Search results for: wavy wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1283

Search results for: wavy wall

713 In vitro Culture of Stem Node Segments of Maerua crassifolia

Authors: Abobaker Abrahem M. Saad, Asma Abudasalam

Abstract:

The stem node segments were cultured on Murashige and Skoog (MS) medium. In the case of using MS+ Zeatin (1 mg/l), small shoot buds were formed directly in 70% of explants after 15 days, their length range between 0.1 to 0.3 cm after two weeks and reached 0.3 cm in length and three shoots in numbers after 4 weeks. When those small shoots were sub cultured on the same medium, they increased in length, number and reached 0.4 cm with 4 shoots, 0.4 cm with 5 shoots after six, eight and ten weeks respectively. In the case of using MS free hormones, MS+IAA (0.2mg/l) +BA (0.5mg/l), MS + kin(0.5mg/l), MS + kin (3mg/l) and MS +NAA (3mg/l) +BA (1mg/l), no sign of responses were noticed and only change in color in some cases. Different types of parenchyma cells and many layers of thick wall sclerenchyma cells were observed on MS+BA (1mg/l).

Keywords: Maerua, stem node, shoots, buds, In vitro

Procedia PDF Downloads 312
712 Numerical Study of a Nanofluid in a Truncated Cone

Authors: B. Mahfoud, A. Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 308
711 A New Type Safety-Door for Earthquake Disaster Prevention: Part I

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.

Keywords: safety-door, earthquake disaster, low yield point steel, passive energy dissipating device, FE analysis

Procedia PDF Downloads 526
710 Avian Esophagus: A Comparative Microscopic Study In Birds With Different Feeding Habits

Authors: M. P. S. Tomar, Himanshu R. Joshi, P. Jagapathi Ramayya, Rakhi Vaish, A. B. Shrivastav

Abstract:

The morphology of an organ system varies according to the feeding habit, habitat and nature of their life-style. This phenomenon is called adaptation. During evolution these morphological changes make the system species specific so the study on the differential characteristics of them makes the understanding regarding the morpho-physiological adaptation easier. Hence the present study was conducted on esophagus of pariah kite, median egret, goshawk, dove and duck. Esophagus in all birds was comprised of four layers viz. Tunica mucosa, Tunica submucosa, Tunica muscularis and Tunica adventitia. The mucosa of esophagus showed longitudinal folds thus the lumen was irregular. The epithelium was stratified squamous in all birds but in Median egret the cells were large and vacuolated. Among these species very thick epithelium was observed in goshawk and duck but keratinization was highest in dove. The stratum spongiosum was 7-8 layers thick in both Pariah kite and Goshawk. In all birds, the glands were alveolar mucous secreting type. In Median egret and Pariah kite, these were round or oval in shape and with or without lumen depending upon the functional status whereas in Goshawk the shape of the glands varied from spherical / oval to triangular with openings towards the lumen according to the functional activity and in dove these glands were oval in shape. The glands were numerous in number in egret while one or two in each fold in goshawk and less numerous in other three species. The core of the mucosal folds was occupied by the lamina propria and showed large number of collagen fibers and cellular infiltration in pariah kite, egret and dove where as in goshawk and duck, collagen and reticular fibers were fewer and cellular infiltration was lesser. Lamina muscularis was very thick in all species and it was comprised of longitudinally arranged smooth muscle fibers. In Median egret, it was in wavy pattern. Tunica submucosa was very thin in all species. Tunica muscularis was mostly comprised of circular smooth muscle bundles in all species but the longitudinal bundles were very few in number and not continuous. The tunica adventitia was comprised of loose connective tissue fibers containing collagen and elastic fibers with numerous small blood vessels in all species. Further, it was observed that the structure of esophagus in birds varies according to their feeding habits.

Keywords: dove, duck, egret, esophagus, goshawk, kite

Procedia PDF Downloads 440
709 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 300
708 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation

Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel

Abstract:

Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.

Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation

Procedia PDF Downloads 453
707 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fibre Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on a alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm, cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, CO2, nanocomposite, ceramic hollow fibre, ion-exchange

Procedia PDF Downloads 484
706 Structural-Lithological Conditions of Formation of Epithermal Gold Sulphide Satellite Deposits in the North Part of Chovdar Ore Area

Authors: Nabat Gojaeva, Mikayil Naghiyev, Sultan Jafarov, Gular Mikayilova

Abstract:

Chovdar ore area is located in the contact of Dashkesan caldera and Shamkir horst-graben uplift, which comprises the central part of Lok-Karabakh Island arcs of South Caucasus metallogenic province in terms of regional tectonics. One of the main structural features of formation of the Mereh and Aghyokhush group of low sulfidation epithermal gold deposits, locating in the north peripheric part of the ore area, is involving the crossing areas of ore-hosting and ore-forming Pan-Caucasian-direction structurally-compound faults with the meridional, rhombically shaped faults. In addition, another significant feature is the temporally two- or three-stage ore formation. In the first stage -an early phase of Upper Bathonian age, sulfides are the dominant minerals, in the second stage- late ‘productive’ phase of Upper Bathonian age, mainly gold mineralization is formed. Also, in the Upper Jurassic – Lower Cretaceous ages, rarely-encountered Cu-polymetallic ore formations are documented. Finally, in the last stage, the re-dislocation of ore-formation is foreseen in the previously-formed mineralization areas. The faults in the strike and dip directions formed shearing, brecciation, sulfide mineralization aureoles, and hydrothermal alteration zones in the wall rocks along with the local depression blocks. The geological-structural analysis of the area shows that multiple and various morphogenetic volcano-tectonically fault systems have developed in the area. These fault systems have played a trap role for ore-formation in the intersected parts of faults mentioned above. Thus, in the referred parts, mostly predominance of felsic volcanism and metasomatic alteration (silicification, argillitic, etc.) of wall rocks, as well as the products of this volcanism, account for the inclusion of hydrothermal ore-forming fluids along these faults. It is possible to determine temporally and lithological-structural connection between the ore-formation along with local depression blocks and faults as borders for products of felsic volcanism of Upper Cretaceous-Lesser Jurassic ages, in the results of the replacement of hydrothermal alteration zones with relatively low-temperature metasomatic alterations while moving from the felsic parts to the margins, and due to being non-ore bearing intermediate and intermediate-felsic magmatic facies.

Keywords: Aghyokhush, fault, gold deposit, Mereh

Procedia PDF Downloads 217
705 Examination of the Reinforcement Forces Generated in Pseudo-Static and Dynamic Status in Retaining Walls

Authors: K. Passbakhsh

Abstract:

Determination of reinforcement forces is one of the most important and main discussions in designing retaining walls. By determining these forces we refrain from conservative planning. By numerically modeling the reinforced soil retaining walls under dynamic loading reinforcement forces can be calculated. In this study we try to approach the gained forces by pseudo-static method according to FHWA code and gained forces from numerical modeling by finite element method, by selecting seismic horizontal coefficient for different wall height. PLAXIS software was used for numerical analysis. Then the effect of reinforcement stiffness and soil type on reinforcement forces is examined.

Keywords: reinforced soil, PLAXIS, reinforcement forces, retaining walls

Procedia PDF Downloads 358
704 Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension

Authors: San-Yih Lin, Hsien-Hao Teng

Abstract:

In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated.

Keywords: LEX, lift/drag ratio, pitch moment, vortex burst

Procedia PDF Downloads 326
703 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage

Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik

Abstract:

The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.

Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis

Procedia PDF Downloads 320
702 Comparison of Wind Fragility for Window System in the Simplified 10 and 15-Story Building Considering Exposure Category

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Window system in high rise building is occasionally subjected to an excessive wind intensity, particularly during typhoon. The failure of window system did not affect overall safety of structural performance; however, it could endanger the safety of the residents. In this paper, comparison of fragility curves for window system of two residential buildings was studied. The probability of failure for individual window was determined with Monte Carlo Simulation method. Then, lognormal cumulative distribution function was used to represent the fragility. The results showed that windows located on the edge of leeward wall were more susceptible to wind load and the probability of failure for each window panel increased at higher floors.

Keywords: wind fragility, window system, high rise building, wind disaster

Procedia PDF Downloads 314
701 Natural Convection of a Nanofluid in a Conical Container

Authors: Brahim Mahfoud, Ali Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 368
700 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation

Authors: W. Meron Mebrahtu, R. Absi

Abstract:

Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.

Keywords: accuracy, eddy viscosity, sewers, velocity profile

Procedia PDF Downloads 112
699 The Influence of Winding Angle on Functional Failure of FRP Pipes

Authors: Roham Rafiee, Hadi Hesamsadat

Abstract:

In this study, a parametric finite element modeling is developed to analyze failure modes of FRP pipes subjected to internal pressure. First-ply failure pressure and functional failure pressure was determined by a progressive damage modeling and then it is validated using experimental observations. The influence of both winding angle and fiber volume fraction is studied on the functional failure of FRP pipes and it corresponding pressure. It is observed that despite the fact that increasing fiber volume fraction will enhance the mechanical properties, it will be resulted in lower values for functional failure pressure. This shortcoming can be compensated by modifying the winding angle in angle plies of pipe wall structure.

Keywords: composite pipe, functional failure, progressive modeling, winding angle

Procedia PDF Downloads 546
698 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures

Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev

Abstract:

Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.

Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF

Procedia PDF Downloads 400
697 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers

Authors: Jayahar Sivasubramanian

Abstract:

Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.

Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet

Procedia PDF Downloads 183
696 Finite Element Analysis of Rom Silo Subjected to 5000 Tons Monotic Loads at an Anonymous Mine in Zimbabwe

Authors: T. Mushiri, K. Tengende, C. Mbohwa, T. Garikayi

Abstract:

This paper introduces finite element analysis of Run off Mine (ROM) silo subjected to dynamic loading. The proposed procedure is based on the use of theoretical equations to come up with pressure and forces exerted by Platinum Group Metals (PGMs) ore to the silo wall. Finite Element Analysis of the silo involves the use of CAD software (AutoCAD) for3D creation and CAE software (T-FLEX) for the simulation work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. In this research an efficient way to design and analysis of a silo in 3D T-FLEX (CAD) program was created the silo to stay within the constrains and so as to know the points of failure due dynamic loading.

Keywords: reinforced concrete silo, finite element analysis, T-FLEX software, AutoCAD

Procedia PDF Downloads 482
695 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations

Authors: M. Abdallah

Abstract:

Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.

Keywords: deep excavation, ground anchors, interaction soil-structure, struts

Procedia PDF Downloads 415
694 Performance Analysis of Carbon Nanotube for VLSI Interconnects and Their Comparison with Copper Interconnects

Authors: Gagnesh Kumar, Prashant Gupta

Abstract:

This paper investigates the performance of the bundle of single wall carbon nanotubes (SWCNT) for low-power and high-speed interconnects for future VLSI applications. The power dissipation, delay and power delay product (PDP) of SWCNT bundle interconnects are examined and compared with that of the Cu interconnects at 22 nm technology node for both intermediate and global interconnects. The results show that SWCNT bundle consume less power and also faster than Cu for intermediate and global interconnects. It is concluded that the metallic SWCNT has been regarded as a viable candidate for intermediate and global interconnects in future technologies.

Keywords: carbon nanotube, SWCNT, low power, delay, power delay product, global and intermediate interconnects

Procedia PDF Downloads 322
693 Energy Saving of the Paint with Mineral Insulators: Simulation and Study on Different Climates

Authors: A. A. Azemati, H. Hosseini, B. Shirkavand Hadavand

Abstract:

By using an adequate thermal barrier coating in buildings the energy saving will be happened. In this study, a range of wall paints with different absorption coefficient in different climates has been investigated. In order to study these effects, heating and cooling loads of a common building with different ordinary paints and paint with mineral coating have been calculated. The effect of building paint in different climatic condition was studied and comparison was done between ordinary paints and paint with mineral insulators in temperate climate to obtain optimized energy consumption. The results have been shown that coatings with inorganic micro particles as insulation reduce the energy consumption of buildings around 14%.

Keywords: climate, energy consumption, inorganic, mineral coating

Procedia PDF Downloads 268
692 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: Azzedine Abdedou, Khedidja Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: forced convection, porous media, oriented confined jet, fluid mechanics

Procedia PDF Downloads 384
691 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: wind fragility, glass window, high rise building, wind disaster

Procedia PDF Downloads 259
690 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses

Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia

Abstract:

The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.

Keywords: behaviour factor, dual system, OpenSEES, overstrength, seismostruct

Procedia PDF Downloads 407
689 The Importance of Fungi and Plants for a More Sustainable on Our Planet Earth

Authors: Njabe Christelle

Abstract:

Fungal products are essential building blocks for change towards a more sustainable future for our planet. In nature, fungi are special in breaking down plant material by means of a rich spectrum of plant cell wall degrading enzymes. Enzymes serve as catalysts in organic synthesis. Imagine the immense benefits that the known 250000 plant genes might provide in the future through scientific investigation. Plants are the primary basis for human sustenance, used directly for food, clothing, and shelter or indirectly in processed form and through animal feeding. Fungi are the only organisms known to extensively degrade lignin, a major component of wood. Although humans cannot digest cellulose and lignin, many fungi, through their assimilation of these substances, produce food in the form of edible mushrooms.

Keywords: plants, fungi, sustainable use, planet earth

Procedia PDF Downloads 82
688 Development of Palm Kernel Shell Lightweight Masonry Mortar

Authors: Kazeem K. Adewole

Abstract:

There need to construct building walls with lightweight masonry bricks/blocks and mortar to reduce the weight and cost of cooling/heating of buildings in hot/cold climates is growing partly due to legislations on energy use and global warming. In this paper, the development of Palm Kernel Shell masonry mortar (PKSMM) prepared with Portland cement and crushed PKS fine aggregate (an agricultural waste) is demonstrated. We show that PKSMM can be used as a lightweight mortar for the construction of lightweight masonry walls with good thermal insulation efficiency than the natural river sand commonly used for masonry mortar production.

Keywords: building walls, fine aggregate, lightweight masonry mortar, palm kernel shell, wall thermal insulation efficacy

Procedia PDF Downloads 321
687 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 185
686 Numerical Investigation of Thermal Energy Storage System with Phase Change Materials

Authors: Mrityunjay Kumar Sinha, Mayank Srivastava

Abstract:

The position of interface and temperature variation of phase change thermal energy storage system under constant heat injection and radiative heat injection is analysed during charging/discharging process by Heat balance integral method. The charging/discharging process is solely governed by conduction. Phase change material is kept inside a rectangular cavity. Time-dependent fixed temperature and radiative boundary condition applied on one wall, all other walls are thermally insulated. Interface location and temperature variation are analysed by using MATLAB.

Keywords: conduction, melting/solidification, phase change materials, Stefan’s number

Procedia PDF Downloads 395
685 Numerical Study of Natural Convection of a Localized Heat Source at the up of a Nanofluid-Filled Enclosure

Authors: Marziyeh Heydari, Hossein Shokouhmand

Abstract:

This article presents a numerical study of natural convection of a heat source embedded on the up wall of an enclosure filled with nanofluid. The bottom and vertical walls of the enclosure are maintained at a relatively low temperature. The type of nanofluid and solid volume fraction of nanoparticle on the heat transfer performance is studied. The results indicated that adding nanoparticle into pure paraffin improves heat transfer. The results are presented over a wide range of Rayleigh numbers(Ra=〖10〗^3 〖-10〗^5), the volume fraction of nanoparticles (0≤ɸ≤0.4%). For an enclosure, the Nusselt number of a cu-paraffin nanofluid was reduced by increasing the volume fraction of nanoparticles above 0.2%.

Keywords: nanofluid, heat transfer, heat source, enclosure

Procedia PDF Downloads 310
684 Dynamical and Thermal Study of Twin Impinging Jets a Vertical Plate with Various Jet Velocities and Impinging Distance

Authors: Louaifi Hamaili Samira, Mataoui Amina, Cheraitia Tadjeddine

Abstract:

This investigation proposes a numerical analysis of two turbulent parallel jets impinging a heated plate. The heat transfer enhancement is carried out according of the main parameters of the jet-wall interaction. The numerical solution of the stationary equations (RANS) is performed by the finite volume method using the k - ε model. A parametric study is performed to evaluate simultaneously the effect of nozzle-plate distance and velocity ratios in the range 0≤λ≤1. It is found that good local cooling is obtained for λ= 0.25 when the impinging distance is between 4w and 8w than for velocity ratios λ=1 and λ= 0.75. On the other hand, for impinging distances exceeding 8w, the velocity ratio λ =0.75 is more appropriate for good local cooling of the plate.

Keywords: two unequal jets, turbulence, mixing, heat transfer, CFD

Procedia PDF Downloads 34