Search results for: sensor network
5265 Machine Learning Based Smart Beehive Monitoring System Without Internet
Authors: Esra Ece Var
Abstract:
Beekeeping plays essential role both in terms of agricultural yields and agricultural economy; they produce honey, wax, royal jelly, apitoxin, pollen, and propolis. Nowadays, these natural products become more importantly suitable and preferable for nutrition, food supplement, medicine, and industry. However, to produce organic honey, majority of the apiaries are located in remote or distant rural areas where utilities such as electricity and Internet network are not available. Additionally, due to colony failures, world honey production decreases year by year despite the increase in the number of beehives. The objective of this paper is to develop a smart beehive monitoring system for apiaries including those that do not have access to Internet network. In this context, temperature and humidity inside the beehive, and ambient temperature were measured with RFID sensors. Control center, where all sensor data was sent and stored at, has a GSM module used to warn the beekeeper via SMS when an anomaly is detected. Simultaneously, using the collected data, an unsupervised machine learning algorithm is used for detecting anomalies and calibrating the warning system. The results show that the smart beehive monitoring system can detect fatal anomalies up to 4 weeks prior to colony loss.Keywords: beekeeping, smart systems, machine learning, anomaly detection, apiculture
Procedia PDF Downloads 2385264 Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 4065263 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4475262 Bi-Objective Optimization for Sustainable Supply Chain Network Design in Omnichannel
Authors: Veerpaul Maan, Gaurav Mishra
Abstract:
The evolution of omnichannel has revolutionized the supply chain of the organizations by enhancing customer shopping experience. For these organizations need to develop well-integrated multiple distribution channels to leverage the benefits of omnichannel. To adopt an omnichannel system in the supply chain has resulted in structuring and reconfiguring the practices of the traditional supply chain distribution network. In this paper a multiple distribution supply chain network (MDSCN) have been proposed which integrates online giants with a local retailers distribution network in uncertain environment followed by sustainability. To incorporate sustainability, an additional objective function is added to reduce the carbon content through minimizing the travel distance of the product. Through this proposed model, customers are free to access product and services as per their choice of channels which increases their convenience, reach and satisfaction. Further, a numerical illustration is being shown along with interpretation of results to validate the proposed model.Keywords: sustainable supply chain network, omnichannel, multiple distribution supply chain network, integrate multiple distribution channels
Procedia PDF Downloads 2225261 Laboratory Calibration of Soil Pressure Transducer for a Specified Field Application
Authors: Mohammad Zahidul Islam Bhuiyan, Shanyong Wang, Scott William Sloan, Daichao Sheng
Abstract:
Nowadays soil pressure transducers are widely used to measure the soil stress states in laboratory and field experiments. The soil pressure transducers, investigated here, are traditional diaphragm-type earth pressure cells (DEPC) based on strain gauge principle. It is found that the output of these sensors varies with the soil conditions as well as the position of a sensor. Therefore, it is highly recommended to calibrate the pressure sensors based on the similar conditions of their intended applications. The factory calibration coefficients of the EPCs are not reliable to use since they are normally calibrated by applying fluid (a special type of oil) pressure only over load sensing zone, which does not represent the actual field conditions. Thus, the calibration of these sensors is utmost important, and they play a pivotal role for assessing earth pressures precisely. In the present study, TML soil pressure sensor is used to compare its sensitivity under different calibration systems, for example, fluid calibration, and static load calibration with or without soil. The results report that the sensor provides higher sensitivity (more accurate results) under soil calibration system.Keywords: calibration, soil pressure, earth pressure cell, sensitivity
Procedia PDF Downloads 2395260 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide
Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh
Abstract:
Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures
Procedia PDF Downloads 5105259 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis
Authors: Sipu Guo, Silin Huang
Abstract:
Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.Keywords: allostatic load, executive function, network analysis, rural adolescent
Procedia PDF Downloads 505258 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6245257 Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit
Authors: Rawaa Maher, Ahmed Allam, Haruichi Kanaya, Adel B. Abdelrahman
Abstract:
In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement.Keywords: internet of things, integrated rectenna, rectenna, RF energy harvesting, wireless sensor networks(WSN)
Procedia PDF Downloads 1805256 Investigating the Vehicle-Bicyclists Conflicts using LIDAR Sensor Technology at Signalized Intersections
Authors: Alireza Ansariyar, Mansoureh Jeihani
Abstract:
Light Detection and Ranging (LiDAR) sensors are capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore City. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By using an innovative image-processing algorithm, a new safety Measure of Effectiveness (MOE) was proposed to recognize the critical zones for bicyclists entering each zone. Considering the trajectory of conflicts, the results of the analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.Keywords: LiDAR sensor, post encroachment time threshold (PET), vehicle-bike conflicts, a measure of effectiveness (MOE), weather condition
Procedia PDF Downloads 2345255 Social Movements and the Diffusion of Tactics and Repertoires: Activists' Network in Anti-Globalism Movement
Authors: Kyoko Tominaga
Abstract:
Non-Government Organizations (NGOs), Non-Profit Organizations (NPOs), Social Enterprises and other actors play an important role in political decisions in governments at the international levels. Especially, such organizations’ and activists’ network in civil society is quite important to effect to the global politics. To solve the complex social problems in global era, diverse actors should corporate each other. Moreover, network of protesters is also contributes to diffuse tactics, information and other resources of social movements. Based on the findings from the study of International Trade Fairs (ITFs), the author analyzes the network of activists in anti-globalism movement. This research focuses the transition of 54 activists’ whole network in the “protest event” against 2008 G8 summit in Japan. Their network is examined at the three periods: Before protest event phase, during protest event phase and after event phase. A mixed method is used in this study: the author shows the hypothesis from social network analysis and evaluates that with interview data analysis. This analysis gives the two results. Firstly, the more protesters participate to the various events during the protest event, the more they build the network. After that, active protesters keep their network as well. From interview data, we can understand that the active protesters can build their network and diffuse the information because they communicate with other participants and understand that diverse issues are related. This paper comes to same conclusion with previous researches: protest events activate the network among the political activists. However, some participants succeed to build their network, others do not. “Networked” activists are participated in the various events for short period of time and encourage the diffusion of information and tactics of social movements.Keywords: social movement, global justice movement, tactics, diffusion
Procedia PDF Downloads 3825254 General Network with Four Nodes and Four Activities with Triangular Fuzzy Number as Activity Times
Authors: Rashmi Tamhankar, Madhav Bapat
Abstract:
In many projects, we have to use human judgment for determining the duration of the activities which may vary from person to person. Hence, there is vagueness about the time duration for activities in network planning. Fuzzy sets can handle such vague or imprecise concepts and has an application to such network. The vague activity times can be represented by triangular fuzzy numbers. In this paper, a general network with fuzzy activity times is considered and conditions for the critical path are obtained also we compute total float time of each activity. Several numerical examples are discussed.Keywords: PERT, CPM, triangular fuzzy numbers, fuzzy activity times
Procedia PDF Downloads 4725253 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 6325252 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery
Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi
Abstract:
Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor
Procedia PDF Downloads 1205251 Designing and Implementation of MPLS Based VPN
Authors: Muhammad Kamran Asif
Abstract:
MPLS stands for Multi-Protocol Label Switching. It is the technology which replaces ATM (Asynchronous Transfer Mode) and frame relay. In this paper, we have designed a full fledge small scale MPLS based service provider network core network model, which provides communication services (e.g. voice, video and data) to the customer more efficiently using label switching technique. Using MPLS VPN provides security to the customers which are either on LAN or WAN. It protects its single customer sites from being attacked by any intruder from outside world along with the provision of concept of extension of a private network over an internet. In this paper, we tried to implement a service provider network using minimum available resources i.e. five 3800 series CISCO routers comprises of service provider core, provider edge routers and customer edge routers. The customers on the one end of the network (customer side) is capable of sending any kind of data to the customers at the other end using service provider cloud which is MPLS VPN enabled. We have also done simulation and emulation for the model using GNS3 (Graphical Network Simulator-3) and achieved the real time scenarios. We have also deployed a NMS system which monitors our service provider cloud and generates alarm in case of any intrusion or malfunctioning in the network. Moreover, we have also provided a video help desk facility between customers and service provider cloud to resolve the network issues more effectively.Keywords: MPLS, VPN, NMS, ATM, asynchronous transfer mode
Procedia PDF Downloads 3305250 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 935249 Quality and Quantity in the Strategic Network of Higher Education Institutions
Authors: Juha Kettunen
Abstract:
This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.
Keywords: balanced scorecard, higher education, social networking, strategic planning
Procedia PDF Downloads 3475248 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors
Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Salleh, Tan Kong Yew
Abstract:
This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.Keywords: readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics
Procedia PDF Downloads 3125247 Complex Network Approach to International Trade of Fossil Fuel
Authors: Semanur Soyyigit Kaya, Ercan Eren
Abstract:
Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weakness and strength of the system. On the other side, it is commonly believed that international trade has complex network properties. Complex network is a tool for the analysis of complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex systems such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to data.Keywords: complex network approach, fossil fuel, international trade, network theory
Procedia PDF Downloads 3355246 Interbank Networks and the Benefits of Using Multilayer Structures
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.Keywords: complexity, interbank networks, multilayer networks, network analysis
Procedia PDF Downloads 2805245 Bluetooth Communication Protocol Study for Multi-Sensor Applications
Authors: Joao Garretto, R. J. Yarwood, Vamsi Borra, Frank Li
Abstract:
Bluetooth Low Energy (BLE) has emerged as one of the main wireless communication technologies used in low-power electronics, such as wearables, beacons, and Internet of Things (IoT) devices. BLE’s energy efficiency characteristic, smart mobiles interoperability, and Over the Air (OTA) capabilities are essential features for ultralow-power devices, which are usually designed with size and cost constraints. Most current research regarding the power analysis of BLE devices focuses on the theoretical aspects of the advertising and scanning cycles, with most results being presented in the form of mathematical models and computer software simulations. Such computer modeling and simulations are important for the comprehension of the technology, but hardware measurement is essential for the understanding of how BLE devices behave in real operation. In addition, recent literature focuses mostly on the BLE technology, leaving possible applications and its analysis out of scope. In this paper, a coin cell battery-powered BLE Data Acquisition Device, with a 4-in-1 sensor and one accelerometer, is proposed and evaluated with respect to its Power Consumption. First, evaluations of the device in advertising mode with the sensors turned off completely, followed by the power analysis when each of the sensors is individually turned on and data is being transmitted, and concluding with the power consumption evaluation when both sensors are on and respectively broadcasting the data to a mobile phone. The results presented in this paper are real-time measurements of the electrical current consumption of the BLE device, where the energy levels that are demonstrated are matched to the BLE behavior and sensor activity.Keywords: bluetooth low energy, power analysis, BLE advertising cycle, wireless sensor node
Procedia PDF Downloads 905244 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4665243 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles
Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis
Abstract:
E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics
Procedia PDF Downloads 1535242 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 4485241 On the Inequality between Queue Length and Virtual Waiting Time in Open Queueing Networks under Conditions of Heavy Traffic
Authors: Saulius Minkevicius, Edvinas Greicius
Abstract:
The paper is devoted to the analysis of queueing systems in the context of the network and communications theory. We investigate the inequality in an open queueing network and its applications to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated logarithm) for a queue of customers in an open queueing network.Keywords: fluid approximation, heavy traffic, models of information systems, open queueing network, queue length of customers, queueing theory
Procedia PDF Downloads 2865240 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2535239 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2915238 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon
Authors: Contimi Kenfack Mouafo, Sebastian Klick
Abstract:
In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation
Procedia PDF Downloads 1235237 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 655236 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 159