Search results for: impact models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16849

Search results for: impact models

16279 Proposing a Strategic Management Maturity Model for Continues Innovation

Authors: Ferhat Demir

Abstract:

Even if strategic management is highly critical for all types of organizations, only a few maturity models have been proposed in business literature for the area of strategic management activities. This paper updates previous studies and presents a new conceptual model for assessing the maturity of strategic management in any organization. Strategic management maturity model (S-3M) is basically composed of 6 maturity levels with 7 dimensions. The biggest contribution of S-3M is to put innovation into agenda of strategic management. The main objective of this study is to propose a model to align innovation with business strategies. This paper suggests that innovation (breakthrough new products/services and business models) is the only way of creating sustainable growth and strategy studies cannot ignore this aspect. Maturity models should embrace innovation to respond dynamic business environment and rapidly changing customer behaviours.

Keywords: strategic management, innovation, business model, maturity model

Procedia PDF Downloads 194
16278 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
16277 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
16276 Effects of International Trade on Economic Growth

Authors: Tanimola Kazeem Abiodun

Abstract:

In the paper, attempt was made to investigate the impact of international trade on economic growth at the disaggregate level both from the theoretical and economic angle. The study in its contribution examines this impact at the disaggregated level. To this end, a hypothesis was formulated to investigate the short ?run and long run impact of international trade on growth in the country. In the econometrics investigation that follow, international trade was disaggregated to export and imports and their short run and long run effect on growth was examined. Also, the aggregate international trade was also investigated to see the long run effects of its own growth. The results of the findings indicate that; both export and import impact significantly to growth in the short run. The long-run impact of export on growth was found to be positive, significant and stable both. Engle-Granger co integration test and error correlation mechanism were applied to these long run relationships. For the import, while the short run was found to be positive and significant on its impact on growth, the long run relationship was found to be negative but not significant. Therefore, it is thus recommended among others that the country should engage more on export promotion drives.

Keywords: international trade, disaggregated, import, export, econometrics, trade, economic growth, foreign trade, import, export

Procedia PDF Downloads 410
16275 Applications of Greenhouse Data in Guatemala in the Analysis of Sustainability Indicators

Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.

Abstract:

In 2015, Guatemala officially adopted the Sustainable Development Goals (SDG) according to the 2030 Agenda agreed by the United Nations Organization. In 2016, these objectives and goals were reviewed, and the National Priorities were established within the K'atún 2032 National Development Plan. In 2019 and 2021, progress was evaluated with 120 defined indicators, and the need to improve quality and availability of statistical data necessary for the analysis of sustainability indicators was detected, so the values to be reached in 2024 and 2032 were adjusted. The need for greater agricultural technology is one of the priorities established within SDG 2 "Zero Hunger". Within this area, protected agricultural production provides greater productivity throughout the year, reduces the use of chemical products to control pests and diseases, reduces the negative impact of climate and improves product quality. During the crisis caused by Covid-19, there was an increase in exports of fruits and vegetables produced in greenhouses from Guatemala. However, this information has not been considered in the 2021 revision of the Plan. The objective of this study is to evaluate the information available on Greenhouse Agricultural Production and its integration into the Sustainability Indicators for Guatemala. This study was carried out in four phases: 1. Analysis of the Goals established for SDG 2 and the indicators included in the K'atún Plan. 2. Analysis of Environmental, Social and Economic Indicator Models. 3. Definition of territorial levels in 2 geographic scales: Departments and Municipalities. 4. Diagnosis of the available data on technological agricultural production with emphasis on Greenhouses at the 2 geographical scales. A summary of the results is presented for each phase and finally some recommendations for future research are added. The main contribution of this work is to improve the available data that allow the incorporation of some agricultural technology indicators in the established goals, to evaluate their impact on Food Security and Nutrition, Employment and Investment, Poverty, the use of Water and Natural Resources, and to provide a methodology applicable to other production models and other geographical areas.

Keywords: greenhouses, protected agriculture, sustainable indicators, Guatemala, sustainability, SDG

Procedia PDF Downloads 85
16274 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 139
16273 Modeling User Departure Time Choice for Trips in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Modeling users’ decisions on departure time choice is the main motivation for this research. In particular, it examines the impact of social-demographic features, household, job characteristics and trip qualities on individuals’ departure time choice. Departure time alternatives are presented as adjacent discrete time periods. The choice between these alternatives is done using a discrete choice model. Since a great deal of early morning trips and traffic congestion at that time of the day comprise work trips, the focus of this study is on the work trip over the entire day. Therefore, this study by using questionnaire of stated preference models users’ departure time choice affected by congestion pricing plan in downtown Tehran. Experimental results demonstrate efficient social-demographic impact on work trips’ departure time. These findings have substantial outcomes for the analysis of transportation planning. Particularly, the analysis shows that ignoring the effects of these variables could result in erroneous information and consequently decisions in the field of transportation planning and air quality would fail and cause financial resources loss.

Keywords: modeling, departure time, travel timing, time of the day, congestion pricing, transportation planning

Procedia PDF Downloads 433
16272 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 329
16271 Environmental Impact Assessment of Conventional Tyre Manufacturing Process

Authors: G. S. Dangayach, Gaurav Gaurav, Alok Bihari Singh

Abstract:

The popularity of vehicles in both industrialized and developing economies led to a rise in the production of tyres. People have become increasingly concerned about the tyre industry's possible environmental impact in the last two decades. The life cycle assessment (LCA) methodology was used to assess the environmental impacts of industrial tyres throughout their life cycle, which included four stages: manufacture, transportation, consumption, and end-of-life. The majority of prior studies focused on tyre recycling and disposal. Only a few studies have been conducted on the environmental impact of tyre production process. LCA methodology was employed to determine the environmental impact of tyre manufacture process (gate to gate) at an Indian firm. Comparative analysis was also conducted to identify the environmental hotspots in various stages of tire manufacturing. This study is limited to gate-to-gate analysis of manufacturing processes with the functional unit of a single tyre weighing 50 kg. GaBi software was used to do both qualitative and quantitative analysis. Different environmental impact indicators are measured in terms of CO2, SO2, NOx, GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), POCP (photochemical oxidant formation potential), and HTP (toxic human potential). The results demonstrate that the major contributor to environmental pollution is electricity. The Banbury process has a very high negative environmental impact, which causes respiratory problems to workers and operators.

Keywords: life cycle assessment (LCA), environmental impact indicators, tyre manufacturing process, environmental impact assessment

Procedia PDF Downloads 151
16270 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis

Authors: Srinaath Anbu Durai, Wang Zhaoxia

Abstract:

Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.

Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks

Procedia PDF Downloads 116
16269 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 74
16268 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
16267 Analyzing the Technology Affecting on the Social Integration of Students at University

Authors: Sujit K. Basak, Simon Collin

Abstract:

The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use.

Keywords: faculty, integration, peer, technology access and use

Procedia PDF Downloads 512
16266 Artificial Intelligence Impact on Strategic Stability

Authors: Darius Jakimavicius

Abstract:

Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.

Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop

Procedia PDF Downloads 41
16265 Drying Kinetics of Vacuum Dried Beef Meat Slices

Authors: Elif Aykin Dincer, Mustafa Erbas

Abstract:

The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.

Keywords: beef slice, drying models, effective diffusivity, vacuum

Procedia PDF Downloads 288
16264 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment

Procedia PDF Downloads 479
16263 Rethinking Urban Green Space Quality and Planning Models from Users and Experts’ Perspective for Sustainable Development: The Case of Debre Berhan and Debre Markos Cities, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

This study analyzed the users' and experts' views on the green space quality and planning models in Debre Berhan (DB) and Debre Markos (DM) cities in Ethiopia. A questionnaire survey was conducted on 350 park users (148 from DB and 202 from DM) to rate the accessibility, size, shape, vegetation cover, social and cultural context, conservation and heritage, community participation, attractiveness, comfort, safety, inclusiveness, and maintenance of green spaces using a Likert scale. A key informant interview was held with 13 experts in DB and 12 in DM. Descriptive statistics and tests of independence of variables using the chi-square test were done. A statistically significant association existed between the perception of green space quality attributes and users' occupation (χ² (160, N = 350) = 224.463, p < 0.001), age (χ² (128, N = 350) = 212.812, p < 0.001), gender (χ² (32, N = 350) = 68.443, p < 0.001), and education level (χ² (192, N = 350) = 293.396, p < 0.001). 61.7 % of park users were unsatisfied with the quality of urban green spaces. The users perceived dense vegetation cover as "good," with a mean value of 3.41, while the remaining were perceived as "medium with a mean value of 2.62 – 3.32". Only quantitative space standards are practiced as a green space planning model, while other models are unfamiliar and never used in either city. Therefore, experts need to be aware of and practice urban green models during urban planning to ensure that new developments include green spaces to accommodate the community's and the environment's needs.

Keywords: urban green space, quality, users and experts, green space planning models, Ethiopia

Procedia PDF Downloads 58
16262 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.

Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys

Procedia PDF Downloads 176
16261 Internal Methane Dry Reforming Kinetic Models in Solid Oxide Fuel Cells

Authors: Saeed Moarrefi, Shou-Han Zhou, Liyuan Fan

Abstract:

Coupling with solid oxide fuel cells, methane dry reforming is a promising pathway for energy production while mitigating carbon emissions. However, the influence of carbon dioxide and electrochemical reactions on the internal dry reforming reaction within the fuel cells remains debatable, requiring accurate kinetic models to describe the internal reforming behaviors. We employed the Power-Law and Langmuir Hinshelwood–Hougen Watson models in an electrolyte-supported solid oxide fuel cell with a NiO-GDC-YSZ anode. The current density used in this study ranges from 0 to 1000 A/m2 at 973 K to 1173 K to estimate various kinetic parameters. The influence of the electrochemical reactions on the adsorption terms, the equilibrium of the reactions, the activation energy, the pre-exponential factor of the rate constant, and the adsorption equilibrium constant were studied. This study provides essential parameters for future simulations and highlights the need for a more detailed examination of reforming kinetic models.

Keywords: dry reforming kinetics, Langmuir Hinshelwood–Hougen Watson, power-law, SOFC

Procedia PDF Downloads 22
16260 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction

Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner

Abstract:

Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.

Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling

Procedia PDF Downloads 82
16259 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks

Authors: Mehdi Janbaz

Abstract:

The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.

Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED

Procedia PDF Downloads 144
16258 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 69
16257 An Overview of Domain Models of Urban Quantitative Analysis

Authors: Mohan Li

Abstract:

Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.

Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design

Procedia PDF Downloads 177
16256 Capacitance Models of AlGaN/GaN High Electron Mobility Transistors

Authors: A. Douara, N. Kermas, B. Djellouli

Abstract:

In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node.

Keywords: gate capacitance, AlGaN/GaN, HEMTs, quantum capacitance, centroid capacitance

Procedia PDF Downloads 396
16255 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting

Authors: Kristin Thooft

Abstract:

— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursing

Keywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload

Procedia PDF Downloads 173
16254 National Projects' Impact on the Regional Division

Authors: Mosaad Hamouda, Kamal Khalaf, Zaker Mousa

Abstract:

National projects are considered Egypt's future vision in investing its various resources and the best way to bring about a developmental renaissance that constitutes a quantum leap because of its developmental impact on the planning regions, which it achieves in attracting and localizing investments to achieve urban development, and what this has a noticeable impact on dividing those regions in order to achieve a developmental balance or at least reduce the severity of the disparities between them, by measuring the impact of these projects, which appear in the per capita share of the various developmental variables, and also analyzing global and local experiences so that a balanced division of the country’s regions can be reached, and the research finds a set of planning foundations that are compatible with the settlement of these national projects in the future.

Keywords: national projects, regional development, division of regions, development disparities

Procedia PDF Downloads 126
16253 COVID-19 Impact: How the Pandemic Changed the Fashion Industry

Authors: Akshata Patel, Reenu Singh

Abstract:

This paper focuses on current and upcoming fashion trends and global impact on the fashion industry due to the COVID-19 pandemic. The pandemic has had a major impact on the fashion industry worldwide. At the same time, the fashion market also faces challenges in consumer demand. As the supply chain and distribution channels are interconnected, this outbreak has a global impact due to travel restrictions and raw materials shortages. Given that this particular period represents an unprecedented market situation with almost no prior research on how the industry will recover from such a crisis and mold back to its original form, this research aims to propose new possibilities by evaluating the framework of specific segments. Based on the analysis and extensive literature review, the study develops a conceptual model that will illustrate the various connections among the different segments of the fashion industry. The findings provide actionable considerations for fashion industry pupils when implementing appropriate strategies to prevent unfavourable outcomes during times of crisis, such as the COVID-19 outbreak.

Keywords: COVID-19, fashion industry, global impact, new possibilities, pandemic

Procedia PDF Downloads 285
16252 Flexible Capacitive Sensors Based on Paper Sheets

Authors: Mojtaba Farzaneh, Majid Baghaei Nejad

Abstract:

This article proposes a new Flexible Capacitive Tactile Sensors based on paper sheets. This method combines the parameters of sensor's material and dielectric, and forms a new model of flexible capacitive sensors. The present article tries to present a practical explanation of this method's application and advantages. With the use of this new method, it is possible to make a more flexibility and accurate sensor in comparison with the current models. To assess the performance of this model, the common capacitive sensor is simulated and the proposed model of this article and one of the existing models are assessed. The results of this article indicate that the proposed model of this article can enhance the speed and accuracy of tactile sensor and has less error in comparison with the current models. Based on the results of this study, it can be claimed that in comparison with the current models, the proposed model of this article is capable of representing more flexibility and more accurate output parameters for touching the sensor, especially in abnormal situations and uneven surfaces, and increases accuracy and practicality.

Keywords: capacitive sensor, paper sheets, flexible, tactile, uneven

Procedia PDF Downloads 353
16251 Urban Sustainability and Sustainable Mobility, Lessons Learned from the Case of Chile

Authors: Jorge Urrutia-Mosquera, Luz Flórez-Calderón, Yasna Cortés

Abstract:

We assessed the state of progress in terms of urban sustainability indicators and studied the impact of current land use conditions and the level of spatial accessibility to basic urban amenities on travel patterns and sustainable mobility in Santiago de Chile. We determined the spatial impact of urban facilities on sustainable travel patterns through the statistical analysis, data visualisation, and weighted regression models. The results show a need to diversify land use in more than 60% of the communes, although in 85% of the communes, accessibility to public spaces is guaranteed. The findings also suggest improving access to early education facilities, as only 26% of the communes meet the sustainability standard, negatively impacting travel in sustainable modes. It is also observed that the level of access to urban facilities generates spatial heterogeneity in the city, which negatively affects travel patterns in terms of time over 60 minutes and modes of travel in private vehicles. The results obtained allow us to identify opportunities for public policy intervention to promote and adopt sustainable mobility.

Keywords: land use, urban sustainability, travel patterns, spatial heterogeneity, GWR model, sustainable mobility

Procedia PDF Downloads 81
16250 The Impact of Geopolitical Risks and the Oil Price Fluctuations on the Kuwaiti Financial Market

Authors: Layal Mansour

Abstract:

The aim of this paper is to identify whether oil price volatility or geopolitical risks can predict future financial stress periods or economic recessions in Kuwait. We construct the first Financial Stress Index for Kuwait (FSIK) that includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. The study covers the period from 2000 to 2020, so it includes the two recent most devastating world economic crises with oil price fluctuation: the Covid-19 pandemic crisis and Ukraine-Russia War. All data are taken by the central bank of Kuwait, the World Bank, IMF, DataStream, and from Federal Reserve System St Louis. The variables are computed as the percentage growth rate, then standardized and aggregated into one index using the variance equal weights method, the most frequently used in the literature. The graphical FSIK analysis provides detailed information (by dates) to policymakers on how internal financial stability depends on internal policy and events such as government elections or resignation. It also shows how monetary authorities or internal policymakers’ decisions to relieve personal loans or increase/decrease the public budget trigger internal financial instability. The empirical analysis under vector autoregression (VAR) models shows the dynamic causal relationship between the oil price fluctuation and the Kuwaiti economy, which relies heavily on the oil price. Similarly, using vector autoregression (VAR) models to assess the impact of the global geopolitical risks on Kuwaiti financial stability, results reveal whether Kuwait is confronted with or sheltered from geopolitical risks. The Financial Stress Index serves as a guide for macroprudential regulators in order to understand the weakness of the overall Kuwaiti financial market and economy regardless of the Kuwaiti dinar strength and exchange rate stability. It helps policymakers predict future stress periods and, thus, address alternative cushions to confront future possible financial threats.

Keywords: Kuwait, financial stress index, causality test, VAR, oil price, geopolitical risks

Procedia PDF Downloads 81