Search results for: self injury behavior
1307 Alternative Method of Determining Seismic Loads on Buildings Without Response Spectrum Application
Authors: Razmik Atabekyan, V. Atabekyan
Abstract:
This article discusses a new alternative method for determination of seismic loads on buildings, based on resistance of structures to deformations of vibrations. The basic principles for determining seismic loads by spectral method were developed in 40… 50ies of the last century and further have been improved to pursuit true assessments of seismic effects. The base of the existing methods to determine seismic loads is response spectrum or dynamicity coefficient β (norms of RF), which are not definitively established. To this day there is no single, universal method for the determination of seismic loads and when trying to apply the norms of different countries, significant discrepancies between the results are obtained. On the other hand there is a contradiction of the results of macro seismic surveys of strong earthquakes with the principle of the calculation based on accelerations. It is well-known, on soft soils there is an increase of destructions (mainly due to large displacements), even though the accelerations decreases. Obviously, the seismic impacts are transmitted to the building through foundation, but paradoxically, the existing methods do not even include foundation data. Meanwhile acceleration of foundation of the building can differ several times from the acceleration of the ground. During earthquakes each building has its own peculiarities of behavior, depending on the interaction between the soil and the foundations, their dynamic characteristics and many other factors. In this paper we consider a new, alternative method of determining the seismic loads on buildings, without the use of response spectrum. The following main conclusions: 1) Seismic loads are revealed at the foundation level, which leads to redistribution and reduction of seismic loads on structures. 2) The proposed method is universal and allows determine the seismic loads without the use of response spectrum and any implicit coefficients. 3) The possibility of taking into account important factors such as the strength characteristics of the soils, the size of the foundation, the angle of incidence of the seismic ray and others. 4) Existing methods can adequately determine the seismic loads on buildings only for first form of vibrations, at an average soil conditions.Keywords: seismic loads, response spectrum, dynamic characteristics of buildings, momentum
Procedia PDF Downloads 5051306 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 1081305 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India
Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra
Abstract:
Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate
Procedia PDF Downloads 1291304 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach
Authors: Zahzouh Zoubir
Abstract:
The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity
Procedia PDF Downloads 701303 Evaluation of a Method for the Virtual Design of a Software-based Approach for Electronic Fuse Protection in Automotive Applications
Authors: Dominic Huschke, Rudolf Keil
Abstract:
New driving functionalities like highly automated driving have a major impact on the electrics/electronics architecture of future vehicles and inevitably lead to higher safety requirements. Partly due to these increased requirements, the vehicle industry is increasingly looking at semiconductor switches as an alternative to conventional melting fuses. The protective functionality of semiconductor switches can be implemented in hardware as well as in software. A current approach discussed in science and industry is the implementation of a model of the protected low voltage power cable on a microcontroller to calculate its temperature. Here, the information regarding the current is provided by the continuous current measurement of the semiconductor switch. The signal to open the semiconductor switch is provided by the microcontroller when a previously defined limit for the temperature of the low voltage power cable is exceeded. A setup for the testing of the described principle for electronic fuse protection of a low voltage power cable is built and successfullyvalidated with experiments afterwards. Here, the evaluation criterion is the deviation of the measured temperature of the low voltage power cable from the specified limit temperature when the semiconductor switch is opened. The analysis is carried out with an assumed ambient temperature as well as with a measured ambient temperature. Subsequently, the experimentally performed investigations are simulated in a virtual environment. The explicit focus is on the simulation of the behavior of the microcontroller with an implemented model of a low voltage power cable in a real-time environment. Subsequently, the generated results are compared with those of the experiments. Based on this, the completely virtual design of the described approach is assumed to be valid.Keywords: automotive wire harness, electronic fuse protection, low voltage power cable, semiconductor-based fuses, software-based validation
Procedia PDF Downloads 1071302 Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members
Authors: T. Sakamoto, S. Kainuma
Abstract:
Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.Keywords: accelerated deterioration test, coating durability, environmental factor, under-film corrosion
Procedia PDF Downloads 3711301 Designing and Formulating Action Plan for Development of Corporate Citizenship in Producing Units in Iran
Authors: Freyedon Ahmadi
Abstract:
Corporate citizenship is considered as one of the most discussed topics in the developed countries, in which a citizen considers a Corporate just like a usual citizen with every civil right as respectful for corporate as for actual citizens, and in return citizens expect that corporate would pay a reciprocal respect to them. The current study’s purpose is to identify the impact of the current state of corporate citizenship along effective factors on its condition on industrial producing units, in order to find an accession plane for corporate citizenship development. In this study corporate citizenship is studied in four dimensions like legal corporate, economical corporate, ethical corporate and voluntary corporate. Moreover, effective factors’ impact on corporate citizenship is explored based on threefold dimensional model: behavioral, structural, and content factors, as well. In this study, 50 corporate of Food industry and of petrochemical industry, along with 200 selected individuals from directors’ board on Tehran province’s scale with stratified random sampling method, are chosen as actuarial sample. If based on functional goal and compilation methods, the present study is a description of correlation type; questionnaire is used for accumulation of initial Data. For Instrument Validity expert’s opinion is used and structural equations and its reliability is qualified by using Cronbach Alpha. The results of this study indicate that close to 70 percent of under survey corporate have not a good condition in corporate citizenship. And all of structural factors, behavioral factors, contextual factors, have a great deal of impression and impact on the advent corporate citizenship behavior in the producing Units. Among the behavioral factors, social responsibility; among structural factors, organic structure and human centered orientation, medium size, high organizational capacity; and among the contextual factors, the clientele’s positive viewpoints toward corporate had the utmost importance in impression on under survey Producing units.Keywords: corporate citizenship, structural factors, behavioral factors, contextual factors, producing units
Procedia PDF Downloads 2311300 Econophysical Approach on Predictability of Financial Crisis: The 2001 Crisis of Turkey and Argentina Case
Authors: Arzu K. Kamberli, Tolga Ulusoy
Abstract:
Technological developments and the resulting global communication have made the 21st century when large capitals are moved from one end to the other via a button. As a result, the flow of capital inflows has accelerated, and capital inflow has brought with it crisis-related infectiousness. Considering the irrational human behavior, the financial crisis in the world under the influence of the whole world has turned into the basic problem of the countries and increased the interest of the researchers in the reasons of the crisis and the period in which they lived. Therefore, the complex nature of the financial crises and its linearly unexplained structure have also been included in the new discipline, econophysics. As it is known, although financial crises have prediction mechanisms, there is no definite information. In this context, in this study, using the concept of electric field from the electrostatic part of physics, an early econophysical approach for global financial crises was studied. The aim is to define a model that can take place before the financial crises, identify financial fragility at an earlier stage and help public and private sector members, policy makers and economists with an econophysical approach. 2001 Turkey crisis has been assessed with data from Turkish Central Bank which is covered between 1992 to 2007, and for 2001 Argentina crisis, data was taken from IMF and the Central Bank of Argentina from 1997 to 2007. As an econophysical method, an analogy is used between the Gauss's law used in the calculation of the electric field and the forecasting of the financial crisis. The concept of Φ (Financial Flux) has been adopted for the pre-warning of the crisis by taking advantage of this analogy, which is based on currency movements and money mobility. For the first time used in this study Φ (Financial Flux) calculations obtained by the formula were analyzed by Matlab software, and in this context, in 2001 Turkey and Argentina Crisis for Φ (Financial Flux) crisis of values has been confirmed to give pre-warning.Keywords: econophysics, financial crisis, Gauss's Law, physics
Procedia PDF Downloads 1551299 Analysis of Rural Roads in Developing Countries Using Principal Component Analysis and Simple Average Technique in the Development of a Road Safety Performance Index
Authors: Muhammad Tufail, Jawad Hussain, Hammad Hussain, Imran Hafeez, Naveed Ahmad
Abstract:
Road safety performance index is a composite index which combines various indicators of road safety into single number. Development of a road safety performance index using appropriate safety performance indicators is essential to enhance road safety. However, a road safety performance index in developing countries has not been given as much priority as needed. The primary objective of this research is to develop a general Road Safety Performance Index (RSPI) for developing countries based on the facility as well as behavior of road user. The secondary objectives include finding the critical inputs in the RSPI and finding the better method of making the index. In this study, the RSPI is developed by selecting four main safety performance indicators i.e., protective system (seat belt, helmet etc.), road (road width, signalized intersections, number of lanes, speed limit), number of pedestrians, and number of vehicles. Data on these four safety performance indicators were collected using observation survey on a 20 km road section of the National Highway N-125 road Taxila, Pakistan. For the development of this composite index, two methods are used: a) Principal Component Analysis (PCA) and b) Equal Weighting (EW) method. PCA is used for extraction, weighting, and linear aggregation of indicators to obtain a single value. An individual index score was calculated for each road section by multiplication of weights and standardized values of each safety performance indicator. However, Simple Average technique was used for weighting and linear aggregation of indicators to develop a RSPI. The road sections are ranked according to RSPI scores using both methods. The two weighting methods are compared, and the PCA method is found to be much more reliable than the Simple Average Technique.Keywords: indicators, aggregation, principle component analysis, weighting, index score
Procedia PDF Downloads 1591298 Numerical Simulation of Flexural Strength of Steel Fiber Reinforced High Volume Fly Ash Concrete by Finite Element Analysis
Authors: Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan
Abstract:
It is well-known that fly ash can be used in high volume as a partial replacement of cement to get beneficial effects on concrete. High volume fly ash (HVFA) concrete is currently emerging as a popular option to strengthen by fiber. Although studies have supported the use of fibers with fly ash, a unified model along with the incorporation into finite element software package to estimate the maximum flexural loads need to be developed. In this study, nonlinear finite element analysis of steel fiber reinforced high strength HVFA concrete beam under static loadings was conducted to investigate their failure modes in terms of ultimate load. First of all, the experimental investigation of mechanical properties of high strength HVFA concrete was done and validates with developed numerical model with the appropriate modeling of element size and mesh by ANSYS 16.2. To model the fiber within the concrete, three-dimensional random fiber distribution was simulated by spherical coordinate system. Three types of high strength HVFA concrete beams were analyzed reinforced with 0.5, 1 and 1.5% volume fractions of steel fibers with specific mechanical and physical properties. The result reveals that the use of nonlinear finite element analysis technique and three-dimensional random fiber orientation exhibited fairly good agreement with the experimental results of flexural strength, load deflection and crack propagation mechanism. By utilizing this improved model, it is possible to determine the flexural behavior of different types and proportions of steel fiber reinforced HVFA concrete beam under static load. So, this paper has the originality to predict the flexural properties of steel fiber reinforced high strength HVFA concrete by numerical simulations.Keywords: finite element analysis, high volume fly ash, steel fibers, spherical coordinate system
Procedia PDF Downloads 1381297 Discrete-Event Modeling and Simulation Methodologies: Past, Present and Future
Authors: Gabriel Wainer
Abstract:
Modeling and Simulation methods have been used to better analyze the behavior of complex physical systems, and it is now common to use simulation as a part of the scientific and technological discovery process. M&S advanced thanks to the improvements in computer technology, which, in many cases, resulted in the development of simulation software using ad-hoc techniques. Formal M&S appeared in order to try to improve the development task of very complex simulation systems. Some of these techniques proved to be successful in providing a sound base for the development of discrete-event simulation models, improving the ease of model definition and enhancing the application development tasks; reducing costs and favoring reuse. The DEVS formalism is one of these techniques, which proved to be successful in providing means for modeling while reducing development complexity and costs. DEVS model development is based on a sound theoretical framework. The independence of M&S tasks made possible to run DEVS models on different environments (personal computers, parallel computers, real-time equipment, and distributed simulators) and middleware. We will present a historical perspective of discrete-event M&S methodologies, showing different modeling techniques. We will introduce DEVS origins and general ideas, and compare it with some of these techniques. We will then show the current status of DEVS M&S, and we will discuss a technological perspective to solve current M&S problems (including real-time simulation, interoperability, and model-centered development techniques). We will show some examples of the current use of DEVS, including applications in different fields. We will finally show current open topics in the area, which include advanced methods for centralized, parallel or distributed simulation, the need for real-time modeling techniques, and our view in these fields.Keywords: modeling and simulation, discrete-event simulation, hybrid systems modeling, parallel and distributed simulation
Procedia PDF Downloads 3231296 Simulation and Performance Evaluation of Transmission Lines with Shield Wire Segmentation against Atmospheric Discharges Using ATPDraw
Authors: Marcio S. da Silva, Jose Mauricio de B. Bezerra, Antonio E. de A. Nogueira
Abstract:
This paper aims to make a performance analysis of shield wire transmission lines against atmospheric discharges when it is made the option of sectioning the shield wire and verify if the tolerability of the change. As a goal of this work, it was established to make complete modeling of a transmission line in the ATPDraw program with shield wire grounded in all the towers and in some towers. The methodology used to make the proposed evaluation was to choose an actual transmission line that served as a case study. From the choice of transmission line and verification of all its topology and materials, complete modeling of the line using the ATPDraw software was performed. Then several atmospheric discharges were simulated by striking the grounded shield wires in each tower. These simulations served to identify the behavior of the existing line against atmospheric discharges. After this first analysis, the same line was reconsidered with shield wire segmentation. The shielding wire segmentation technique aims to reduce induced losses in shield wires and is adopted in some transmission lines in Brazil. With the same conditions of atmospheric discharge the transmission line, this time with shield wire segmentation was again evaluated. The results obtained showed that it is possible to obtain similar performances against atmospheric discharges between a shield wired line in multiple towers and the same line with shield wire segmentation if some precautions are adopted as verification of the ground resistance of the wire segmented shield, adequacy of the maximum length of the segmented gap, evaluation of the separation length of the electrodes of the insulator spark, among others. As a conclusion, it is verified that since the correct assessment and adopted the correct criteria of adjustment a transmission line with shielded wire segmentation can perform very similar to the traditional use with multiple earths. This solution contributes in a very important way to the reduction of energy losses in transmission lines.Keywords: atmospheric discharges, ATPDraw, shield wire, transmission lines
Procedia PDF Downloads 1701295 Study of Mobile Game Addiction Using Electroencephalography Data Analysis
Authors: Arsalan Ansari, Muhammad Dawood Idrees, Maria Hafeez
Abstract:
Use of mobile phones has been increasing considerably over the past decade. Currently, it is one of the main sources of communication and information. Initially, mobile phones were limited to calls and messages, but with the advent of new technology smart phones were being used for many other purposes including video games. Despite of positive outcomes, addiction to video games on mobile phone has become a leading cause of psychological and physiological problems among many people. Several researchers examined the different aspects of behavior addiction with the use of different scales. Objective of this study is to examine any distinction between mobile game addicted and non-addicted players with the use of electroencephalography (EEG), based upon psycho-physiological indicators. The mobile players were asked to play a mobile game and EEG signals were recorded by BIOPAC equipment with AcqKnowledge as data acquisition software. Electrodes were places, following the 10-20 system. EEG was recorded at sampling rate of 200 samples/sec (12,000samples/min). EEG recordings were obtained from the frontal (Fp1, Fp2), parietal (P3, P4), and occipital (O1, O2) lobes of the brain. The frontal lobe is associated with behavioral control, personality, and emotions. The parietal lobe is involved in perception, understanding logic, and arithmetic. The occipital lobe plays a role in visual tasks. For this study, a 60 second time window was chosen for analysis. Preliminary analysis of the signals was carried out with Acqknowledge software of BIOPAC Systems. From the survey based on CGS manual study 2010, it was concluded that five participants out of fifteen were in addictive category. This was used as prior information to group the addicted and non-addicted by physiological analysis. Statistical analysis showed that by applying clustering analysis technique authors were able to categorize the addicted and non-addicted players specifically on theta frequency range of occipital area.Keywords: mobile game, addiction, psycho-physiology, EEG analysis
Procedia PDF Downloads 1671294 The Axonal Connectivity of Motor and Premotor Areas as Revealed through Fiber Dissections: Shedding Light on the Structural Correlates of Complex Motor Behavior
Authors: Spyridon Komaitis, Christos Koutsarnakis, Evangelos Drosos, Aristotelis Kalyvas
Abstract:
This study opts to investigate the intrinsic architecture, morphology, and spatial relationship of the subcortical pathways implicated in the connectivity of the motor/premotor cortex and SMA/pre-SMA complex. Twenty normal, adult, formalin-fixed cerebral hemispheres were explored through the fiber micro-dissection technique. Lateral to medial and medial to lateral dissections focused on the area of interest were performed in a tandem manner and under the surgical microscope. We traced the subcortical architecture, spatial relationships, and axonal connectivity of four major pathways: a) the dorsal component of the SLF (SLF-I) was found to reside in the medial aspect of the hemisphere and seen to connect the precuneus with the SMA and pre-SMA complex, b) the frontal longitudinal system (FLS) was consistently encountered as the natural anterior continuation of the SLF-II and SLF-III and connected the premotor and prefrontal cortices c) the fronto-caudate tract (FCT), a fan-shaped tract, was documented to participate in connectivity of the prefrontal and premotor cortices to the head and body of the caudate nucleus and d) the cortico-tegmental tract(CTT) was invariably recorded to subserve the connectivity of the tegmental area with the fronto-parietal cortex. No hemispheric asymmetries were recorded for any of the implicated pathways. Sub-segmentation systems were also proposed for each of the aforementioned tracts. The structural connectivity and functional specialization of motor and premotor areas in the human brain remain vague to this day as most of the available evidence derives either from animal or tractographic studies. By using the fiber-microdissection technique as our main method of investigation, we provide sound structural evidence on the delicate anatomy of the related white matter pathways.Keywords: neuroanatomy, premotor, motor, connectivity
Procedia PDF Downloads 1301293 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H
Authors: Sherman Ho, Ahmed Cherif Megri
Abstract:
Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data
Procedia PDF Downloads 671292 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings
Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva
Abstract:
The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.Keywords: adhesive, composites, crack propagation, fatigue
Procedia PDF Downloads 2051291 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones
Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat
Abstract:
In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.
Procedia PDF Downloads 711290 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 3561289 Domains of Socialization Interview: Development and Psychometric Properties
Authors: Dilek Saritas Atalar, Cansu Alsancak Akbulut, İrem Metin Orta, Feyza Yön, Zeynep Yenen, Joan Grusec
Abstract:
Objective: The aim of this study was to develop semi-structured Domains of Socialization Interview and its coding manual and to test their psychometric properties. Domains of Socialization Interview was designed to assess maternal awareness regarding effective parenting in five socialization domains (protection, mutual reciprocity, control, guided learning, and group participation) within the framework of the domains-of-socialization approach. Method: A series of two studies were conducted to develop and validate the interview and its coding manual. The pilot study, sampled 13 mothers of preschool-aged children, was conducted to develop the assessment tools and to test their function and clarity. Participants of the main study were 82 Turkish mothers (Xage = 34.25, SD = 3.53) who have children aged between 35-76 months (Xage = 50.75, SD = 11.24). Mothers filled in a questionnaire package including Coping with Children’s Negative Emotions Questionnaire, Social Competence and Behavior Evaluation-30, Child Rearing Questionnaire, and Two Dimensional Social Desirability Questionnaire. Afterward, interviews were conducted online by a single interviewer. Interviews were rated independently by two graduate students based on the coding manual. Results: The relationships of the awareness of effective parenting scores to the other measures demonstrate convergent, discriminant, and predictive validity of the coding manual. Intra-class correlation coefficient estimates were ranged between 0.82 and 0.90, showing high interrater reliability of the coding manual. Conclusion: Taken as a whole, the results of these studies demonstrate the validity and reliability of a new and useful interview to measure maternal awareness regarding effective parenting within the framework of the domains-of-socialization approach.Keywords: domains of socialization, parenting, interview, assessment
Procedia PDF Downloads 1911288 Fragility Analysis of a Soft First-Story Building in Mexico City
Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana
Abstract:
On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity
Procedia PDF Downloads 1781287 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses
Authors: Mohamed Moussaoui
Abstract:
A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeuticsKeywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer
Procedia PDF Downloads 501286 Synergistic Behavior of Polymer Mixtures in Designing Hydrogels for Biomedical Applications
Authors: Maria Bercea, Monica Diana Olteanu
Abstract:
Investigation of polymer systems able to change inside of the body into networks represent an attractive approach, especially when there is a minimally invasive and patient friendly administration. Pharmaceutical formulations based on Pluronic F127 [poly (oxyethylene) (PEO) blocks (70%) and poly(oxypropylene) (PPO) blocks (30%)] present an excellent potential as drug delivery systems. The use of Pluronic F127 alone as gel-forming solution is limited by some characteristics, such as poor mechanical properties, short residence time, high permeability, etc. Investigation of the interactions between the natural and synthetic polymers and surfactants in solution is a subject of great interest from both scientific and practical point of view. As for example, formulations based on Pluronics and chitosan could be used to obtain dual phase transition hydrogels responsive to temperature and pH changes. In this study, different materials were prepared by using poly(vinyl alcohol), chitosan solutions mixed with aqueous solutions of Pluronic F127. The rheological properties of different formulations were investigated in temperature sweep experiments as well as at a constant temperature of 37oC for exploring in-situ gel formation in the human body conditions. In addition, some viscometric investigations were carried out in order to understand the interactions which determine the complex behaviour of these systems. Correlation between the thermodynamic and rheological parameters and phase separation phenomena observed for the investigated systems allowed the dissemination the constitutive response of polymeric materials at different external stimuli, such as temperature and pH. The rheological investigation demonstrated that the viscoelastic moduli of the hydrogels can be tuned depending on concentration of different components as well as pH and temperature conditions and cumulative contributions can be obtained.Keywords: hydrogel, polymer mixture, stimuli responsive, biomedical applications
Procedia PDF Downloads 3501285 Social Appearance Concerns among College Students
Authors: Koninika Mukherjee, Dilwar Hussain
Abstract:
Introduction: One of the most prevalent psychopathologies among the youth is social anxiety. The presence of comorbid disorders further complicates diagnosis and treatment. One of the most commonly co-occurring disorders, along with social anxiety, is related to eating behavior. Objective: Identifying the risk and protective factors and the mechanism through which the effect of these disorders might help in treatment and prevention. So, the stated objective of the present study is to investigate the role of fear of negative evaluation and social appearance anxiety in the relationship of parental bonding with social anxiety and comorbid disordered eating. Method: A cross-sectional study was conducted with 411 Indian undergraduates. Data collection was done with the help of self-report measures like the social interaction anxiety scale, parental bonding instrument, brief fear of negative evaluation, social appearance anxiety scale, and the eating attitudes test. SPSS Amos 22.0 version was used for path analyses. Results: Out of the different dimensions of parental bonding, only maternal care and the father’s granting of behavioural freedom proved significant in the development and maintenance of social anxiety and disordered eating behaviour and symptoms. Fear of negative evaluation and social appearance anxiety mediated the impact of the mother’s care on social anxiety and comorbid disordered eating. However, only fear of negative evaluation seemed to mediate the effect of paternal granting of behavioral freedom on social anxiety and comorbid issues. Implications: One of the vital contributions of this study is looking at perceived maternal and paternal bonding separately in the path model. Identifying parenting dimensions significantly related to social anxiety and comorbid disorders can aid in establishing consensus around operational definitions and in the formulation of comprehensive assessments. Future Directions: Future research can include both participant and parental perceptions of parental bonding.Keywords: social anxiety, disordered eating, fear of negative evaluation, social appearance anxiety
Procedia PDF Downloads 671284 Influence of Hydrophobic Surface on Flow Past Square Cylinder
Authors: S. Ajith Kumar, Vaisakh S. Rajan
Abstract:
In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding
Procedia PDF Downloads 3751283 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors
Authors: Longkui Zhu, Zhengcao Li
Abstract:
High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management
Procedia PDF Downloads 3121282 The Issues of Irrigation and Drainage in Kebbi State and Their Effective Solution for a Sustainable Agriculture in Kebbi State, Nigeria
Authors: Mumtaz Ahmed Sohag, Ishaq Ahmed Sohag
Abstract:
Kebbi State, located in the Nort-West of Nigeria, is rich in water resources as the major rivers viz. Niger and Rima irrigate a vast majority of land. Besides, there is significant amount of groundwater, which farmers use for agriculture purpose. The groundwater is also a major source of agricultural and domestic water as wells are installed in almost all parts of the region. Although Kebbi State is rich in water, however, there are some pertinent issues which are hampering its agricultural productivity. The low lands (locally called Fadama), has spread out to a vast area. It is inundated every year during the rainy season which lasts from June to September every year. The farmers grow rice during the rainy season when water is standing. They cannot do further agricultural activity for almost two months due to high standing water. This has resulted in widespread waterlogging problem. Besides, the impact of climate change is resulting in rapid variation in river/stream flows. The information about water bodies regarding the availability of water for agricultural and other uses and the behavior of rivers at different flows is seldom available. Furthermore, sediment load (suspended and bedload) is not measured due to which land erosion cannot be countered effectively. This study, carried out in seven different irrigation regions of Kebbi state, found that diversion structures need to be constructed at some strategic locations for the supply of surface water to the farmers. The water table needs to be lowered through an effective drainage system. The monitoring of water bodies is crucial for sound data to help efficient regulation and management of water. Construction of embankments is necessary to control frequent floods in the rivers of Niger and Rima. Furthermore, farmers need capacity and awareness for participatory irrigation management.Keywords: water bodies, floods, agriculture, waterlogging
Procedia PDF Downloads 2391281 Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.
Authors: Adetokunbo Ademola Falade, Oluwatoyin Olakunle Akinsete, Hussein Omeiza Aliu
Abstract:
Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology.Keywords: asphaltene, bitumen, diffusivity, hydrocarbon solvent, SARA
Procedia PDF Downloads 401280 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions
Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham
Abstract:
Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation
Procedia PDF Downloads 1831279 Agent-Based Modelling to Improve Dairy-origin Beef Production: Model Description and Evaluation
Authors: Addisu H. Addis, Hugh T. Blair, Paul R. Kenyon, Stephen T. Morris, Nicola M. Schreurs, Dorian J. Garrick
Abstract:
Agent-based modeling (ABM) enables an in silico representation of complex systems and cap-tures agent behavior resulting from interaction with other agents and their environment. This study developed an ABM to represent a pasture-based beef cattle finishing systems in New Zea-land (NZ) using attributes of the rearer, finisher, and processor, as well as specific attributes of dairy-origin beef cattle. The model was parameterized using values representing 1% of NZ dairy-origin cattle, and 10% of rearers and finishers in NZ. The cattle agent consisted of 32% Holstein-Friesian, 50% Holstein-Friesian–Jersey crossbred, and 8% Jersey, with the remainder being other breeds. Rearers and finishers repetitively and simultaneously interacted to determine the type and number of cattle populating the finishing system. Rearers brought in four-day-old spring-born calves and reared them until 60 calves (representing a full truck load) on average had a live weight of 100 kg before selling them on to finishers. Finishers mainly attained weaners from rearers, or directly from dairy farmers when weaner demand was higher than the supply from rearers. Fast-growing cattle were sent for slaughter before the second winter, and the re-mainder were sent before their third winter. The model finished a higher number of bulls than heifers and steers, although it was 4% lower than the industry reported value. Holstein-Friesian and Holstein-Friesian–Jersey-crossbred cattle dominated the dairy-origin beef finishing system. Jersey cattle account for less than 5% of total processed beef cattle. Further studies to include re-tailer and consumer perspectives and other decision alternatives for finishing farms would im-prove the applicability of the model for decision-making processes.Keywords: agent-based modelling, dairy cattle, beef finishing, rearers, finishers
Procedia PDF Downloads 1011278 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications
Authors: S. Koul, Joshua Adedamola
Abstract:
Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.Keywords: ICP, dopant, EMI, shielding
Procedia PDF Downloads 82