Search results for: text mining analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29285

Search results for: text mining analysis

28715 Challenges Affecting the Livelihoods of Small-Scale, Aggregate Miners, Vhembe District, Limpopo Province, South Africa

Authors: Ndivhudzannyi Rembuluwani, Francis Dacosta, Emmanuel Mhlongo

Abstract:

The small-scale rock aggregate sector of the mining industry is a major source of employment for a significant number of people, particularly in remote rural areas, where alternative livelihoods are rare. It contributes to local economy by generating income and producing major and essential materials for the building, construction, and other industries. However, the sector is confronted with many challenges that hamper productivity and growth. The problems that confront this sector includes: health and safety, environmental impacts, low production and low adherence to mining legislations. This study investigated the challenges confronting selected small-scale rock aggregate mines in the Vhembe District of Limpopo province of South Africa, assesses the health, safety, low production and environmental impacts associated with aggregate production and to develop an integrated approach of addressing the multi-faceted challenges.

Keywords: health and safety, legislative framework, productivity, rock aggregate, small-scale mining

Procedia PDF Downloads 506
28714 An Experience of Translating an Excerpt from Sophie Adonon’s Echos de Femmes from French to English, Using Reverso.

Authors: Michael Ngongeh Mombe

Abstract:

This Paper seeks to investigate an assertion made by some colleagues that there is no need paying a human translator to translate their literary texts, that there are softwares such as Reverso that can be used to do the translation. The main objective of this study is to examine the veracity of this assertion using Reverso to translate a literary text without any post-editing by a human translator. The work is based on two theories: Skopos and Communicative theories of translation. The work is a documentary research where data were collected from published documents in libraries, on the internet and from the translation produced by Reverso. We made a comparative text analyses of both source and target texts in a bid to highlight the weaknesses and strengths of the software. Findings of this work revealed that those who advocate the use of only Machine translation do so in ignorance of the translation mistakes usually made by the software. From the review of all the 268 segments of translation, we found out that the translation produced by Reverso is fraught with errors. We therefore recommend the use of human translators to either do the translation of their literary texts or revise the translation produced by machine to conform to the skopos of the work. This paper is based on Reverso translation. Similar works in the near future will be based on the other translation softwares to determine their weaknesses and strengths.

Keywords: machine translation, human translator, Reverso, literary text

Procedia PDF Downloads 96
28713 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity

Authors: Vahid Ebrahimipour

Abstract:

Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.

Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation

Procedia PDF Downloads 105
28712 Radio-Frequency Identification (RFID) Based Smart Helmet for Coal Miners

Authors: Waheeda Jabbar, Ali Gul, Rida Noor, Sania Kurd, Saba Gulzar

Abstract:

Hundreds of miners die from mining accidents each year due to poisonous gases found underground mining areas. This paper proposed an idea to protect the precious lives of mining workers. A supervising system is designed which is based on ZigBee wireless technique along with the smart protective helmets to detect real-time surveillance and it gives early warnings on presence of different poisonous gases in order to save mineworkers from any danger caused by these poisonous gases. A wireless sensor network is established using ZigBee wireless technique by integrating sensors on the helmet, apart from this helmet have embedded heartbeat sensor to detect the pulse rate and be aware of the physical or mental strength of a mineworker to increase the potential safety. Radio frequency identification (RFID) technology is used to find the location of workers. A ZigBee based base station is set-upped to control the communication. The idea is implemented and results are verified through experiment.

Keywords: Arduino, gas sensor (MQ7), RFID, wireless ZigBee

Procedia PDF Downloads 456
28711 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 140
28710 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 173
28709 Pregnant Women in Substance Abuse: Transition of Characteristics and Mining of Association from Teds-a 2011 to 2018

Authors: Md Tareq Ferdous Khan, Shrabanti Mazumder, MB Rao

Abstract:

Background: Substance use during pregnancy is a longstanding public health problem that results in severe consequences for pregnant women and fetuses. Methods: Eight (2011-2018) datasets on pregnant women’s admissions are extracted from TEDS-A. Distributions of sociodemographic, substance abuse behaviors, and clinical characteristics are constructed and compared over the years for trends by the Cochran-Armitage test. Market basket analysis is used in mining the association among polysubstance abuse. Results: Over the years, pregnant woman admissions as the percentage of total and female admissions remain stable, where total annual admissions range from 1.54 to about 2 million with the female share of 33.30% to 35.61%. Pregnant women aged 21-29, 12 or more years of education, white race, unemployed, holding independent living status are among the most vulnerable. Concerns prevail on a significant number of polysubstance users, young age at first use, frequency of daily users, and records of prior admissions (60%). Trends of abused primary substances show a significant rise in heroin (66%) and methamphetamine (46%) over the years, although the latest year shows a considerable downturn. On the other hand, significant decreasing patterns are evident for alcohol (43%), marijuana or hashish (24%), cocaine or crack (23%), other opiates or synthetics (36%), and benzodiazepines (29%). Basket analysis reveals some patterns of co-occurrence of substances consistent over the years. Conclusions: This comprehensive study can work as a reference to identify the most vulnerable groups based on their characteristics and deal with the most hazardous substances from their evidence of co-occurrence.

Keywords: basket analysis, pregnant women, substance abuse, trend analysis

Procedia PDF Downloads 197
28708 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
28707 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues

Authors: Muhammad Muhammad Suleiman

Abstract:

Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.

Keywords: cloud computing, steganography, information hiding, cloud storage, security

Procedia PDF Downloads 193
28706 Prosody of Text Communication: Inducing Synchronization and Coherence in Chat Conversations

Authors: Karolina Ziembowicz, Andrzej Nowak

Abstract:

In the current study, we examined the consequences of adding prosodic cues to text communication by allowing users to observe the process of message creation while engaged in dyadic conversations. In the first condition, users interacted through a traditional chat that requires pressing ‘enter’ to make a message visible to an interlocutor. In another, text appeared on the screen simultaneously as the sender was writing it, letter after letter (Synchat condition), so that users could observe the varying rhythm of message production, precise timing of message appearance, typos and their corrections. The results show that the ability to observe the dynamics of message production had a twofold effect on the social interaction process. First, it enhanced the relational aspect of communication – interlocutors synchronized their emotional states during the interaction, their communication included more statements on relationship building, and they evaluated the Synchat medium as more personal and emotionally engaging. Second, it increased the coherence of communication, reflected in greater continuity of the topics raised in Synchat conversations. The results are discussed from the interaction design (IxD) perspective.

Keywords: chat communication, online conversation, prosody, social synchronization, interaction incoherence, relationship building

Procedia PDF Downloads 142
28705 Optimizing the Readability of Orthopaedic Trauma Patient Education Materials Using ChatGPT-4

Authors: Oscar Covarrubias, Diane Ghanem, Christopher Murdock, Babar Shafiq

Abstract:

Introduction: ChatGPT is an advanced language AI tool designed to understand and generate human-like text. The aim of this study is to assess the ability of ChatGPT-4 to re-write orthopaedic trauma patient education materials at the recommended 6th-grade level. Methods: Two independent reviewers accessed ChatGPT-4 (chat.openai.com) and gave identical instructions to simplify the readability of provided text to a 6th-grade level. All trauma-related articles by the Orthopaedic Trauma Association (OTA) and American Academy of Orthopaedic Surgeons (AAOS) were sequentially provided. The academic grade level was determined using the Flesh-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE). Paired t-tests and Wilcox-rank sum tests were used to compare the FKGL and FRE between the ChatGPT-4 revised and original text. Inter-rater correlation coefficient (ICC) was used to assess variability in ChatGPT-4 generated text between the two reviewers. Results: ChatGPT-4 significantly reduced FKGL and increased FRE scores in the OTA (FKGL: 5.7±0.5 compared to the original 8.2±1.1, FRE: 76.4±5.7 compared to the original 65.5±6.6, p < 0.001) and AAOS articles (FKGL: 5.8±0.8 compared to the original 8.9±0.8, FRE: 76±5.5 compared to the original 56.7±5.9, p < 0.001). On average, 14.6% of OTA and 28.6% of AAOS articles required at least two revisions by ChatGPT-4 to achieve a 6th-grade reading level. ICC demonstrated poor reliability for FKGL (OTA 0.24, AAOS 0.45) and moderate reliability for FRE (OTA 0.61, AAOS 0.73). Conclusion: This study provides a novel, simple and efficient method using language AI to optimize the readability of patient education content which may only require the surgeon’s final proofreading. This method would likely be as effective for other medical specialties.

Keywords: artificial intelligence, AI, chatGPT, patient education, readability, trauma education

Procedia PDF Downloads 73
28704 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography

Authors: Ariungerel Jargal

Abstract:

: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.

Keywords: impedance tomography, cave mining, soil, EIT device

Procedia PDF Downloads 127
28703 Generating Insights from Data Using a Hybrid Approach

Authors: Allmin Susaiyah, Aki Härmä, Milan Petković

Abstract:

Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.

Keywords: data mining, insight mining, natural language generation, pre-trained language models

Procedia PDF Downloads 123
28702 Comparative Study of Universities’ Web Structure Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

This paper is meant to analyze the ranking of University of Malaysia Terengganu, UMT’s website in the World Wide Web. There are only few researches have been done on comparing the ranking of universities’ websites so this research will be able to determine whether the existing UMT’s website is serving its purpose which is to introduce UMT to the world. The ranking is based on hub and authority values which are accordance to the structure of the website. These values are computed using two web-searching algorithms, HITS and SALSA. Three other universities’ websites are used as the benchmarks which are UM, Harvard and Stanford. The result is clearly showing that more work has to be done on the existing UMT’s website where important pages according to the benchmarks, do not exist in UMT’s pages. The ranking of UMT’s website will act as a guideline for the web-developer to develop a more efficient website.

Keywords: algorithm, ranking, website, web structure mining

Procedia PDF Downloads 518
28701 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
28700 Student Performance and Confidence Analysis on Education Virtual Environments through Different Assessment Strategies

Authors: Rubén Manrique, Delio Balcázar, José Parrado, Sebastián Rodríguez

Abstract:

Hand in hand with the evolution of technology, education systems have moved to virtual environments to provide increased coverage and facilitate the access to education. However, measuring student performance in virtual environments presents significant challenges to ensure students are acquiring the expected skills. In this study, the confidence and performance of engineering students in virtual environments is analyzed through different evaluation strategies. The effect of the assessment strategy in student confidence is identified using educational data mining techniques. Four assessment strategies were used. First, a conventional multiple choice test; second, a multiple choice test with feedback; third, a multiple choice test with a second chance; and fourth; a multiple choice test with feedback and second chance. Our results show that applying testing with online feedback strategies can influence positively student confidence.

Keywords: assessment strategies, educational data mining, student performance, student confidence

Procedia PDF Downloads 354
28699 A Concept of Data Mining with XML Document

Authors: Akshay Agrawal, Anand K. Srivastava

Abstract:

The increasing amount of XML datasets available to casual users increases the necessity of investigating techniques to extract knowledge from these data. Data mining is widely applied in the database research area in order to extract frequent correlations of values from both structured and semi-structured datasets. The increasing availability of heterogeneous XML sources has raised a number of issues concerning how to represent and manage these semi structured data. In recent years due to the importance of managing these resources and extracting knowledge from them, lots of methods have been proposed in order to represent and cluster them in different ways.

Keywords: XML, similarity measure, clustering, cluster quality, semantic clustering

Procedia PDF Downloads 385
28698 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 455
28697 An Eco-Translatology Approach to the Translation of Spanish Tourism Advertising in Digital Communication in Chinese

Authors: Mingshu Liu, Laura Santamaria, Xavier Carmaniu Mainadé

Abstract:

As one of the sectors most affected by the COVID-19 pandemic, tourism is facing challenges in revitalizing the industry. But at the same time, it would be a good opportunity to take advantage of digital communication as an effective tool for tourism promotion. Our proposal aims to verify the linguistic operations on online platforms in China. The research is carried out based on the theory of Eco-traductology put forward by Gengshen Hu, whose contribution focuses on the translator's adaptation to the ecosystem environment and the three elaborated parameters (linguistic, cultural and communicative). We also relate it to Even-Zohar's and Toury's theoretical postulates on the Polysystem to elaborate on interdisciplinary methodology. Such a methodology allows us to analyze personal treatments and phraseology in the target text. As for the corpus, we adopt the official Spanish-language website of Turismo de España as the source text and the postings on the two major social networks in China, Weibo and Wechat, in 2019. Through qualitative analysis, we conclude that, in the tourism advertising campaign on Chinese social networks, chengyu (Chinese phraseology) and honorific titles are used very frequently.

Keywords: digital communication, eco-traductology, polysystem theory, tourism advertising

Procedia PDF Downloads 229
28696 The Challenges of Hyper-Textual Learning Approach for Religious Education

Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi

Abstract:

State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.

Keywords: Hyper-textual, learning, religious education, learning text

Procedia PDF Downloads 313
28695 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences

Authors: Yuan-Jye Tseng, Ching-Yen Chen

Abstract:

In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.

Keywords: cluster analysis, customer preferences, design evaluation, design for customer preferences, product design

Procedia PDF Downloads 191
28694 Sentiment Analysis of Creative Tourism Experiences: The Case of Girona, Spain

Authors: Ariadna Gassiot, Raquel Camprubi, Lluis Coromina

Abstract:

Creative tourism involves the participation of tourists in the co-creation of their own experiences in a tourism destination. Consequently, creative tourists move from a passive behavior to an active behavior, and tourism destinations address this type of tourism by changing the scenario and making tourists learn and participate while they travel instead of merely offering tourism products and services to them. In creative tourism experiences, tourists are in close contact with locals and their culture. In destinations where culture (i.e. food, heritage, etc.) is the basis of their offer, such as Girona, Spain, tourism stakeholders must especially consider, analyze, and further foster the co-creation of authentic tourism experiences. They should focus on discovering more about these experiences, their main attributes, visitors’ opinions, etc. Creative tourists do not only participate while they travel around the world, but they also have and active post-travel behavior. They feel free to write about tourism experiences in different channels. User-generated content becomes crucial for any tourism destination when analyzing the market, making decisions, planning strategies, and when addressing issues, such as their reputation and performance. Sentiment analysis is a methodology used to automatically analyze semantic relationships and meanings in texts, so it is a way to extract tourists’ emotions and feelings. Tourists normally express their views and opinions regarding tourism products and services. They may express positive, neutral or negative feelings towards these products or services. For example, they may express anger, love, hate, sadness or joy towards tourism services and products. They may also express feelings through verbs, nouns, adverbs, adjectives, among others. Sentiment analysis may help tourism professionals in a range of areas, from marketing to customer service. For example, sentiment analysis allows tourism stakeholders to forecast tourism expenditure and tourist arrivals, or to analyze tourists’ profile. While there is an increasing presence of creativity in tourists’ experiences, there is also an increasing need to explore tourists’ expressions about these experiences. There is a need to know how they feel about participating in specific tourism activities. Thus, the main objective of this study is to analyze the meanings, emotions and feelings that tourists express about their creative experiences in Girona, Spain. To do so, sentiment analysis methodology is used. Results show the diversity of tourists who actively participate in tourism in Girona. Their opinions refer both to tangible aspects (e.g. food, museums, etc.) and to intangible aspects (e.g. friendliness, nightlife, etc.) of tourism experiences. Tourists express love, likeliness and other sentiments towards tourism products and services in Girona. This study can help tourism stakeholders in understanding tourists’ experiences and feelings. Consequently, they can offer more customized products and services and they can efficiently make them participate in the co-creation of their own tourism experiences.

Keywords: creative tourism, sentiment analysis, text mining, user-generated content

Procedia PDF Downloads 180
28693 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot

Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.

Abstract:

Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.

Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud

Procedia PDF Downloads 77
28692 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
28691 Social Media and Internet Celebrity for Social Commerce Intentional and Behavioral Recommendations

Authors: Shu-Hsien Liao, Yao-Hsuan Yang

Abstract:

Social media is a virtual community and online platform that people use to create, share, and exchange opinions/experiences. Internet celebrities are people who become famous on the Internet, increasing their popularity through their social networking or video websites. Social commerce (s-ecommerce) is the combination of social relations and commercial transaction activities. The combination of social media and Internet celebrities is an emerging model for the development of s-ecommerce. With recent advances in system sciences, recommendation systems are gradually moving to develop intentional and behavioral recommendations. This background leads to the research issues regarding digital and social media in enterprises. Thus, this study implements data mining analytics, including clustering analysis and association rules, to investigate Taiwanese users (n=2,102) to investigate social media and Internet celebrities’ preferences to find knowledge profiles/patterns/rules for s-ecommerce intentional and behavioral recommendations.

Keywords: social media, internet celebrity, social commerce (s-ecommerce), data mining analytics, intentional and behavioral recommendations

Procedia PDF Downloads 33
28690 Exchanges between Literature and Cinema: Scripted Writing in the Novel "Miguel e os Demônios", by Lourenço Mutarelli

Authors: Marilia Correa Parecis De Oliveira

Abstract:

This research looks at the novel Miguel e os demônios (2009), by the contemporary Brazilian author Lourenço Mutarelli. In it, the presence of film language resources is remarkable, creating thus a kind of scripted writing. We intend to analyze the presence of film language in work under study, in which there is a mixture of the characteristics of the novel and screenplay genres, trying to explore which aesthetic and meaning effects of the ownership of a visual language for the creation of a literary text create in the novel. The objective of this research is to identify and analyze the formal and thematic aspects that characterize the hybridity of literature and film in the novel by Lourenço Mutarelli. The method employed comprises reading and production cataloging of theoretical and critical texts, literary and film theory, historical review about the author, and also the realization of an analytical and interpretative reading of novel. In Miguel e os demônios there is a range of formal and thematic elements of popular narrative genres such as the detective story and action film, with a predominance of verb forms in the present and NPs - features that tend to make present the narrated scenes, as in the cinema. The novel, in this sense, is located in an intermediate position between the literary text and the pre-film text, as though filled with proper elements of the language of film, you can not fit it categorically in the genre script, since it does not reduce the script because aspires to be read as a novel. Therefore, the difficulty of fitting the work in a single gender also refused to be extra-textual factors - such as your publication as novel - but, rather, by the binary classifications serve solely to imprison the work on a label, which impoverish not only reading the text, as also the possibility of recognizing literature as a constant dialogue space and interaction with other media. We can say, therefore, that frame the work Miguel e os demônios in one of the two genres (novel or screenplay) proves not enough, since the text is revealed a hybrid narrative, consisting in a kind of scripted writing. In this sense, it is like a text that is born in a society saturated by audiovisual in their daily lives in order to be consumed by readers who, in ascending scale, exchange books by visual narratives. However, the novel uses film's resources without giving up its constitution as literature; on the contrary, it enriches the visual and linguistically, dialoguing with the complex contemporary horizon marked by the cultural industry.

Keywords: Brazilian literature, cinema, Lourenço Mutarelli, screenplay

Procedia PDF Downloads 312
28689 Mining and Ecological Events and its Impact on the Genesis and Geo-Distribution of Ebola Outbreaks in Africa

Authors: E Tambo, O. O. Olalubi, E. C. Ugwu, J. Y. Ngogang

Abstract:

Despite the World Health Organization (WHO) declaration of international health emergency concern, the status quo of responses and efforts to stem the worst-recorded Ebola epidemic Ebola outbreak is still precariously inadequate in most of the affected in West. Mining natural resources have been shown to play a key role in both motivating and fuelling ethnic, civil and armed conflicts that have plagued a number of African countries over the last decade. Revenues from the exploitation of natural resources are not only used in sustaining the national economy but also armies, personal enrichment and building political support. Little is documented on the mining and ecological impact on the emergence and geographical distribution of Ebola in Africa over time and space. We aimed to provide a better understanding of the interconnectedness among issues of mining natural, resource management, mining conflict and post-conflict on Ebola outbreak and how wealth generated from abundant natural resources could be better managed in promoting research and development towards strengthening environmental, socioeconomic and health systems sustainability on Ebola outbreak and other emerging diseases surveillance and responses systems prevention and control, early warning alert, durable peace and sustainable development rather than to fuel conflicts, resurgence and emerging diseases epidemics in the perspective of community and national/regional approach. Our results showed the first assessment of systematic impact of all major minerals conflict events diffusion over space and time and mining activities on nine Ebola genesis and geo-distribution in affected countries across Africa. We demonstrate how, where and when mining activities in Africa increase ecological degradation, conflicts at the local level and then spreads violence across territory and time by enhancing the financial capacities of fighting groups/ethnics and diseases onset. In addition, led process of developing minimum standards for natural resource governance; improving governmental and civil society capacity for natural resource management, including the strengthening of monitoring and enforcement mechanisms; understanding the post-mining and conflicts community or national reconstruction and rehabilitation programmes in strengthening or developing community health systems and regulatory mechanisms. In addition the quest for the control over these resources and illegal mining across the landscape forest incursion provided increase environmental and ecological instability and displacement and disequilibrium, therefore affecting the intensity and duration of mining and conflict/wars and episode of Ebola outbreaks over time and space. We highlight the key findings and lessons learnt in promoting country or community-led process in transforming natural resource wealth from a peace liability to a peace asset. The imperative necessity for advocacy and through facilitating intergovernmental deliberations on critical issues and challenges affecting Africa community transforming exploitation of natural resources from a peace liability to outbreak prevention and control. The vital role of mining in increasing government revenues and expenditures, equitable distribution of wealth and health to all stakeholders, in particular local communities requires coordination, cooperative leadership and partnership in fostering sustainable developmental initiatives from mining context to outbreak and other infectious diseases surveillance responses systems in prevention and control, and judicious resource management.

Keywords: mining, mining conflicts, mines, ecological, Ebola, outbreak, mining companies, miners, impact

Procedia PDF Downloads 302
28688 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
28687 Existential Feeling in Contemporary Chinese Novels: The Case of Yan Lianke

Authors: Thuy Hanh Nguyen Thi

Abstract:

Since 1940, existentialism has penetrated into China and continued to profoundly influence contemporary Chinese literature. By the method of deep reading and text analysis, this article analyzes the existential feeling in Yan Lianke’s novels through various aspects: the Sisyphus senses, the narrative rationalization and the viewpoint of the dead. In addition to pointing out the characteristics of the existential sensation in the writer’s novels, the analysis of the article also provides an insight into the nature and depth of contemporary Chinese society.

Keywords: Yan Lianke, existentialism, the existential feeling, contemporary Chinese literature

Procedia PDF Downloads 141
28686 Regulating Transnational Corporations and Protecting Human Rights: Analyzing the Efficiency of International Legal Framework

Authors: Stellina Jolly

Abstract:

July 18th to August 19th 2013 has gone down in the history of India for undertaking the country’s first environment referendum. The Supreme Court had ruled that the Vedanta Group's bauxite mining project in the Niyamgiri Hills of Orissa will have to get clearance from the gram sabha, which will consider the cultural and religious rights of the tribals and forest dwellers living in Rayagada and Kalahandi districts. In the Niyamgiri hills, people of small tribal hamlets were asked to voice their opinion on bauxite mining in their habitat. The ministry has reiterated its stand that mining cannot be allowed on the Niyamgiri hills because it will affect the rights of the Dongria Kondhs. The tribal person who occupies the Niyamgiri Hills in Eastern India accomplished their first success in 2010 in their struggle to protect and preserve their existence, culture and land against Vedanta a London-based mining giant. In August, 2010 Government of India revoked permission for Vedanta Resources to mine bauxite from hills in Orissa State where the Dongria Kondh live as forest dwellers. This came after various protests and reports including amnesty report wherein it highlighted that an alumina refinery in eastern India operated by a subsidiary of mining company. Vedanta was accused of causing air and water pollution that threatens the health of local people and their access to water. The abuse of human rights by corporate is not a new issue it has occurred in Africa, Asia and other parts of the world. Paper focuses on the instances and extent of human right especially in terms of environment violations by corporations. Further Paper details on corporations and sustainable development. Paper finally comes up with certain recommendation including call for a declaration by United Nations on Corporate environment Human Rights Liability.

Keywords: environment, corporate, human rights, sustainable development

Procedia PDF Downloads 477