Search results for: precursor cyclic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 940

Search results for: precursor cyclic

370 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: Ayhan Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.

Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue

Procedia PDF Downloads 452
369 An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage

Authors: Jill Hanass-Hancock, Bradley Carpenter, Samantha Willan, Kristin Dunkle

Abstract:

Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions.

Keywords: public health, disability, accessibility, inclusive health care, universal health coverage

Procedia PDF Downloads 62
368 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles

Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin

Abstract:

Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.

Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles

Procedia PDF Downloads 124
367 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu

Abstract:

In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.

Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers

Procedia PDF Downloads 594
366 Reducing Waiting Time in Outpatient Services: Six Sigma and Technological Approach

Authors: Omkar More, Isha Saini, Gracy Mathai

Abstract:

To study whether there is any clinical correlation between pterygium and dry eye and to evaluate the status of the tear film in patients with pterygium. Methods: 100 eyes with pterygium were compared with 100 control eyes without pterygium. Patients between 20 – 70 years were included in the study. A detailed history was taken and Schirmer’s test and TBUT were performed on all to evaluate the status of dry eye. Schirmer’s test ˂ 10 mm and TBUT ˂10 seconds was considered abnormal. Results: Maximum number (52) of patients affected by dry eye in both the groups were in the age group 31-40 years which statistically showed age as a significant factor of association for both pterygium and dry eye (P < 0.01).Schirmer’s test was slightly reduced in patients with pterygium(18.73±5.69 mm). TBUT was significantly reduced in the case group (12.26±2.24sec).TBUT decreased maximally in 51-60 yrs age group (13.00±2.77sec) with pterygium showing a tear film instability. On comparison of pterygia and controls with normal and abnormal tear film, Odd’s Ratio was 1.14 showing a risk of dry eye in pterygia patients to be 1.14 times higher than controls. Conclusion: Whether tear dysfunction is a precursor to pterygium growth or pterygium causes tear dysfunction is still not clear. Research and clinical evidence, however, suggest that there is a relationship between the two. This study is, therefore, undertaken to investigate the correlation between pterygium and dry eye. The patients with pterygia were compared with normals to evaluate their status regarding dryness. A close relationship exists between ocular irritation symptoms and functional evidence of tear instability. Schirmer’s test and TBUT should routinely be used in the outpatient department to diagnose dry eye in patients with pterygium and these patients should be promptly treated to prevent any sight-threatening complications.

Keywords: footfall, nursing assessment, quality improvement, six sigma

Procedia PDF Downloads 345
365 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 186
364 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment

Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad

Abstract:

Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.

Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation

Procedia PDF Downloads 45
363 Bimetallic Cu/Au Nanostructures and Bio-Application

Authors: Si Yin Tee

Abstract:

Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.

Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures

Procedia PDF Downloads 509
362 Structural Behavior of Subsoil Depending on Constitutive Model in Calculation Model of Pavement Structure-Subsoil System

Authors: M. Kadela

Abstract:

The load caused by the traffic movement should be transferred in the road constructions in a harmless way to the pavement as follows: − on the stiff upper layers of the structure (e.g. layers of asphalt: abrading and binding), and − through the layers of principal and secondary substructure, − on the subsoil, directly or through an improved subsoil layer. Reliable description of the interaction proceeding in a system “road construction – subsoil” should be in such case one of the basic requirements of the assessment of the size of internal forces of structure and its durability. Analyses of road constructions are based on: − elements of mechanics, which allows to create computational models, and − results of the experiments included in the criteria of fatigue life analyses. Above approach is a fundamental feature of commonly used mechanistic methods. They allow to use in the conducted evaluations of the fatigue life of structures arbitrarily complex numerical computational models. Considering the work of the system “road construction – subsoil”, it is commonly accepted that, as a result of repetitive loads on the subsoil under pavement, the growth of relatively small deformation in the initial phase is recognized, then this increase disappears, and the deformation takes the character completely reversible. The reliability of calculation model is combined with appropriate use (for a given type of analysis) of constitutive relationships. Phenomena occurring in the initial stage of the system “road construction – subsoil” is unfortunately difficult to interpret in the modeling process. The classic interpretation of the behavior of the material in the elastic-plastic model (e-p) is that elastic phase of the work (e) is undergoing to phase (e-p) by increasing the load (or growth of deformation in the damaging structure). The paper presents the essence of the calibration process of cooperating subsystem in the calculation model of the system “road construction – subsoil”, created for the mechanistic analysis. Calibration process was directed to show the impact of applied constitutive models on its deformation and stress response. The proper comparative base for assessing the reliability of created. This work was supported by the on-going research project “Stabilization of weak soil by application of layer of foamed concrete used in contact with subsoil” (LIDER/022/537/L-4/NCBR/2013) financed by The National Centre for Research and Development within the LIDER Programme. M. Kadela is with the Department of Building Construction Elements and Building Structures on Mining Areas, Building Research Institute, Silesian Branch, Katowice, Poland (phone: +48 32 730 29 47; fax: +48 32 730 25 22; e-mail: m.kadela@ itb.pl). models should be, however, the actual, monitored system “road construction – subsoil”. The paper presents too behavior of subsoil under cyclic load transmitted by pavement layers. The response of subsoil to cyclic load is recorded in situ by the observation system (sensors) installed on the testing ground prepared for this purpose, being a part of the test road near Katowice, in Poland. A different behavior of the homogeneous subsoil under pavement is observed for different seasons of the year, when pavement construction works as a flexible structure in summer, and as a rigid plate in winter. Albeit the observed character of subsoil response is the same regardless of the applied load and area values, this response can be divided into: - zone of indirect action of the applied load; this zone extends to the depth of 1,0 m under the pavement, - zone of a small strain, extending to about 2,0 m.

Keywords: road structure, constitutive model, calculation model, pavement, soil, FEA, response of soil, monitored system

Procedia PDF Downloads 346
361 Effect of Al2O3 Nanoparticles on Corrosion Behavior of Aluminum Alloy Fabricated by Powder Metallurgy

Authors: Muna Khethier Abbass, Bassma Finner Sultan

Abstract:

In this research the effect of Al2O3 nanoparticles on corrosion behavior of aluminum base alloy(Al-4.5wt%Cu-1.5wt%Mg) has been investigated. Nanocomopsites reinforced with variable contents of 1,3 & 5wt% of Al2O3 nanoparticles were fabricated using powder metallurgy. All samples were prepared from the base alloy powders under the best powder metallurgy processing conditions of 6 hr of mixing time , 450 MPa of compaction pressure and 560°C of sintering temperature. Density and micro hardness measurements, and electrochemical corrosion tests are performed for all prepared samples in 3.5wt%NaCl solution at room temperature using potentiostate instrument. It has been found that density and micro hardness of the nanocomposite increase with increasing of wt% Al2O3 nanoparticles to Al matrix. It was found from Tafel extrapolation method that corrosion rates of the nanocomposites reinforced with alumina nanoparticles were lower than that of base alloy. From results of corrosion test by potentiodynamic cyclic polarization method, it was found the pitting corrosion resistance improves with adding of Al2O3 nanoparticles . It was noticed that the pits disappear and the hysteresis loop disappears also from anodic polarization curve.

Keywords: powder metallurgy, nano composites, Al-Cu-Mg alloy, electrochemical corrosion

Procedia PDF Downloads 454
360 Effect of Gel Concentration on Physical Properties of an Electrochromic Device

Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos

Abstract:

In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.

Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer

Procedia PDF Downloads 125
359 Removal of Na₂SO₄ by Electro-Confinement on Nanoporous Carbon Membrane

Authors: Jing Ma, Guotong Qin

Abstract:

We reported electro-confinement desalination (ECMD), a desalination method combining electric field effects and confinement effects using nanoporous carbon membranes as electrode. A carbon membrane with average pore size of 8.3 nm was prepared by organic sol-gel method. The precursor of support was prepared by curing porous phenol resin tube. Resorcinol-formaldehyde sol was coated on porous tubular resin support. The membrane was obtained by carbonisation of coated support. A well-combined top layer with the thickness of 35 μm was supported by macroporous support. Measurements of molecular weight cut-off using polyethylene glycol showed the average pore size of 8.3 nm. High salt rejection can be achieved because the water molecules need not overcome high energy barriers in confined space, while huge inherent dehydration energy was required for hydrated ions to enter the nanochannels. Additionally, carbon membrane with additional electric field can be used as an integrated membrane electrode combining the effects of confinement and electric potential gradient. Such membrane electrode can repel co-ions and attract counter-ions using pressure as the driving force for mass transport. When the carbon membrane was set as cathode, the rejection of SO₄²⁻ was 94.89%, while the removal of Na⁺ was less than 20%. We set carbon membrane as anode chamber to treat the effluent water from the cathode chamber. The rejection of SO₄²⁻ and Na⁺ reached to 100% and 88.86%, respectively. ECMD will be a promising energy efficient method for salt rejection.

Keywords: nanoporous carbon membrane, confined effect, electric field, desalination, membrane reactor

Procedia PDF Downloads 117
358 A Supramolecular Cocrystal of 2-Amino-4-Chloro-6-Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations

Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak

Abstract:

The 1:1 co-crystal of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å, and β = 109.618 (3)°. The presence of unionized –COOH functional group in co-crystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen –bonded motif R22(8). The crystal structure was stabilized by Npyrimidine-H⋯O=C and C=O-H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6-311+G(d,p) basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of co-crystal I. Theoretical calculations are in good agreement with the experimental results. Solvent-free formation of this co-crystal I is confirmed by powder X-ray diffraction analysis.

Keywords: supramolecular co-crystal, 2-amino-4-chloro-6-methylpyrimidine, Harthree-Fock and DFT studies, spectroscopic analysis

Procedia PDF Downloads 300
357 Gas Injection Transport Mechanism for Shale Oil Recovery

Authors: Chinedu Ejike

Abstract:

The United States is now energy self-sufficient due to the production of shale oil reserves. With more than half of it being tapped daily in the United States, these unconventional reserves are massive and provide immense potential for future energy demands. Drilling horizontal wells and fracking are the primary methods for developing these reserves. Regrettably, recovery efficiency is rarely greater than 10%. As a result, optimizing recuperation offers a significant benefit. Huff and puff gas flooding and cyclic gas injection have all been demonstrated to be more successful than tapping the remaining oil in place. Methane, nitrogen, and carbon (IV) oxide, among other high-pressure gases, can be injected. Operators use Darcy's law to assess a reservoir's productive capacity, but they are unaware that the law may not apply to shale oil reserves. This is due to the fact that, unlike pressure differences alone, diffusion, concentration, and gas selection all play a role in the flow of gas injected into the wellbore. The reservoir drainage and oil sweep efficiency rates are determined by the transport method. This research assesses the parameters that influence the gas injection transport mechanism. Understanding the process causing these factors could accelerate recovery by two to three times, according to peer-reviewed studies and effective field testing.

Keywords: enhanced oil recovery, gas injection, shale oil, transport mechanism, unconventional reserve

Procedia PDF Downloads 163
356 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries

Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera

Abstract:

In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.

Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes

Procedia PDF Downloads 248
355 Effects of Intracerebroventricular Injection of Spexin and Its Interaction with Nitric Oxide, Serotonin, and Corticotropin Receptors on Central Food Intake Regulation in Chicken

Authors: Mohaya Farzin, Shahin Hassanpour, Morteza Zendehdel, Bita Vazir, Ahmad Asghari

Abstract:

Aim: There are several differences between birds and mammals in terms of food intake regulation. Therefore, this study aimed to investigate the effects of the intracerebroventricular (ICV) injection of spexin and its interaction with nitric oxide, serotonin, and corticotropin receptors on central food intake regulation in broiler chickens. Materials and Methods: In experiment 1, chickens received ICV injection of saline, PCPA (p-chlorophenyl alanine,1.25 µg), spexin, and PCPA+spexin. In experiments 2-7, 8-OH-DPAT (5-HT1A agonist, 15.25 nmol), SB-242084 (5-HT2C receptor antagonist, 1.5µg), L-arginine (Precursor of nitric oxide, 200 nmol), L-NAME (nitric oxide synthetase inhibitor, 100 nmol), Astressin-B (CRF1/CRF2 receptor antagonist, 30 µg) and Astressin2-B (CRF2 receptor antagonist, 30 µg) were injected to chickens instead of the PCPA. Then, food intake was measured until 120 minutes after the injection. Results: Spexin significantly decreased food consumption (P<0.05). Concomitant injection of SB-242084+spexin attenuated spexin-induced hypophagia (P<0.05). Co-injection of L-arginine+spexin enhanced spexin-induced hypophagia, and this effect was reversed by L-NAME (P<0.05). Also, concomitant injection of Astressin-B + spexin or Astressin2-B + spexin enhanced spexin-induced hypophagia (P<0.05). Conclusions: Based on these observations, spexin-induced hypophagia may be mediated by nitric oxide and 5-HT2C, CRF1, and CRF2 receptors in neonatal broiler chickens.

Keywords: spexin, serotonin, corticotropin, nitric oxide, food intake, chicken

Procedia PDF Downloads 63
354 The Scanning Vibrating Electrode Technique (SVET) as a Tool for Optimising a Printed Ni(OH)2 Electrode under Charge Conditions

Authors: C. F. Glover, J. Marinaccio, A. Barnes, I. Mabbett, G. Williams

Abstract:

The aim of the current study is to optimise formulations, in terms of charging efficiency, of a printed Ni(OH)2 precursor coating of a battery anode. Through the assessment of the current densities during charging, the efficiency of a range of formulations are compared. The Scanning vibrating electrode technique (SVET) is used extensively in the field of corrosion to measure area-averaged current densities of freely-corroding metal surfaces when fully immersed in electrolyte. Here, a Ni(OH)2 electrode is immersed in potassium hydroxide (30% w/v solution) electrolyte and charged using a range of applied currents. Samples are prepared whereby multiple coatings are applied to one substrate, separated by a non-conducting barrier, and charged using a constant current. With a known applied external current, electrode efficiencies can be calculated based on the current density outputs measured using SVET. When fully charged, a green Ni(OH)2 is oxidised to a black NiOOH surface. Distinct regions displaying high current density, and hence a faster oxidising reaction rate, are located using the SVET. This is confirmed by a darkening of the region upon transition to NiOOH. SVET is a highly effective tool for assessing homogeneity of electrodes during charge/discharge. This could prove particularly useful for electrodes where there are no visible surface appearance changes. Furthermore, a scanning Kelvin probe technique, traditionally used to assess underfilm delamination of organic coatings for the protection of metallic surfaces, is employed to study the change in phase of oxides, pre and post charging.

Keywords: battery, electrode, nickel hydroxide, SVET, printed

Procedia PDF Downloads 226
353 Benzoxaboralone: A Boronic Acid with High Oxidative Stability and Utility in Biological Contexts

Authors: Brian J. Graham, Ronald T. Raines

Abstract:

The presence of a nearly vacant p orbital on boron endows boronic acids with unique abilities as a catalyst and ligand. An organocatalytic process has been developed for the conversion of biomass-derived sugars to 5-hydroxymethylfurfural, which is a platform chemical. Specifically, 2-carboxyphenylboronic acid (2-CPBA) has been shown to be an optimal catalyst for this process, promoting the desired transformation in the absence of metals. The attributes of 2-CPBA as a catalyst led to additional investigations of its structure and reactivity. 2-CPBA was found to exist as a cyclized benzoxaborolone adduct rather than a free carboxylic acid. This cyclization has profound consequences for the oxidative stability of the boronic acid. Stereoelectronic effects within the oxaborolone ring destabilize the oxidation transition state by reducing electron donation from the cyclic oxygen to the developing p orbital on boron. That leads to a 10,000-fold increase in oxidative stability while maintaining the normal reactivity of boronic acids toward diols (e.g., carbohydrates) and nucleophiles in proteins while also presenting numerous hydrogen-bond accepting and donating groups. Thus, benzoxaborolones are useful in catalysis, chemical biology, medicinal chemistry, and allied fields.

Keywords: bioisosteres, boronic acid, catalysis, oxidative stability, pharmacophore, stereoelectronic effects

Procedia PDF Downloads 179
352 Cement-Based Composites with Carbon Nanofillers for Smart Structural Health Monitoring Sensors

Authors: Antonella D'Alessandro, Filippo Ubertini, Annibale Luigi Materazzi

Abstract:

The progress of nanotechnology resulted in the development of new instruments in the field of civil engineering. In particular, the introduction of carbon nanofillers into construction materials can enhance their mechanical and electrical properties. In construction, concrete is among the most used materials. Due to the characteristics of its components and its structure, concrete is suitable for modification, at the nanometer level too. Moreover, to guarantee structural safety, it is desirable to achieve a widespread monitoring of structures. The ideal thing would be to realize structures able to identify their behavior modifications, states of incipient damage or conditions of possible risk for people. This paper presents a research work about novel cementitious composites with conductive carbon nanoinclusions able of monitoring their state of deformation, with particular attention to concrete. The self-sensing ability is achieved through the correlation between the variation of stress or strain and that of electrical resistance. Carbon nanofillers appear particularly suitable for such applications. Nanomodified concretes with different carbon nanofillers has been tested. The samples have been subjected to cyclic and dynamic loads. The experimental campaign shows the potentialities of this new type of sensors made of nanomodified concrete for diffuse Structural Health Monitoring.

Keywords: carbon nanofillers, cementitious nanocomposites, smart sensors, structural health monitoring.

Procedia PDF Downloads 320
351 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids

Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi

Abstract:

The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.

Keywords: dianabol steroid, determination, modified GCE, urine

Procedia PDF Downloads 275
350 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)

Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan

Abstract:

The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.

Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent

Procedia PDF Downloads 319
349 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid

Procedia PDF Downloads 274
348 Endothelial Dysfunction in Non-Alcoholic Fatty Liver Disease: An Updated Meta-Analysis

Authors: Anit S. Malhotra, Ajay Duseja, Neelam Chadha

Abstract:

Endothelial dysfunction is a precursor to atherosclerosis, and flow-mediated dilatation (FMD) in the brachial artery is the commonest method to evaluate endothelial function in humans. Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders encountered in clinical practice. An earlier meta-analysis had quantitatively assessed the degree of endothelial dysfunction using FMD. However, the largest study investigating the relation of FMD with NAFLD was published after that meta-analysis. In addition, that meta-analysis did not include some studies, including one from our centre. Therefore, an updating the previous meta-analysis was considered important. We searched PubMed, Cochrane Library, Embase, Scopus, SCI, Google Scholar, conference proceedings, and references of included studies till June 2017 to identify observational studies evaluating endothelial function using FMD in patients with non-alcoholic fatty liver disease. Data was analyzed using MedCalc. Fourteen studies were found eligible for inclusion in the meta-analysis. Patients with NAFLD had lower brachial artery FMD as compared to controls, standardized mean difference (random effects model) being –1.279%; 95% confidence interval (CI), –1.478 to –0.914. The effect size became smaller after addition of the recent study with the largest sample size was included compared with the earlier meta-analysis. In conclusion, patients with NAFLD had low FMD values indicating that they are at a higher risk of cardiovascular disease although our results suggest the effect size is not as large as reported previously.

Keywords: endothelial dysfunction, flow-mediated dilatation, meta-analysis, non-alcoholic fatty liver disease

Procedia PDF Downloads 182
347 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 193
346 Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells

Authors: Mahmoud M. Zakaria, Omnia F. Elmoursi, Mahmoud M. Gabr, Camelia A. AbdelMalak, Mohamed A. Ghoneim

Abstract:

Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols.

Keywords: mesenchymal stem cells, insulin producing cells, conophylline protein, trichostatin-A, beta-mercaptoethanol, gene expression, immunofluorescence technique

Procedia PDF Downloads 199
345 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers

Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati

Abstract:

Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.

Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)

Procedia PDF Downloads 315
344 Regulation of PKA-Dependent Calcineurin as a Switch in Cell Secretion

Authors: Hani M. M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

This study will investigate cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) dependent calcineurin (Cn), known as protein phosphatase 2 B (PP2B) as well, regulation of chloride ion (Cl⁻) secretion and the release of pro-inflammatory molecules in immune cells such as cytokines. THP-1-derived monocytes, primary human monocytes and the bronchial epithelial cell line (16HBE14o-) were used in this study. The 16HBE14o- cells were chosen as positive control. Hence, to further confirm the expression of cystic fibrosis transmembrane conductance regulator (CFTR), calcium binding protein (S100A10), annexin A2 (AnxA2) and calcineurin A subunit (CnA) in all three cell types, cell lysate was probed against corresponding primary antibodies by immunoblotting. Western blot analyses show the expression of CFTR, AnxA2, CnA and S100A10 in THP-1-derived monocytes and primary human monocytes. In conclusion, CFTR, S100A10, CnA and AnxA2 are expressed in THP-1-derived monocytes and primary human monocytes and regulate Cl⁻ secretion. Also, they may play a role in the pro-inflammatory molecules release. The ongoing work will confirm interaction between these proteins in the cell lines.

Keywords: annexin A2, calcineurin, CFTR, chloride, monocytes, pro-inflammatory molecules, S100A10

Procedia PDF Downloads 224
343 High-performance Supercapacitors Enabled by Highly-porous Date Stone-derived Activated Carbon and Organic Redox Gel Electrolyte

Authors: Abubakar Dahiru Shuaibu, Atif Saeed Alzahrani, Md. Abdul Aziz

Abstract:

Construction of eco-benign, cost effective, and high-performance supercapacitors with improved electrolytes and hierarchical porous electrodes is necessary for effective energy storage. In this study, a gel type organic redox electrolyte made of polyvinyl alcohol (PVA)-H2SO4 and an organic redox molecule, anthraquinone (PVA-H2SO4-AQ), was prepared by simple solution casting method and was used to construct a symmetric supercapacitor (SSC) with a high BET surface area (1612 m²/g) using activated carbon made from date stones (DSAC). The DSAC was synthesized by simple carbonization method followed by activation with potassium hydroxide. The SSC exhibit a high specific capacitance of 126.5 F/g at 0.5 A/g, as well as a high energy density of 17.5 Wh/kg at a power density of 250 W/kg with high capacitance retention (87%) after 1000 GCD cycles. The present research suggests that adding anthraquinone to a PVA-H2SO4 gel electrolyte improves the performance of the fabricated device significantly as compared to using pristine PVA-H₂SO₄ or 1M H₂SO₄ electrolytes. The research also presents a promising approach for the development of sustainable and eco-benign materials for energy storage applications. The use of date stone waste as a precursor material for activated carbon electrodes presents an opportunity for cost-effective and sustainable energy storage. Overall, the findings of this research have important implications for the future design and fabrication of high-performance and cost-effective supercapacitors

Keywords: date stone, activated carbon, anthraquinone, redox gel-electrolyte, supercapacitor

Procedia PDF Downloads 62
342 Behavior of Reinforced Soil by Polypropylene Fibers

Authors: M. Kamal Elbokl

Abstract:

The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.

Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain

Procedia PDF Downloads 607
341 Zeolite Supported Iron-Sensitized TIO₂ for Tetracycline Photocatalytic ‎Degradation under Visible Light: A Comparison between Doping and Ion ‎Exchange ‎

Authors: Ghadeer Jalloul, Nour Hijazi, Cassia Boyadjian, Hussein Awala, Mohammad N. Ahmad, ‎Ahmad Albadarin

Abstract:

In this study, we applied Fe-sensitized TiO₂ supported over embryonic Beta zeolite (BEA) zeolite ‎for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. Four different ‎samples having 20, 40, 60, and 100% w/w as a ratio of TiO₂/BEA were prepared. The ‎immobilization of solgel TiO₂ (33 m²/g) over BEA (390 m²/g) increased its surface area to (227 ‎m²/g) and enhanced its adsorption capacity from 8% to 19%. To expand the activity of TiO₂ ‎photocatalyst towards the visible light region (λ>380 nm), we explored two different metal ‎sensitization techniques with Iron ions (Fe³⁺). In the ion-exchange method, the substitutional cations ‎in the zeolite in TiO₂/BEA were exchanged with (Fe³⁺) in an aqueous solution of FeCl₃. In the ‎doping technique, solgel TiO₂ was doped with (Fe³⁺) from FeCl₃ precursor during its synthesis and ‎before its immobilization over BEA. (Fe-TiO₂/BEA) catalysts were characterized using SEM, XRD, ‎BET, UV-VIS DRS, and FTIR. After testing the performance of the various ion-exchanged catalysts ‎under blue and white lights, only (Fe-TiO₂/BEA 60%) showed better activity as compared to pure ‎TiO₂ under white light with 100 ppm initial catalyst concentration and 20 ppm TC concentration. As ‎compared to ion-exchanged (Fe-TiO₂/BEA), doped (Fe-TiO₂/BEA) resulted in higher photocatalytic ‎efficiencies under blue and white lights. The 3%-Fe-doped TiO₂/BEA removed 92% of TC ‎compared to 54% by TiO₂ under white light. The catalysts were also tested under real solar ‎irradiations. This improvement in the photocatalytic performance of TiO₂ was due to its higher ‎adsorption capacity due to BEA support combined with the presence of Iron ions that enhance the ‎visible light absorption and minimize the recombination effect by the charge carriers. ‎

Keywords: Tetracycline, photocatalytic degradation, immobilized TiO₂, zeolite, iron-doped TiO₂, ion-exchange

Procedia PDF Downloads 93