Search results for: text localization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1680

Search results for: text localization

1110 Detect Critical Thinking Skill in Written Text Analysis. The Use of Artificial Intelligence in Text Analysis vs Chat/Gpt

Authors: Lucilla Crosta, Anthony Edwards

Abstract:

Companies and the market place nowadays struggle to find employees with adequate skills in relation to anticipated growth of their businesses. At least half of workers will need to undertake some form of up-skilling process in the next five years in order to remain aligned with the requests of the market . In order to meet these challenges, there is a clear need to explore the potential uses of AI (artificial Intelligence) based tools in assessing transversal skills (critical thinking, communication and soft skills of different types in general) of workers and adult students while empowering them to develop those same skills in a reliable trustworthy way. Companies seek workers with key transversal skills that can make a difference between workers now and in the future. However, critical thinking seems to be the one of the most imprtant skill, bringing unexplored ideas and company growth in business contexts. What employers have been reporting since years now, is that this skill is lacking in the majority of workers and adult students, and this is particularly visible trough their writing. This paper investigates how critical thinking and communication skills are currently developed in Higher Education environments through use of AI tools at postgraduate levels. It analyses the use of a branch of AI namely Machine Learning and Big Data and of Neural Network Analysis. It also examines the potential effect the acquisition of these skills through AI tools and what kind of effects this has on employability This paper will draw information from researchers and studies both at national (Italy & UK) and international level in Higher Education. The issues associated with the development and use of one specific AI tool Edulai, will be examined in details. Finally comparisons will be also made between these tools and the more recent phenomenon of Chat GPT and forthcomings and drawbacks will be analysed.

Keywords: critical thinking, artificial intelligence, higher education, soft skills, chat GPT

Procedia PDF Downloads 110
1109 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters

Procedia PDF Downloads 197
1108 TRAC: A Software Based New Track Circuit for Traffic Regulation

Authors: Jérôme de Reffye, Marc Antoni

Abstract:

Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies.

Keywords: track section, track circuits, space-time crossing, adaptive track section, automatic railway signalling

Procedia PDF Downloads 331
1107 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
1106 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 157
1105 Narrative Constructs and Environmental Engagement: A Textual Analysis of Climate Fiction’s Role in Shaping Sustainability Consciousness

Authors: Dean J. Hill

Abstract:

This paper undertakes the task of conducting an in-depth textual analysis of the cli-fi genre. It examines how writing in the genre contributes to expressing and facilitating the articulation of environmental consciousness through the form of narrative. The paper begins by situating cli-fi within the literary continuum of ecological narratives and identifying the unique textual characteristics and thematic preoccupations of this area. The paper unfolds how cli-fi transforms the esoteric nature of climate science into credible narrative forms by drawing on language use, metaphorical constructs, and narrative framing. It also involves how descriptive and figurative language in the description of nature and disaster makes climate change so vivid and emotionally resonant. The work also points out the dialogic nature of cli-fi, whereby the characters and the narrators experience inner disputes in the novel regarding the ethical dilemma of environmental destruction, thus demanding the readers challenge and re-evaluate their standpoints on sustainability and ecological responsibilities. The paper proceeds with analysing the feature of narrative voice and its role in eliciting empathy, as well as reader involvement with the ecological material. In looking at how different narratorial perspectives contribute to the emotional and cognitive reaction of the reader to text, this study demonstrates the profound power of perspective in developing intimacy with the dominating concerns. Finally, the emotional arc of cli-fi narratives, running its course over themes of loss, hope, and resilience, is analysed in relation to how these elements function to marshal public feeling and discourse into action around climate change. Therefore, we can say that the complexity of the text in the cli-fi not only shows the hard edge of the reality of climate change but also influences public perception and behaviour toward a more sustainable future.

Keywords: cli-fi genre, ecological narratives, emotional arc, narrative voice, public perception

Procedia PDF Downloads 31
1104 Construction and Analysis of Tamazight (Berber) Text Corpus

Authors: Zayd Khayi

Abstract:

This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.

Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods

Procedia PDF Downloads 66
1103 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
1102 Upside Down Words as Initial Clinical Presentation of an Underlying Acute Ischemic Stroke

Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing

Abstract:

Background: Reversal of vision metamorphopsia is a transient form of metamorphopsia described as an upside-down alteration of the visual field in the coronal plane. Patients would describe objects, such as cups, upside down, but the tea would not spill, and people would walk on their heads. It is extremely rare as a stable finding, lasting days or weeks. We report a case wherein this type of metamorphopsia occurred only in written words and lasted for six months. Objective: To the best of our knowledge, we report the first rare occurrence of reversal of vision metamorphopsia described as inverted words as the sole initial presentation of an underlying stroke. Case Presentation: We report a 59-year-old male with poorly controlled hypertension and diabetes mellitus who presented with a 3-day history of difficulty reading, described as the words were turned upside down as if the words were inverted horizontally then with the progression of deficits such as right homonymous hemianopia and achromatopsia, prosopagnosia. Cranial magnetic resonance imaging (MRI) revealed an acute infarct on the left posterior cerebral artery territory. Follow-up after six months revealed improvement of the visual field cut but with the persistence of the higher cortical function deficits. Conclusion: We report the first rare occurrence of metamorphopsia described as purely inverted words as the sole initial presentation of an underlying stroke. The differential diagnoses of a patient presenting with text reversal metamorphopsia should include stroke in the occipitotemporal areas. It further expands the landscape of metamorphopsias due to its exclusivity to written words and prolonged duration. Knowing these clinical features will help identify the lesion locus and improve subsequent stroke care, especially in time-bound management like intravenous thrombolysis.

Keywords: rare presentation, text reversal metamorphopsia, ischemic stroke, stroke

Procedia PDF Downloads 59
1101 Localization Mobile Beacon Using RSSI

Authors: Sallama Resen, Celal Öztürk

Abstract:

Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.

Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength

Procedia PDF Downloads 346
1100 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
1099 Emotions Triggered by Children’s Literature Images

Authors: Ana Maria Reis d'Azevedo Breda, Catarina Maria Neto da Cruz

Abstract:

The role of images/illustrations in communicating meanings and triggering emotions assumes an increasingly relevant role in contemporary texts, regardless of the age group for which they are intended or the nature of the texts that host them. It is no coincidence that children's books are full of illustrations and that the image/text ratio decreases as the age group grows. The vast majority of children's books can be considered multimodal texts containing text and images/illustrations interacting with each other to provide the young reader with a broader and more creative understanding of the book's narrative. This interaction is very diverse, ranging from images/illustrations that are not essential for understanding the storytelling to those that contribute significantly to the meaning of the story. Usually, these books are also read by adults, namely by parents, educators, and teachers who act as mediators between the book and the children, explaining aspects that are or seem to be too complex for the child's context. It should be noted that there are books labeled as children's books that are clearly intended for both children and adults. In this work, following a qualitative and interpretative methodology based on written productions, participant observation, and field notes, we will describe the perceptions of future teachers of the 1st cycle of basic education, attending a master's degree at a Portuguese university, about the role of the image in literary and non-literary texts, namely in mathematical texts, and how these can constitute precious resources for emotional regulation and for the design of creative didactic situations. The analysis of the collected data allowed us to obtain evidence regarding the evolution of the participants' perception regarding the crucial role of images in children's literature, not only as an emotional regulator for young readers but also as a creative source for the design of meaningful didactical situations, crossing other scientific areas, other than the mother tongue, namely mathematics.

Keywords: children’s literature, emotions, multimodal texts, soft skills

Procedia PDF Downloads 94
1098 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 193
1097 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation

Authors: Praveen Kumar, R. Uma, R. P. Sharma

Abstract:

This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.

Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation

Procedia PDF Downloads 72
1096 Real-Time Neuroimaging for Rehabilitation of Stroke Patients

Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge

Abstract:

Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).

Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation

Procedia PDF Downloads 387
1095 “Context” Thinking of Contemporary Urban History Space under the Basis of Enlightenment of Chinese Traditional Cultural Philology: Taking West Expansion Plan of Tianyi Pavilion as An Example

Authors: Wei Yan, Wei Dong

Abstract:

Facing the understanding problem of update and preservation of urban history space under background of rapid Chinese urbanization, so at first there is a need to dig the philosophic principles of “antithesis” and “unification” which are contained in the traditional Chinese literature known as “antithesis” and do the job of planning translation by personal understanding in order to form understanding and value systems of dialectical urban history space under the foundation of “antithesis”. Then we could put forward a “context” concept for urban history space under the foregoing basis. After that, we will take the update and preservation of Ningbo Tianyi Pavilion’s historical district as an example to discuss problems related to understanding of urban history area under the basis of Chinese tradition culture, improvement of value system, construction of urban trait space and Chinese “localization” of planning theory.

Keywords: antithesis, traditional values, city renewal and conservation, the “context” of city history space

Procedia PDF Downloads 447
1094 Experiences Using Autoethnography as a Methodology for Research in Education

Authors: Sarah Amodeo

Abstract:

Drawing on the author’s research about the experiences of female immigrant students in academic Adult Education, in Montreal, Quebec, this paper deconstructs the benefits of autoethnography as a methodology for educators in Adult Education. Autoethnography is an advantageous methodology for teachers in Adult Education as it allows for deep engagement, allowing for educators to reflect on student experiences and their day-to-day realities, and in turn, allowing for professional development, improved andragogy, and changes to classroom practices. Autoethnography is a qualitative research methodology that cultivates strategies for improving adult learning. The paper begins by outlining the context that inspired autoethnography for the author’s work, highlighting the emergence of autoethnography as a method, while examining how it is evolving and drawing on foundational work that continues to inspire research. The basic autoethnographic methodologies that are explored in this paper include the use of memory work in episode formation, the use of personal photographs, and textual readings of artworks. Memory work allows for the researcher to use their professional experience and the lived/shared experiences of their students in their research, drawing on episodes from their past. Personal photographs and descriptions of artwork allow researchers to explore images of learning environments/realities in ways that compliment student experiences. Major findings of the text are examined through the analysis of categories of autoethnography. Specific categories include realism, impressionism, and conceptualism which aid in orientating the analysis and emergent themes that develop through self-study. Finally, the text presents a discussion surrounding the limitations of autoethnography, with attention to the trustworthiness and ethical issues. The paper concludes with a consideration of the implications of autoethnography for adult educators in juxtaposition with youth sector work.

Keywords: artwork, autoethnography, conceptualism, episode formation, impressionism, memory work, personal photographs, and realism, realism

Procedia PDF Downloads 193
1093 Targeted Photoactivatable Multiagent Nanoconjugates for Imaging and Photodynamic Therapy

Authors: Shazia Bano

Abstract:

Nanoconjugates that integrate photo-based therapeutics and diagnostics within a single platform promise great advances in revolutionizing cancer treatments. However, to achieve high therapeutic efficacy, designing functionally efficacious nanocarriers to tightly retain the drug, promoting selective drug localization and release, and the validation of the efficacy of these nanoconjugates is a great challenge. Here we have designed smart multiagent, liposome based targeted photoactivatable multiagent nanoconjugates, doped with a photoactivatable chromophore benzoporphyrin derivative (BPD) labelled with an active targeting ligand cetuximab to target the EGFR receptor (over expressed in various cancer cells) to deliver a combination of therapeutic agents. This study establishes a tunable nanoplatform for the delivery of the photoactivatable multiagent nanoconjugates for tumor-specific accumulation and targeted destruction of cancer cells in complex cancer model to enhance the therapeutic index of the administrated drugs.

Keywords: targeting, photodynamic therapy, photoactivatable, nanoconjugates

Procedia PDF Downloads 142
1092 Fast Tumor Extraction Method Based on Nl-Means Filter and Expectation Maximization

Authors: Sandabad Sara, Sayd Tahri Yassine, Hammouch Ahmed

Abstract:

The development of science has allowed computer scientists to touch the medicine and bring aid to radiologists as we are presenting it in our article. Our work focuses on the detection and localization of tumors areas in the human brain; this will be a completely automatic without any human intervention. In front of the huge volume of MRI to be treated per day, the radiologist can spend hours and hours providing a tremendous effort. This burden has become less heavy with the automation of this step. In this article we present an automatic and effective tumor detection, this work consists of two steps: the first is the image filtering using the filter Nl-means, then applying the expectation maximization algorithm (EM) for retrieving the tumor mask from the brain MRI and extracting the tumor area using the mask obtained from the second step. To prove the effectiveness of this method multiple evaluation criteria will be used, so that we can compare our method to frequently extraction methods used in the literature.

Keywords: MRI, Em algorithm, brain, tumor, Nl-means

Procedia PDF Downloads 336
1091 Diagnosis, Treatment, and Prognosis in Cutaneous Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma: A Narrative Review Apropos of a Case

Authors: Laura Gleason, Sahithi Talasila, Lauren Banner, Ladan Afifi, Neda Nikbakht

Abstract:

Primary cutaneous anaplastic large cell lymphoma (pcALCL) accounts for 9% of all cutaneous T-cell lymphomas. pcALCL is classically characterized as a solitary papulonodule that often enlarges, ulcerates, and can be locally destructive, but overall exhibits an indolent course with overall 5-year survival estimated to be 90%. Distinguishing pcALCL from systemic ALCL (sALCL) is essential as sALCL confers a poorer prognosis with average 5-year survival being 40-50%. Although extremely rare, there have been several cases of ALK-positive ALCL diagnosed on skin biopsy without evidence of systemic involvement, which poses several challenges in the classification, prognostication, treatment, and follow-up of these patients. Objectives: We present a case of cutaneous ALK-positive ALCL without evidence of systemic involvement, and a narrative review of the literature to further characterize that ALK-positive ALCL limited to the skin is a distinct variant with a unique presentation, history, and prognosis. A 30-year-old woman presented for evaluation of an erythematous-violaceous papule present on her right chest for two months. With the development of multifocal disease and persistent lymphadenopathy, a bone marrow biopsy and lymph node excisional biopsy were performed to assess for systemic disease. Both biopsies were unrevealing. The patient was counseled on pursuing systemic therapy consisting of Brentuximab, Cyclophosphamide, Doxorubicin, and Prednisone given the concern for sALCL. Apropos of the patient we searched for clinically evident, cutaneous ALK-positive ALCL cases, with and without systemic involvement, in the English literature. Risk factors, such as tumor location, number, size, ALK localization, ALK translocations, and recurrence, were evaluated in cases of cutaneous ALK-positive ALCL. The majority of patients with cutaneous ALK-positive ALCL did not progress to systemic disease. The majority of cases that progressed to systemic disease in adults had recurring skin lesions and cytoplasmic localization of ALK. ALK translocations did not influence disease progression. Mean time to disease progression was 16.7 months, and significant mortality (50%) was observed in those cases that progressed to systemic disease. Pediatric cases did not exhibit a trend similar to adult cases. In both the adult and pediatric cases, a subset of cutaneous-limited ALK-positive ALCL were treated with chemotherapy. All cases treated with chemotherapy did not progress to systemic disease. Apropos of an ALK-positive ALCL patient with clinical cutaneous limited disease in the histologic presence of systemic markers, we discussed the literature data, highlighting the crucial issues related to developing a clinical strategy to approach this rare subtype of ALCL. Physicians need to be aware of the overall spectrum of ALCL, including cutaneous limited disease, systemic disease, disease with NPM-ALK translocation, disease with ALK and EMA positivity, and disease with skin recurrence.

Keywords: anaplastic large cell lymphoma, systemic, cutaneous, anaplastic lymphoma kinase, ALK, ALCL, sALCL, pcALCL, cALCL

Procedia PDF Downloads 83
1090 The Prevalence of Organized Retail Crime in Riyadh, Saudi Arabia

Authors: Saleh Dabil

Abstract:

This study investigates the level of existence of organized retail crime in supermarkets of Riyadh, Saudi Arabia. The store managers, security managers and general employees were asked about the types of retail crimes occur in the stores. Three independent variables were related to the report of organized retail theft. The independent variables are: (1) the supermarket profile (volume, location, standard and type of the store), (2) the social physical environment of the store (maintenance, cleanness and overall organizational cooperation), (3) the security techniques and loss prevention electronics techniques used. The theoretical framework of this study based on the social disorganization theory. This study concluded that the organized retail theft, in specific, organized theft is moderately apparent in Riyadh stores. The general result showed that the environment of the stores has an effect on the prevalence of organized retail theft with relation to the gender of thieves, age groups, working shift, type of stolen items as well as the number of thieves in one case. Among other reasons, some factors of the organized theft are: economic pressure of customers based on the location of the store. The dealing of theft also was investigated to have a clear picture of stores dealing with organized retail theft. The result showed that mostly, thieves sent without any action and sometimes given written warning. Very few cases dealt with by police. There are other factors in the study can be looked up in the text. This study suggests solving the problem of organized theft; first is ‘the well distributing of the duties and responsibilities between the employees especially for security purposes’. Second is ‘installation of strong security system’ and ‘making well-designed store layout’. Third is ‘giving training for general employees’ and ‘to give periodically security skills training of employees’. There are other suggestions in the study can be looked up in the text.

Keywords: organized crime, retail, theft, loss prevention, store environment

Procedia PDF Downloads 196
1089 Autonomous Position Control of an Unmanned Aerial Vehicle Based on Accelerometer Response for Indoor Navigation Using Kalman Filtering

Authors: Syed Misbahuddin, Sagufta Kapadia

Abstract:

Autonomous indoor drone navigation has been posed with various challenges, including the inability to use a Global Positioning System (GPS). As of now, Unmanned Aerial Vehicles (UAVs) either rely on 3D mapping systems or utilize external camera arrays to track the UAV in an enclosed environment. The objective of this paper is to develop an algorithm that utilizes Kalman Filtering to reduce noise, allowing the UAV to be navigated indoors using only the flight controller and an onboard companion computer. In this paper, open-source libraries are used to control the UAV, which will only use the onboard accelerometer on the flight controller to estimate the position through double integration. One of the advantages of such a system is that it allows for low-cost and lightweight UAVs to autonomously navigate indoors without advanced mapping of the environment or the use of expensive high-precision-localization sensors.

Keywords: accelerometer, indoor-navigation, Kalman-filtering, position-control

Procedia PDF Downloads 349
1088 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 82
1087 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 389
1086 Archaeological Study of Statues of King Thutmosis III from Luxor

Authors: Mahmoud Abualsoud

Abstract:

The era of Thutmosis III represents a transitional period between the art of the Thutmoside art and the Amarna period, so we intend to declare that it serves as the cradle of Amarna art. The study will examine the Statues of king Thutmose III that was discovered in Luxor by an Egyptian mission. These Statues have been transferred to the Conservation Center of the Grand Egyptian Museum (GEM) to be conserved and made ready to be displayed at the new museum (the project of the century). We focus on three Statues chosen because they relate to different years of the king's reign. These Statues were all made of granite. The first one is a Kneeling statue representing the god Amun showing king Thutmose III offering to the goddess Hathor. The second is decorated with king Thutmose III with the red crown, between the goddess Hathor and the royal wife, Nefertari. The third shows the king offering NW vessels and bread to the god Seker. Each statue is divided into registers containing a description and decorated with scenes of the king presenting offerings to gods. The proposed study will focus on the development which happened sequentially according to differences that occur in each statue. We will use comparative research to determine the workshops of these statues, whether one or several, and what are the distinguishing features of each one. We will examine what innovations the artisans added to royal art. The description and the texts will be translated with linguistic comments. This research focuses on text analyses and technology. Paleographic information found on these objects includes the names and titles of the king. This research focuses on text analyses and technology. The study aims to create a manual that may help in dating the artwork of Thutmosis III. This research will be beneficial and useful for heritage and ancient civilizations, particularly when we talk about opening museums like the Grand Egyptian Museum, which will exhibit a collection of statues. Indeed, this kind of study will open a new destination in order to know how to identify these collections and how to exhibit them commensurate with the nature of ancient Egyptian history and heritage.

Keywords: archaeological study, Giza, new kingdom, statues, royal art

Procedia PDF Downloads 70
1085 Visualization of Taiwan's Religious Social Networking Sites

Authors: Jia-Jane Shuai

Abstract:

Purpose of this research aims to improve understanding of the nature of online religion by examining the religious social websites. What motivates individual users to use the online religious social websites, and which factors affect those motivations. We survey various online religious social websites provided by different religions, especially the Taiwanese folk religion. Based on the theory of the Content Analysis and Social Network Analysis, religious social websites and religious web activities are examined. This research examined the folk religion websites’ presentation and contents that promote the religious use of the Internet in Taiwan. The difference among different religions and religious websites also be compared. First, this study used keywords to examine what types of messages gained the most clicks of “Like”, “Share” and comments on Facebook. Dividing the messages into four media types, namely, text, link, video, and photo, reveal which category receive more likes and comments than the others. Meanwhile, this study analyzed the five dialogic principles of religious websites accessed from mobile phones and also assessed their mobile readiness. Using the five principles of dialogic theory as a basis, do a general survey on the websites with elements of online religion. Second, the project analyzed the characteristics of Taiwanese participants for online religious activities. Grounded by social network analysis and text mining, this study comparatively explores the network structure, interaction pattern, and geographic distribution of users involved in communication networks of the folk religion in social websites and mobile sites. We studied the linkage preference of different religious groups. The difference among different religions and religious websites also be compared. We examined the reasons for the success of these websites, as well as reasons why young users accept new religious media. The outcome of the research will be useful for online religious service providers and non-profit organizations to manage social websites and internet marketing.

Keywords: content analysis, online religion, social network analysis, social websites

Procedia PDF Downloads 167
1084 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 100
1083 Exploitation of Terpenes as Guardians in Plant Biotechnology

Authors: Farzad Alaeimoghadam, Farnaz Alaeimoghadam

Abstract:

Plants are always being threatened by biotic and abiotic elements in their abode. Although they have inherited mechanisms to defend themselves, sometimes due to overpowering of their enemies or weakening of themselves, they just suffer from those elements. Human, as to help plants defend themselves, have developed several methods among which application of terpenes via plant biotechnology is promising. Terpenes are the most frequent and diverse secondary metabolites in plants. In these plants, terpenes are involved in different protective aspects. In this field, by utilizing biotechnological approaches on them, a delicate, precise, and an economic intervention will be achieved. In this review, first, the importance of terpenes as guardians in plants, which include their allelopathy effect, a call for alliances, and a mitigation impact on abiotic stresses will be pointed out. Second, problems concerning terpenes application in plant biotechnology comprising: damage to cell, undesirable terpene production and undesirable concentration and proportion of terpenes will be discussed. At the end, the approaches in plant biotechnology of terpenes including tampering with terpene gene sequences, compartmentalization, and localization and utilization of membrane transporters will be expressed. It is concluded with some useful notions concerning the topic.

Keywords: plant biotechnology, plant protection, terpenes, terpenoids

Procedia PDF Downloads 354
1082 Material Failure Process Simulation by Improved Finite Elements with Embedded Discontinuities

Authors: Gelacio Juárez-Luna, Gustavo Ayala, Jaime Retama-Velasco

Abstract:

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Keywords: variational formulation, strong discontinuity, embedded discontinuities, strain localization

Procedia PDF Downloads 781
1081 Alternate Optical Coherence Tomography Technologies in Use for Corneal Diseases Diagnosis in Dogs and Cats

Authors: U. E. Mochalova, A. V. Demeneva, Shilkin A. G., J. Yu. Artiushina

Abstract:

Objective. In medical ophthalmology OCT has been actively used in the last decade. It is a modern non-invasive method of high-precision hardware examination, which gives a detailed cross-sectional image of eye tissues structure with a high level of resolution, which provides in vivo morphological information at the microscopic level about corneal tissue, structures of the anterior segment, retina and optic nerve. The purpose of this study was to explore the possibility of using the OCT technology in complex ophthalmological examination in dogs and cats, to characterize the revealed pathological structural changes in corneal tissue in cats and dogs with some of the most common corneal diseases. Procedures. Optical coherence tomography of the cornea was performed in 112 animals: 68 dogs and 44 cats. In total, 224 eyes were examined. Pathologies of the organ of vision included: dystrophy and degeneration of the cornea, endothelial corneal dystrophy, dry eye syndrome, chronic superficial vascular keratitis, pigmented keratitis, corneal erosion, ulcerative stromal keratitis, corneal sequestration, chronic glaucoma and also postoperative period after performed keratoplasty. When performing OCT, we used certified medical devices: "Huvitz HOCT-1/1F», «Optovue iVue 80» and "SOCT Copernicus Revo (60)". Results. The results of a clinical study on the use of optical coherence tomography (OCT)of the cornea in cats and dogs, performed by the authors of the article in the complex diagnosis of keratopathies of variousorigins: endothelial corneal dystrophy, pigmented keratitis, chronic keratoconjunctivitis, chronic herpetic keratitis, ulcerative keratitis, traumatic corneal damage, sequestration of the cornea of cats, chronic keratitis, complicating the course of glaucoma. The characteristics of the OCT scans are givencorneas of cats and dogs that do not have corneal pathologies. OCT scans of various corneal pathologies in dogs and cats with a description of the revealed pathological changes are presented. Of great clinical interest are the data obtained during OCT of the cornea of animals undergoing keratoplasty operations using various forms of grafts. Conclusions. OCT makes it possible to assess the thickness and pathological structural changes of the corneal surface epithelium, corneal stroma and descemet membrane. We can measure them, determine the exact localization, and record pathological changes. Clinical observation of the dynamics of the pathological process in the cornea using OCT makes it possible to evaluate the effectiveness of drug treatment. In case of negative dynamics of corneal disease, it is necessary to determine the indications for surgical treatment (to assess the thickness of the cornea, the localization of its thinning zones, to characterize the depth and area of pathological changes). According to the OCT of the cornea, it is possible to choose the optimal surgical treatment for the patient, the technique and depth of optically constructive surgery (penetrating or anterior lamellar keratoplasty).; determine the depth and diameter of the planned microsurgical trepanation of corneal tissue, which will ensure good adaptation of the edges of the donor material.

Keywords: optical coherence tomography, corneal sequestration, optical coherence tomography of the cornea, corneal transplantation, cat, dog

Procedia PDF Downloads 68