Search results for: value capture
679 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides
Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen
Abstract:
CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide
Procedia PDF Downloads 296678 Toward the Understanding of Shadow Port's Growth: The Level of Shadow Port
Authors: Chayakarn Bamrungbutr, James Sillitoe
Abstract:
The term ‘shadow port’ is used to describe a port whose markets are dominated by an adjacent port that has a more competitive capability. Recently, researchers have put effort into studying the mechanisms of how a regional port, in the shadow of a nearby predominant port which is a capital city port, can compete and grow. However, such mechanism is still unclear. This study thus focuses on understanding the growth of shadow port and the type of shadow port by using the two capital city ports of Thailand; Bangkok port (the former main port) and Laem Chabang port (the current main port), as the case study. By developing an understanding of the mechanisms of shadow, port could ultimately lead to an increase in the competitiveness. In this study, a framework of opportunity capture (introduced by Magala, 2004) will be used to create a framework for the study of the growth of the selected shadow port. In the process of building this framework, five groups of port development experts, consisting of government, council, academia, logistics provider and industry, will be interviewed. To facilitate this work, the Noticing, Collecting and Thinking model which was developed by Seidel (1998) will be used in an analysis of the dataset. The resulting analysis will be used to classify the type of shadow port. The type of these ports will be a significant factor for developing a feasible strategic guideline for the future management planning of ports, particularly, shadow ports, and then to increase the competitiveness of a nation’s maritime transport industry, and eventually lead to a boost in the national economy.Keywords: shadow port, Bangkok Port, Laem Chabang Port, port growth
Procedia PDF Downloads 177677 Climate Change Vulnerability and Agrarian Communities: Insights from the Composite Vulnerability Index of Indian States of Andhra Pradesh and Karnataka
Authors: G. Sridevi, Amalendu Jyotishi, Sushanta Mahapatra, G. Jagadeesh, Satyasiba Bedamatta
Abstract:
Climate change is a main challenge for agriculture, food security and rural livelihoods for millions of people in India. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather conditions. Among India’s population of more than one billion people, about 68% are directly or indirectly involved in the agricultural sector. This sector is particularly vulnerable to present-day climate variability. In this contest this paper examines the Socio-economic and climate analytical study of the vulnerability index in Indian states of Andhra Pradesh and Karnataka. Using secondary data; it examines the vulnerability through five different sub-indicator of socio-demographic, agriculture, occupational, common property resource (CPR), and climate in respective states among different districts. Data used in this paper has taken from different sources, like census in India 2011, Directorate of Economics and Statistics of respective states governments. Rainfall data was collected from the India Meteorological Department (IMD). In order to capture the vulnerability from two different states the composite vulnerability index (CVI) was developed and used. This indicates the vulnerability situation of different districts under two states. The study finds that Adilabad district in Andhra Pradesh and Chamarajanagar in Karnataka had highest level of vulnerability while Hyderabad and Bangalore in respective states have least level of vulnerability.Keywords: vulnerability, agriculture, climate change, global warming
Procedia PDF Downloads 459676 Emerging Policy Landscape of Rare Disease Registries in India: An Analysis in Evolutionary Policy Perspective
Authors: Yadav Shyamjeet Maniram
Abstract:
Despite reports of more than seventy million population of India affected by rare diseases, it rarely figured on the agenda of the Indian scientist and policymakers. Hitherto ignored, a fresh initiative is being attempted to establish the first national registry for rare diseases. Though there are registries for rare diseases, established by the clinicians and patient advocacy groups, they are isolated, scattered and lacks information sharing mechanism. It is the first time that there is an effort from the government of India to make an initiative on the rare disease registries, which would be more formal and systemic in nature. Since there is lack of epidemiological evidence for the rare disease in India, it is interesting to note how rare disease policy is being attempted in the vacuum of evidence required for the policy process. The objective of this study is to analyse rare disease registry creation and implementation from the parameters of evolutionary policy perspective in the absence of evidence for the policy process. This study will be exploratory and qualitative in nature, primarily based on the interviews of stakeholders involved in the rare disease registry creation and implementation. Some secondary data will include various documents related to rare disease registry. The expected outcome of this study would be on the role of stakeholders in the generation of evidence for the rare disease registry creation and implementation. This study will also try to capture negotiations and deliberations on the ethical issues in terms of data collection, preservation, and protection.Keywords: evolutionary policy perspective, evidence for policy, rare disease policy, rare disease in India
Procedia PDF Downloads 207675 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 666674 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)
Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini
Abstract:
Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process
Procedia PDF Downloads 494673 Study of the Benefit Analysis Using Vertical Farming Method in Urban Renewal within the Older City of Taichung
Authors: Hsu Kuo-Wei, Tan Roon Fang, Chao Jen-chih
Abstract:
Cities face environmental challenges, including over-urbanization issues, air and water quality issues, lack of green space, excess heat capture, polluted storm water runoff and lack of ecological biodiversity. The vertical farming holds the condition of technology addressing these issues by enabling more food to be produced with finite less resources use and space. Most of the existing research regarding to technology Industry of agriculture between plant factory and vertical greening, which with high costs and high-technology. Relative research developed a sustainable model for construction and operation of the vertical farm in urban housing which aims to revolutionize our daily life of food production and urban development. However, those researches focused on quantitative analysis. This study utilized relative research for key variables of benefits of vertical farming. In the second stage, utilizes Fuzzy Delphi Method to obtain the critical factors of benefits of vertical farming using in Urban Renewal by interviewing the foregoing experts. Then, Analytic Hierarchy Process is applied to find the importance degree of each criterion as the measurable indices of the vertical farming method in urban renewal within the older city of Taichung.Keywords: urban renewal, vertical farming, urban agriculture, benefit analysis, the older city of Taichung
Procedia PDF Downloads 469672 Evaluating Language Loss Effect on Autobiographical Memory by Examining Memory Phenomenology in Bilingual Speakers
Authors: Anastasia Sorokina
Abstract:
Graduate language loss or attrition has been well documented in individuals who migrate and become emersed in a different language environment. This phenomenon of first language (L1) attrition is an example of non-pathological (not due to trauma) and can manifest itself in frequent pauses, search for words, or grammatical errors. While the widely experienced loss of one’s first language might seem harmless, there is convincing evidence from the disciplines of Developmental Psychology, Bilingual Studies, and even Psychotherapy that language plays a crucial role in the memory of self. In fact, we remember, store, and share personal memories with the help of language. Dual-Coding Theory suggests that language memory code deterioration could lead to forgetting. Yet, no one has investigated a possible connection between language loss and memory. The present study aims to address this research gap by examining a corpus of 1,495 memories of Russian-English bilinguals who are on a continuum of L1 (first language) attrition. Since phenomenological properties capture how well a memory is remembered, the following descriptors were selected - vividness, ease of recall, emotional valence, personal significance, and confidence in the event. A series of linear regression statistical analyses were run to examine the possible negative effects of L1 attrition on autobiographical memory. The results revealed that L1 attrition might compromise perceived vividness and confidence in the event, which is indicative of memory deterioration. These findings suggest the importance of heritage language maintenance in immigrant communities who might be forced to assimilate as language loss might negatively affect the memory of self.Keywords: L1 attrition, autobiographical memory, language loss, memory phenomenology, dual coding
Procedia PDF Downloads 120671 Determining Importance Level of Factors Affecting Selection of Online Shopping Website with AHP: A Research on Young Consumers
Authors: Nurullah Ekmekci, Omer Akkaya, Vural Cagliyan
Abstract:
Increased use of the Internet has resulted in the emergence of a new retail types called online shopping or electronic retail (e-retail). The rapid growth of the Internet has enabled customers to search information about the product and buy these products or services from e-retailers. Although this new form of shopping has grown in a remarkable way because of offering easiness to people, it is not an easy task to capture the success by distinguishing from competitors in this environment which millions of players takes place. For the success, e-retailers should determine the factors which the customers take notice while they are buying from e-retailers. This paper aims to identify the factors that provide preferability for the online shopping websites and the importance levels of these factors. These main criteria which have taken notice are Customer Service Performance (CSP), Website Performance (WSP), Criteria Related to Product (CRP), Ease of Payment (EP), Security/Privacy (SP), Ease of Return (ER), Delivery Service Performance (DSP) and Order Fulfillment Performance (OFP). It has benefited from Analytic Hierarchy Process to determine the priority of the criteria. Based on analysis, Security/Privacy (SP) criteria seems to be most important criterion with 22 % weight. Companies should attach importance to the security and privacy for making their online website more preferable among the online shoppers.Keywords: AHP (analytical hierarchy process), multi-criteria decision making, online shopping, shopping
Procedia PDF Downloads 240670 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky
Authors: Eman Mayah, Raid Hanna
Abstract:
This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.Keywords: daylight levels, educational building, Façade fenestration, overcast weather
Procedia PDF Downloads 406669 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint
Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung
Abstract:
Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow
Procedia PDF Downloads 128668 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation
Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang
Abstract:
Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres
Procedia PDF Downloads 71667 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection
Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park
Abstract:
The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis
Procedia PDF Downloads 469666 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images
Authors: Qiang Wang, Hongyang Yu
Abstract:
Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations
Procedia PDF Downloads 81665 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads
Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin
Abstract:
Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.Keywords: FEM, tissue, indentation, properties
Procedia PDF Downloads 360664 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression
Procedia PDF Downloads 181663 Political Behavior and Democratic Values: Framing Analysis of Political Discussion Programs in Pakistan
Authors: Umair Nadeem, Sidra Umair
Abstract:
Political behavior of voters and democratic values have been observed an emerging phenomenon in recent years in Pakistan. Privatized TV news channels are taking one sided position on the political issues, corresponding with respective political parties. Since last decade, TV News Channels have undermined this monopoly. Elections 2013 were unique in Pakistan with reference to political behavior and democratic values. Partisan narratives and counter narratives have been witnessed on different TV channels, in last few years. These mediated events seem very important to study the political behavior and democratic values as the country is approaching towards elections 2018. This endeavor is an attempt to capture the framing of the parties, issues in the partisan media culture and framing effects on political behavior of voters. Data for this research come from two data set. Content analysis of selected representative talks shows broadcast on mainstream news channels provide an assessment of the framing while quantitative survey of the discussion program’s viewers from Lahore city provide an evidence of framing effects on political behavior on voters and on democratic values. Regression results help us to argue that the highly partisan shows are strong predictors of polarized views among the audience. Study also grasp the attention of scholars towards the implications of this phenomenon.Keywords: democratic values, partisan media, polarized views, political behavior
Procedia PDF Downloads 183662 Interaction between Breathiness and Nasality: An Acoustic Analysis
Authors: Pamir Gogoi, Ratree Wayland
Abstract:
This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality.Keywords: breathiness, marathi, nasality, voice quality
Procedia PDF Downloads 96661 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 168660 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 132659 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning
Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker
Abstract:
Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning
Procedia PDF Downloads 148658 Design of a Computer Vision Based Exercise Video Game for Senior Citizens
Abstract:
There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.Keywords: about computer vision, video games, gerontology technology, caregiving
Procedia PDF Downloads 83657 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides
Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami
Abstract:
Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane
Procedia PDF Downloads 437656 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application
Authors: Bo Jin
Abstract:
A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing
Procedia PDF Downloads 138655 Gis Database Creation for Impacts of Domestic Wastewater Disposal on BIDA Town, Niger State Nigeria
Authors: Ejiobih Hyginus Chidozie
Abstract:
Geographic Information System (GIS) is a configuration of computer hardware and software specifically designed to effectively capture, store, update, manipulate, analyse and display and display all forms of spatially referenced information. GIS database is referred to as the heart of GIS. It has location data, attribute data and spatial relationship between the objects and their attributes. Sewage and wastewater management have assumed increased importance lately as a result of general concern expressed worldwide about the problems of pollution of the environment contamination of the atmosphere, rivers, lakes, oceans and ground water. In this research GIS database was created to study the impacts of domestic wastewater disposal methods on Bida town, Niger State as a model for investigating similar impacts on other cities in Nigeria. Results from GIS database are very useful to decision makers and researchers. Bida Town was subdivided into four regions, eight zones, and 24 sectors based on the prevailing natural morphology of the town. GIS receiver and structured questionnaire were used to collect information and attribute data from 240 households of the study area. Domestic wastewater samples were collected from twenty four sectors of the study area for laboratory analysis. ArcView 3.2a GIS software, was used to create the GIS databases for ecological, health and socioeconomic impacts of domestic wastewater disposal methods in Bida town.Keywords: environment, GIS, pollution, software, wastewater
Procedia PDF Downloads 421654 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua
Authors: Shervin Khazaeli, Shahab Haj-zamani
Abstract:
Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.Keywords: contact problems, discrete element method, extended-finite element method, soil-structure interaction
Procedia PDF Downloads 505653 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.Keywords: camera calibration, ice detection, ice load measurements, image processing
Procedia PDF Downloads 368652 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning
Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka
Abstract:
Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.Keywords: road conditions, built-in vehicle technology, deep learning, drones
Procedia PDF Downloads 126651 Leadership Development of Professional Ethiopian Women in Science, Technology, Engineering, and Mathematics: Insights Gained through an Onsite Culturally Embedded Workshop
Authors: Araceli Martinez Ortiz, Gillian Bayne, Solomon Abraham
Abstract:
This paper describes research led by faculty from three American universities and four Ethiopian universities on the delivery of professional leadership development for early-career female Ethiopian university instructors in the Science, Technology, Engineering, and Mathematics (STEM) fields. The objective was to carry out a case study focused on the impact of an innovative intervention program designed to assist in the empowerment and leadership development related to teaching effectiveness, scholarly activity participation, and professional service participation by female instructors. This research was conducted utilizing a case study methodology for the weeklong intervention and a survey to capture the voices of the leadership program participants. The data regarding insights into the challenges and opportunities for women in these fields is presented. The research effort project expands upon existing linkages between universities to support professional development and research effort in this region of the world. Findings indicate the positive reception of this kind of professional development by the participating women. Survey data also reflects the particular cultural challenges professional women in STEM education face in Ethiopia as well as the global challenges of balancing family expectations with career development.Keywords: Ethiopian women, STEM leadership, professional development, gender equity
Procedia PDF Downloads 112650 A Uniformly Convergent Numerical Scheme for a Singularly Perturbed Volterra Integrodifferential Equation
Authors: Nana Adjoah Mbroh, Suares Clovis Oukouomi Noutchie
Abstract:
Singularly perturbed problems are parameter dependent problems, and they play major roles in the modelling of real-life situational problems in applied sciences. Thus, designing efficient numerical schemes to solve these problems is of much interest since the exact solutions of such problems may not even exist. Generally, singularly perturbed problems are identified by a small parameter multiplying at least the highest derivative in the equation. The presence of this parameter causes the solution of these problems to be characterized by rapid oscillations. This unique feature renders classical numerical schemes inefficient since they are unable to capture the behaviour of the exact solution in the part of the domain where the rapid oscillations are present. In this paper, a numerical scheme is proposed to solve a singularly perturbed Volterra Integro-differential equation. The scheme is based on the midpoint rule and employs the non-standard finite difference scheme to solve the differential part whilst the composite trapezoidal rule is used for the integral part. A fully fledged error estimate is performed, and Richardson extrapolation is applied to accelerate the convergence of the scheme. Numerical simulations are conducted to confirm the theoretical findings before and after extrapolation.Keywords: midpoint rule, non-standard finite difference schemes, Richardson extrapolation, singularly perturbed problems, trapezoidal rule, uniform convergence
Procedia PDF Downloads 126