the rail technology. This is because rail products have evolved to be more sophisticated and embedded with high technology components which no longer exist in the mechanical form alone but combined with electronics, information technology and others. These demand for a workforce imbued with knowledge, multi-skills and competency to deal with specialized technical areas. Talent is needed to support sustainability in Southeast Asia. Keeping the above factors in mind, an Industrial Collaboration Program (ICP) was carried out to transfer knowledge on curricula of railway signaling and communication to a selected railway operators and tertiary educational institution in Malaysia. In order to achieve the aim, a partnership was formed between Technical Depository Agency (TDA), Thales Portugal and MyRA for two years with three main stages of program implementation comprising of: i) training on basic railway signaling and communication for 1 month with Thales in Malaysia; ii) training on advance railway signaling and communication for 4 months with Thales in Portugal and; iii) a series of workshop. Two workshops were convened to develop and harmonize curricula of railway signaling and communication course and were followed by one training for installation equipment of railway signaling and Controlled Train Centre (CTC) system from Thales Portugal. With active involvement from Technical Depository Agency (TDA), railway operators, universities, and colleges, in planning, executing, monitoring, control and closure, the program module of railway signaling and communication course with a lab railway signaling field equipment and CTC simulator were developed. Through this program, contributions from various parties help to build committed societies to engage important issues in relation to railway signaling and communication towards creating a sustainable future.

Keywords: knowledge transfer program, railway signaling and communication, curricula, module and teaching aid simulator

Procedia PDF Downloads 187
821 The Effect of Amendment of Soil with Rice Husk Charcoal Coated Urea and Rice Straw Compost on Nitrogen, Phosphorus and Potassium Leaching

Authors: D. A. S. Gamage, B. F. A. Basnayake, W. A. J. M. De Costa

Abstract:

Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. Rice is the staple food of Sri Lankans thus; rice cultivation is the major agricultural activity of the country. In Sri Lanka, out of the total rice production, a considerable amount of rice straw and rice husk goes wasted. Hence, there is a great potential of production of quality compost and rice husk charcoal. The concept of making rice straw compost and rice husk charcoal is practicable in Sri Lanka, where more than 40% of the farmers are engaged in rice cultivation. The application of inorganic nitrogen fertilizer has become a burden to the country. Rice husk charcoal as a coating material to retain N fertilizer is a suitable solution to gradually release nitrogenous compounds. Objective of this study was to produce rice husk charcoal coated urea as a slow releasing fertilizer with rice straw compost and to compare the leaching losses of nitrogen, phosphorus and potassium using leaching columns. Leaching column studies were prepared using 1.2 m tall PVC pipes with a diameter of 15 cm and a sampling port was attached to the bottom end of the column-cap. Leachates (100 ml/leaching column) were obtained from two sets of (each set has four leaching columns) leaching columns. The sampling was done once a week for 3 month period. Rice husk charcoal coated urea can potentially be used as a slow releasing nitrogen fertilizer which reduces leaching losses of urea. It also helps reduce the phosphate and potassium leaching. The cyclic effect of phosphate release is an important finding which could be the central issue in defining microbial behavior in soils. The fluctuations of phosphate may have cyclic effects of 28 days. In addition, rice straw compost and rice husk charcoal coating is less costly and contribute to mitigate pollution of water bodies by inorganic fertilizers.

Keywords: leaching, mitigate, rice husk charcoal, slow releasing fertilizer

Procedia PDF Downloads 320
820 Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate

Authors: Yi-Yu Huang, Chien-Kuo Wang, Sreerag Chota Veettil, Hang Zhang, Hu Yike

Abstract:

Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime.

Keywords: thermal performance, extensive wetland green roof, Aquatic plant, Winter , Humid subtropical climate

Procedia PDF Downloads 177
819 Strategic Policy Formulation to Ensure the Atlantic Forest Regeneration

Authors: Ramon F. B. da Silva, Mateus Batistella, Emilio Moran

Abstract:

Although the existence of two Forest Transition (FT) pathways, the economic development and the forest scarcity, there are many contexts that shape the model of FT observed in each particular region. This means that local conditions, such as relief, soil quality, historic land use/cover, public policies, the engagement of society in compliance with legal regulations, and the action of enforcement agencies, represent dimensions which combined, creates contexts that enable forest regeneration. From this perspective we can understand the regeneration process of native vegetation cover in the Paraíba Valley (Forest Atlantic biome), ongoing since the 1960s. This research analyzed public information, land use/cover maps, environmental public policies, and interviewed 17 stakeholders from the Federal and State agencies, municipal environmental and agricultural departments, civil society, farmers, aiming comprehend the contexts behind the forest regeneration in the Paraíba Valley, Sao Paulo State, Brazil. The first policy to protect forest vegetation was the Forest Code n0 4771 of 1965, but this legislation did not promote the increase of forest, just the control of deforestation, not enough to the Atlantic Forest biome that reached its highest pick of degradation in 1985 (8% of Atlantic Forest remnants). We concluded that the Brazilian environmental legislation acted in a strategic way to promote the increase of forest cover (102% of regeneration between 1985 and 2011) from 1993 when the Federal Decree n0 750 declared the initial and advanced stages of secondary succession protected against any kind of exploitation or degradation ensuring the forest regeneration process. The strategic policy formulation was also observed in the Sao Paulo State law n0 6171 of 1988 that prohibited the use of fire to manage agricultural landscape, triggering a process of forest regeneration in formerly pasture areas.

Keywords: forest transition, land abandonment, law enforcement, rural economic crisis

Procedia PDF Downloads 551
818 A First-Principles Molecular Dynamics Study on Li+ Solvation Structures in THF/MTHF Containing Electrolytes for Lithium Metal Batteries.

Authors: Chiu-Neng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

In lithium-ion batteries (LIBs) the solid–electrolyte interphase (SEI) layer, which forms on the anode surface, plays a crucial role in stabilizing battery performance. Over the past two decades, efforts to enhance LIB electrolytes have primarily focused on refining the quality of SEI components. Despite these endeavors, several observed phenomena remain inadequately improved the SEI layer. Consequently, there has been a significant surge in research interest regarding the behavior of electrolyte solvation structures to elucidate improvements in battery performance. Thus, in this study, we aimed to explore the solvation structures of LiPF₆ in a mixture of organic solvents, tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran (MTHF) using ab-initio molecular dynamics (AIMD) simulations. Our work investigated the solvation structure of electrolytes with different salt concentrations: low-concentration electrolyte (1.0M LiPF6 in 1:1v/v mixture of THF and MTHF), and high-concentration electrolyte (2.0M LiPF₆ in 1:1v/v mixture of THF and MTHF) and compared them with that of conventional electrolyte (1.0M LiPF₆ in 1:1v/v mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC)). Furthermore, the reduction stability of Li+ solvation structures in these electrolyte systems are investigated. It is found that the first solvation shell of Li+ primary consists of THF. We also analyzed the molecular orbital energy levels to understand the reducing stability of these solvents. Compared with the solvation sheath of commercial electrolyte, the THF/MTHF-containing electrolytes have a higher lowest unoccupied molecular orbital (LUMO) energy level, resulting in improved reduction and interface stability. It has been shown that Li-Al alloy can significantly improve cycle life and promote the formation of a dense SEI layer. Therefore, this study aims to construct the solvation structures obtained from calculations of the pure electrolyte system on the surface of Al-Li alloy. Additionally, AIMD simulations will be conducted to investigate chemical reactions at the interface. This investigation aims to elucidate the composition of the SEI layer formed. Furthermore, Bader charges are used to determine the origin and flow of electrons, thereby revealing the sequence of reduction reactions for generating SEI layers.

Keywords: lithium, aluminum, alloy, battery, solvation structure

Procedia PDF Downloads 8
817 Genesis and Survival Chance of Autotriploid in Natural Diploid Population of Lilium lancifolium Thunb

Authors: Ji-Won Park, Jong-Wha Kim

Abstract:

Triploid L. lancifolium have a wide geographic distribution. By contrast, diploid L. lancifolium have limited distributions in the islands and coastal regions of the South and West Korean Peninsula and northern Tsushima Island, Japan. L. lancifolium diploids and triploids are not sympatrically distributed with other lily species or ploidy lines in West Sea and South Sea Islands of the Korean Peninsula. This observation raises the following questions: 'Why have autotriploid L. lancifolium never been observed in those isolated islands?', 'What mechanism excludes the occurrence of autotriploids, if they arise?'. To determine the occurrence and survival of triploid plants in natural diploid populations of tiger lily (Lilium lancifolium), ploidy analysis was conducted on natural open-pollinated seeds produced from plants grown on isolated islands, and on hybrid seeds produced by artificial crossing between plant populations originating on different Korean islands. Normal seeds were classified into five grades depending on the ratio of embryo/endosperm lengths, including 5/5, 4/5, 3/5, 2/5, and 1/5. Triploids were not observed among seedlings produced from natural open pollinations on isolated islands. Triploids were detected only in seedlings of underdeveloped seed grades(3/5 and 2/5) from artificial crosses between populations from different isolated islands. The triploid occurrence frequency was calculated as 0.0 for natural open-pollinated seedlings and 0.000582 for artificial crosses(6 triploids from 10,303 seedlings). Triploids were produced from crosses between isolated populations located at least 70 km apart; no triploids were detected in inter-population crosses of plants originating on the same islands. Triploid seedlings have very low viability in soil. We analyzed factors affecting triploid occurrence and survival in natural diploid populations of L. lancifolium. The results suggest that triploids originate from fertilization between plants that are genetically isolated due to geographical isolation and/or genotypic differences.

Keywords: Lilium lancifolium, autotriploid, natural population, genetic distance, 2n female gamete

Procedia PDF Downloads 517
816 Effects of Dietary Supplementation with Fermented Feed Mulberry(Morus alba L.) on Reproductive Performance and Fecal M Icro Biota of Pregnant Sows

Authors: Yuping Zhang, Teng Ma, Nadia Everaert, Hongfu Zhang

Abstract:

Supplying dietary fiber during gestation is known to improve the welfare of feed-restricted sows. However, whether high fiber supplementation during pregnancy can improve the performance of sows and their offspring depends on the type, amount, source, etc., in which the solubility plays a key important role. Insoluble fibers have been shown to increase feed intake of sows in lactation, meet the needs of sows for milk production, reduce sow’s weight and backfat loss, and thus improve the performance of sows and their offspring. In this study, we investigated the effect of the addition of fermented feed mulberry (FFM), rich in insoluble fiber, during the whole gestation on the performance of sows and their offspring and explored possible mechanisms by determining serum hormones and fecal microbiota. The FFM-diet contained 25.5% FFM (on dry matter basis) and was compared with the control–diet (CON, corn, and soybean meal diet). The insoluble fiber content of the FFM and CON diet are respectively 29.3% and 19.1%. both groups were allocated 20 multiparous sows, and they are fed different feed allowance to make sure all the sows get the same digestible energy for each day. After farrowing, all sows were fed the same lactation diet ad libitum. The serum estradiol, progesterone concentration, blood glucose, and insulin levels at gestation day 0, 20, and 60 were tested. And also, the composition and differences fecal microbiota at day 60 of gestation were analyzed. Fecal consistency was determined with Bristol stool scale method, those with a score below 3 were counted as constipation The results showed that there was no impact of the FFM treatment on sows’ backfat, bodyweight changes, blood glucose, serum estradiol, and progesterone concentration, litter size, and performance of the offspring(p > 0.05), Except significant decrease in the concentration of insulin in sows’ serum at 60 days of gestation were observed in the FFM group compare to the CON group (P < 0.01). FFM diet also significantly increased feed intake on the first, third, and 21st days of sow lactation. (p < 0.01); The α- and β- diversity and abundance of the microbiota were significant increased (p < 0.01) compared with the CON group, The abundance of Firmicutes and Bacteroidetes were significantly increased, meanwhile the abundances of Spirochetes, Proteobacteria, and Euryarchaeota, were significantly reduced in the feces of the FFM group. We also analyzed the fecal microbiota of constipated sows vs non-constipated sows and found that the diversity and abundance did also differ between these two groups. FFM and CON group < 0.01). The relationship between sow’s constipation and microbiota merits further investigation.

Keywords: fermented feed mulberry, reproductive performance, fecal flora, sow

Procedia PDF Downloads 148