Search results for: term frequency-inverse document frequency
8006 The Concerns and Recommendations of Informal and Professional Caregivers for COVID-19 Policy for Homecare and Long-Term Care For People with Dementia: A Qualitative Study
Authors: Hanneke J. A. Smaling, Mandy Visser
Abstract:
One way to reduce the risk of COVID-19 infection is by preventing close interpersonal contact with distancing measures. These social distancing measures presented challenges to the health and wellbeing of people with dementia and their informal and professional caregivers. This study describes the concerns and recommendations of informal and professional caregivers for COVID-19 policy for home care and long-term care for people with dementia during the first and second COVID-19 wave in the Netherlands. In this qualitative interview study, 20 informal caregivers and 20 professional caregivers from home care services and long-term care participated. Interviews were analyzed using an inductive thematic analysis approach. Both informal and professional caregivers worried about getting infected or infecting others with COVID-19, the consequences of the distancing measures, and quality of care. There was a general agreement that policy in the second wave was better informed compared to the first wave. At an organizational level, the policy was remarkably flexible. Recommendations were given for dementia care (need to offer meaningful activities, improve the organization of care, more support for informal caregivers), policy (national vs. locally organization, social isolation measures, visitor policy), and communication. Our study contributes to the foundation of future care decisions by (inter)national policymakers, politicians, and healthcare organizations during the course of the COVID-19 pandemic, underlining the need for balance between safety and autonomy for people with dementia.Keywords: covid-19, dementia, home care, long-term care, policy
Procedia PDF Downloads 1368005 When Sexual Desire Fades: Women Talk about Changes in Desire within Long Term Heterosexual Relationships
Authors: Avigail Moor
Abstract:
A decline in women’s sexual desire over the course of long-term relationships, relative to men’s, has been frequently noted. Yet, while there is ample evidence that this change in women is quite common, it is still generally pathologized. Moreover, little is known regarding its true meaning for women and the effect it has on their wellbeing. In light of that, our primary goal was to investigate women's subjective experiences of this reality. Do they connect it to dysfunction in self or marriage, or rather they don't equate love and sex, which for them simply become less connected with time, even as the relationship remains entirely fulfilling? A second goal was to explore how such gender-based differences in sexual desire impact women, and indirectly the couple and partner, in terms of wellbeing and satisfaction from the relationship. In-depth semi-structured interviews were conducted with 15 women in committed long-term relations, aged 25 and over. The findings indicate that for women, there is no contradiction between a loving relation and a decline in spontaneous sexual desire. At the same time, while not rooted in a problem, it does create some. Tension, frustration, conflict, and pressure are some of the negative sequelae that carry adverse effects for women’s wellbeing, the solution to which requires, in their opinion, honest dialogue, mutual respect, and reasonable compromise.Keywords: gender, sexuality, sexual desire, well being
Procedia PDF Downloads 1378004 A Time and Frequency Dependent Study of Low Intensity Microwave Radiation Induced Endoplasmic Reticulum Stress and Alteration of Autophagy in Rat Brain
Authors: Ranjeet Kumar, Pravin Suryakantrao Deshmukh, Sonal Sharma, Basudev Banerjee
Abstract:
With the tremendous increase in exposure to radiofrequency microwaves emitted by mobile phones, globally public awareness has grown with regard to the potential health hazards of microwaves on the nervous system in the brain. India alone has more than one billion mobile users out of 4.3 billion globally. Our studies have suggested that radio frequency able to affect neuronal alterations in the brain, and hence, affecting cognitive behaviour. However, adverse effect of low-intensity microwave exposure with endoplasmic reticulum stress and autophagy has not been evaluated yet. In this study, we explore whether low-intensity microwave induces endoplasmic reticulum stress and autophagy with varying frequency and time duration in Wistar rat. Ninety-six male Wistar rat were divided into 12 groups of 8 rats each. We studied at 900 MHz, 1800 MHz, and 2450 MHz frequency with reference to sham-exposed group. At the end of the exposure, the rats were sacrificed to collect brain tissue and expression of CHOP, ATF-4, XBP-1, Bcl-2, Bax, LC3 and Atg-4 gene was analysed by real-time PCR. Significant fold change (p < 0.05) of gene expression was found in all groups of 1800 MHz and 2450 MHz exposure group in comparison to sham exposure group. In conclusion, the microwave exposure able to induce ER stress and modulate autophagy. ER (endoplasmic reticulum) stress and autophagy vary with increasing frequency as well as the duration of exposure. Our results suggested that microwave exposure is harmful to neuronal health as it induces ER stress and hampers autophagy in neuron cells and thereby increasing the neuron degeneration which impairs cognitive behaviour of experimental animals.Keywords: autophagy, ER stress, microwave, nervous system, rat
Procedia PDF Downloads 1318003 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches
Authors: Bin Liu
Abstract:
As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines
Procedia PDF Downloads 1258002 Real-Time Demonstration of Visible Light Communication Based on Frequency-Shift Keying Employing a Smartphone as the Receiver
Authors: Fumin Wang, Jiaqi Yin, Lajun Wang, Nan Chi
Abstract:
In this article, we demonstrate a visible light communication (VLC) system over 8 meters free space transmission based on a commercial LED and a receiver in connection with an audio interface of a smart phone. The signal is in FSK modulation format. The successful experimental demonstration validates the feasibility of the proposed system in future wireless communication network.Keywords: visible light communication, smartphone communication, frequency shift keying, wireless communication
Procedia PDF Downloads 3928001 Factors Affecting Long-Term and Permanent Contraceptive Uptake among Immediate Post-Partum Mothers at Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia: A Cross-Sectional Study
Authors: Lemi Tolu
Abstract:
Background: Postpartum family planning (PPFP) focuses on the prevention of unintended and closely spaced pregnancies through the first 12 months following childbirth. Objective: This study assesses the barriers to uptake of long-term and permanent family planning methods among immediate post-partum mothers at Saint Paul’s Hospital Millennium Medical College in Addis Ababa, Ethiopia. Methodology: An institution-based cross-sectional study was conducted from January 1 to June 30, 2017. The six months of study were used as strata, and systematic sampling used to select participants in each month. Post-partum mothers were interviewed using pretested structured questionnaires. Data entry and analysis were done using SPSS version 17. Bivariate and multivariable logistic regressions were fitted to identify determinants of post-partum family planning uptake. An OR with 95% CIs was calculated, and p values set at 005 were used to determine the statistical significance of associations. Results: Four hundred and twenty-two post-partum women were interviewed. Two hundred sixty-eight (63%) women received counselling on family planning, and 241 (66.8 %) got information about contraception. One hundred and fifty-two (45%) of the women accepted long-term and permanent contraception on their immediate postpartum period before discharge. Contraceptive counselling (OR = 2.13, 95% CI 1.004-3.331), getting information from the health facility (OR = 15.15, 95% CI 1.848-19.242), and partner support (OR = 1.367, 95% CI 1.175-2.771) were significantly associated with long-term and permanent contraception uptake. Conclusion: Postpartum counselling on family planning and provision of contraception information improve immediate postpartum FP acceptance, and, hence postpartum programs need to strengthen such services.Keywords: contraception, immediate postpartum, long-term family planning, post-partum family planning
Procedia PDF Downloads 2238000 Thermal Vacuum Chamber Test Result for CubeSat Transmitter
Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad
Abstract:
CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.Keywords: communication system, CubeSat, SNR, UHF transmitter
Procedia PDF Downloads 2647999 Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter
Authors: Evren Isen
Abstract:
In grid-connected renewable energy systems, input power is controlled by AC/DC converter or/and DC/DC converter depending on output voltage of input source. The power is injected to DC-link, and DC-link voltage is regulated by inverter controlling the grid current. Inverter performance is considerable in grid-connected renewable energy systems to meet the utility standards. In this paper, modelling and simulation of hysteresis current controlled single-phase grid-connected inverter that is utilized in renewable energy systems, such as wind and solar systems, are presented. 2 kW single-phase grid-connected inverter is simulated in Simulink and modeled in Matlab-m-file. The grid current synchronization is obtained by phase locked loop (PLL) technique in dq synchronous rotating frame. Although dq-PLL can be easily implemented in three-phase systems, there is difficulty to generate β component of grid voltage in single-phase system because single-phase grid voltage exists. Inverse-Park PLL with low-pass filter is used to generate β component for grid angle determination. As grid current is controlled by constant bandwidth hysteresis current control (HCC) technique, average switching frequency and variation of switching frequency in a fundamental period are considered. 3.56% total harmonic distortion value of grid current is achieved with 0.5 A bandwidth. Average value of switching frequency and total harmonic distortion curves for different hysteresis bandwidth are obtained from model in m-file. Average switching frequency is 25.6 kHz while switching frequency varies between 14 kHz-38 kHz in a fundamental period. The average and maximum frequency difference should be considered for selection of solid state switching device, and designing driver circuit. Steady-state and dynamic response performances of the inverter depending on the input power are presented with waveforms. The control algorithm regulates the DC-link voltage by adjusting the output power.Keywords: grid-connected inverter, hysteresis current control, inverter modelling, single-phase inverter
Procedia PDF Downloads 4797998 The Link between Migration Status and Occupational Health and Safety of Filipino Migrant Workers in South Korea
Authors: Lito M. Amit, Venecio U. Ultra, Young Woong Song
Abstract:
The purpose of this study was to document the prevalence and types of work-related health and safety problems among Filipino migrant workers and the link between their migration status and occupational health and safety (OHS) problems. We conducted a survey among 116 Filipino migrant workers who were both legal and undocumented. To assess the various forms of occupational health problems, we utilized the Korean occupational stress scale (KOSS), Nordic musculoskeletal questionnaire (NMQ) and a validated health and safety questionnaire. A focus group discussion (FGD) was also conducted to record relevant information that was limited by the questionnaires. Descriptive data were presented in frequency with percentages, mean, and standard deviation. Chi-square tests and logistic regression analyses were performed to estimate the degree of association between variables (p < 0.05). Among the eight subscales of KOSS, inadequate social support (2.48), organizational injustice (2.57), and lack of reward (2.52) were experienced by workers. There was a 44.83% prevalence of musculoskeletal disorders with arm/elbow having the highest rate, followed by shoulder and low back regions. Inadequate social support and discomfort in organizational climate and overall MSDs prevalence showed significant relationships with migration status (p < 0.05). There was a positive association between migration status and seven items under language and communication. A positive association was seen between migration status and some of the OHS problems of Filipino migrant workers in Korea. Undocumented workers in this study were seen to be more vulnerable to those stressors compared to those employed legally.Keywords: Filipino workers, migration status, occupational health and safety, undocumented workers
Procedia PDF Downloads 1327997 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 1057996 Assessment of Korea's Natural Gas Portfolio Considering Panama Canal Expansion
Authors: Juhan Kim, Jinsoo Kim
Abstract:
South Korea cannot import natural gas in any form other than LNG because of the division of South and North Korea. Further, the high proportion of natural gas in the national energy mix makes this resource crucial for energy security in Korea. Expansion of Panama Canal will allow for reducing the cost of shipping between the Far East and U.S East. Panama Canal expansion can have significant impacts on South Korea. Due to this situation, we review the natural gas optimal portfolio by considering the uniqueness of the Korean Natural gas market and expansion of Panama Canal. In order to assess Korea’s natural gas optimal portfolio, we developed natural gas portfolio model. The model comprises two steps. First, to obtain the optimal long-term spot contract ratio, the study examines the price level and the correlation between spot and long-term contracts by using the Markowitz, portfolio model. The optimal long-term spot contract ratio follows the efficient frontier of the cost/risk level related to this price level and degree of correlation. Second, by applying the obtained long-term contract purchase ratio as the constraint in the linear programming portfolio model, we determined the natural gas optimal import portfolio that minimizes total intangible and tangible costs. Using this model, we derived the optimal natural gas portfolio considering the expansion of Panama Canal. Based on these results, we assess the portfolio for natural gas import to Korea from the perspective of energy security and present some relevant policy proposals.Keywords: natural gas, Panama Canal, portfolio analysis, South Korea
Procedia PDF Downloads 2917995 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation
Authors: Mohamed Elassaly
Abstract:
The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.Keywords: damage, frequency content, ground motion, PGA, RC building, seismic
Procedia PDF Downloads 4097994 Work with Children's Music Group: Important Aspects of Didactic and Artistic Performance
Authors: Eudjen Cinc
Abstract:
Work with a human voice, especially with a child s voice and cultivating the sound of the choir, presents an area of crucial importance for a conductor. We use the term conductor because it needs to be understood that regardless of whether we have in front of us an amateur or a professional choir, whether they are singers with a wealth of experience or children who are still developing and educating their inner ear so that in the future they could contribute to the development of choir music, the person who stands in front of the group and works with them, needs to have the characteristics of a conductor. Voice formation is a long-term process, without which there is no success in both solo and collective music performance.Keywords: music group, conductor, collective, performance
Procedia PDF Downloads 2197993 Regional Flood Frequency Analysis in Narmada Basin: A Case Study
Authors: Ankit Shah, R. K. Shrivastava
Abstract:
Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency
Procedia PDF Downloads 4197992 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining
Authors: Mohsen Farhadloo, Majid Farhadloo
Abstract:
Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis
Procedia PDF Downloads 947991 Determining Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin
Authors: Naci Büyükkaracığan
Abstract:
Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.Keywords: Gediz Basin, goodness-of-fit tests, minimum flows, probability distribution
Procedia PDF Downloads 2717990 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions
Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari
Abstract:
Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.Keywords: current density, duty cycle, microstructure, nickel, pulse frequency
Procedia PDF Downloads 3697989 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers
Authors: Lenka Matulova
Abstract:
Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties
Procedia PDF Downloads 2417988 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms
Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker
Abstract:
Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy
Procedia PDF Downloads 4227987 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 1317986 Biodiversity of Plants Rhizosphere and Rhizoplane Bacteria in the Presence of Petroleum Hydrocarbons
Authors: Togzhan D. Mukasheva, Anel A. Omirbekova, Raikhan S. Sydykbekova, Ramza Zh. Berzhanova, Lyudmila V. Ignatova
Abstract:
Following plants-barley (Hordeum sativum), alfalfa (Medicago sativa), grass mixture (red fescue-75%, long-term ryegrass - 20% Kentucky bluegrass - 10%), oilseed rape (Brassica napus biennis), resistant to growth in the contaminated soil with oil content of 15.8 g / kg 25.9 g / kg soil were used. Analysis of the population showed that the oil pollution reduces the number of bacteria in the rhizosphere and rhizoplane of plants and enhances the amount of spore-forming bacteria and saprotrophic micromycetes. It was shown that regardless of the plant, dominance of Pseudomonas and Bacillus genera bacteria was typical for the rhizosphere and rhizoplane of plants. The frequency of bacteria of these genera was more than 60%. Oil pollution changes the ratio of occurrence of various types of bacteria in the rhizosphere and rhizoplane of plants. Besides the Pseudomonas and Bacillus genera, in the presence of hydrocarbons in the root zone of plants dominant and most typical were the representatives of the Mycobacterium and Rhodococcus genera. Together the number was between 62% to 72%.Keywords: pollution, root system, micromycetes, identification
Procedia PDF Downloads 5007985 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency
Authors: Fayssal Amrane, Azeddine Chaiba
Abstract:
In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)
Procedia PDF Downloads 4207984 Enriched Education: The Classroom as a Learning Network through Video Game Narrative Development
Authors: Wayne DeFehr
Abstract:
This study is rooted in a pedagogical approach that emphasizes student engagement as fundamental to meaningful learning in the classroom. This approach creates a paradigmatic shift, from a teaching practice that reinforces the teacher’s central authority to a practice that disperses that authority among the students in the classroom through networks that they themselves develop. The methodology of this study about creating optimal conditions for learning in the classroom includes providing a conceptual framework within which the students work, as well as providing clearly stated expectations for work standards, content quality, group methodology, and learning outcomes. These learning conditions are nurtured in a variety of ways. First, nearly every class includes a lecture from the professor with key concepts that students need in order to complete their work successfully. Secondly, students build on this scholarly material by forming their own networks, where students face each other and engage with each other in order to collaborate their way to solving a particular problem relating to the course content. Thirdly, students are given short, medium, and long-term goals. Short term goals relate to the week’s topic and involve workshopping particular issues relating to that stage of the course. The medium-term goals involve students submitting term assignments that are evaluated according to a well-defined rubric. And finally, long-term goals are achieved by creating a capstone project, which is celebrated and shared with classmates and interested friends on the final day of the course. The essential conclusions of the study are drawn from courses that focus on video game narrative. Enthusiastic student engagement is created not only with the dynamic energy and expertise of the instructor, but also with the inter-dependence of the students on each other to build knowledge, acquire skills, and achieve successful results.Keywords: collaboration, education, learning networks, video games
Procedia PDF Downloads 1167983 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells
Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós
Abstract:
Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution
Procedia PDF Downloads 2917982 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves
Authors: E. Arcos, E. Bautista, F. Méndez
Abstract:
In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.Keywords: approximation U-P, porous seabed, scaling analysis, water waves
Procedia PDF Downloads 3497981 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 487980 Extremely Low-Frequency Magnetic Field; An Invisible Risk Association between High Power Transmission Lines and Childhood Leukemia and Adult Brain Cancer: Literature Review
Authors: Ali Azeem, Seung-Cheol Hong
Abstract:
This study focuses on the epidemiological association between childhood leukaemia & adult brain cancer to offer strong evidence that extremely low-frequency magnetic field (ELF-MF) produced from power lines caused cancer. It also gives a comprehensive literature review on epidemiological studies of ELF-MF risk associated with HVTL and childhood leukaemia & adult brain cancer. From the literature review, it is concluded that there is a weak association present between ELF-MF and childhood leukaemia. No consistent association was present between brain cancer and ELF-MF. This study is done on Scielo data and PubMed using the terms extremely low-frequency magnetic field (ELF-MF+cancer), adult brain cancer, high power transmission lines, etc., for the past 10 years.Keywords: childhood leukaemia, high voltage transmission lines, acute lymphoblastic leukaemia, power lines
Procedia PDF Downloads 2247979 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise
Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh
Abstract:
For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.Keywords: ear protector, hearing system, occupational noise, workers
Procedia PDF Downloads 1697978 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites
Authors: Sutar Rani Ananda, M. V. Murugendrappa
Abstract:
To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.Keywords: polypyrrole, dielectric constant, dielectric loss, AC conductivity
Procedia PDF Downloads 2957977 Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP
Authors: Restu Misrianti
Abstract:
The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%.Keywords: duck, Mx gene, PCR, RFLP
Procedia PDF Downloads 325