Search results for: drug prediction
3624 Molecular Motors in Smart Drug Delivery Systems
Authors: Ainoa Guinart, Maria Korpidou, Daniel Doellerer, Cornelia Palivan, Ben L. Feringa
Abstract:
Stimuli responsive systems arise from the need to meet unsolved needs of current molecular drugs. Our study presents the design of a delivery system with high spatiotemporal control and tuneable release profiles. We study the incorporation of a hydrophobic synthetic molecular motor into PDMS-b-PMOXA block copolymer vesicles to create a self-assembled system. We prove their successful incorporation and selective activation by low powered visible light (λ 430 nm, 6.9 mW). We trigger the release of a fluorescent dye with high release efficiencies over sequential cycles (up to 75%) with the ability to turn on and off the release behaviour on demand by light irradiation. Low concentrations of photo-responsive units are proven to trigger release down to 1 mol% of molecular motor. Finally, we test our system in relevant physiological conditions using a lung cancer cell line and the encapsulation of an approved drug. Similar levels of cell viability are observed compared to the free-given drugshowing the potential of our platform to deliver functional drugs on demand with the same efficiency and lower toxicity.Keywords: molecular motor, polymer, drug delivery, light-responsive, cancer, selfassembly
Procedia PDF Downloads 1353623 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe
Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou
Abstract:
In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine
Procedia PDF Downloads 623622 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent
Authors: Vatsal M. Patel, Navin B. Patel
Abstract:
The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave
Procedia PDF Downloads 1613621 Differentiation of Drug Stereoisomers by Their Stereostructure-Selective Membrane Interactions as One of Pharmacological Mechanisms
Authors: Maki Mizogami, Hironori Tsuchiya, Yoshiroh Hayabuchi, Kenji Shigemi
Abstract:
Since drugs exhibit significant structure-dependent differences in activity and toxicity, their differentiation based on the mechanism of action should have implications for comparative drug efficacy and safety. We aimed to differentiate drug stereoisomers by their stereostructure-selective membrane interactions underlying pharmacological and toxicological effects. Biomimetic lipid bilayer membranes were prepared with phospholipids and sterols (either cholesterol or epicholesterol) to mimic the lipid compositions of neuronal and cardiomyocyte membranes and to provide these membranes with the chirality. The membrane preparations were treated with different classes of stereoisomers at clinically- and pharmacologically-relevant concentrations (25-200 μM), followed by measuring fluorescence polarization to determine the membrane interactivity of drugs to change the physicochemical property of membranes. All the tested drugs acted on lipid bilayers to increase or decrease the membrane fluidity. Drug stereoisomers could not be differentiated when interacting with the membranes consisting of phospholipids alone. However, they stereostructure-selectively interacted with neuro-mimetic and cardio-mimetic membranes containing 40 mol% cholesterol ((3β)-cholest-5-en-3-ol) to show the relative potencies being local anesthetic R(+)-bupivacaine > rac-bupivacaine > S(‒)-bupivacaine, α2-adrenergic agonistic D-medetomidine > rac-medetomidine > L-medetomidine, β-adrenergic antagonistic R(+)-propranolol > rac-propranolol > S(–)-propranolol, NMDA receptor antagonistic S(+)-ketamine > rac-ketamine, analgesic monoterpenoid (+)-menthol > (‒)-menthol, non-steroidal anti-inflammatory S(+)-ibuprofen > rac-ibuprofen > R(‒)-ibuprofen, and bioactive flavonoid (+)-epicatechin > (‒)-epicatechin. All of the order of membrane interactivity were correlated to those of beneficial and adverse effects of the tested stereoisomers. In contrast, the membranes prepared with epicholesterol ((3α)-chotest-5-en-3-ol), an epimeric form of cholesterol, reversed the rank order of membrane interactivity to be S(‒)-enantiomeric > racemic > R(+)-enantiomeric bupivacaine, L-enantiomeric > racemic > D-enantiomeric medetomidine, S(–)-enantiomeric > racemic > R(+)-enantiomeric propranolol, racemic > S(+)-enantiomeric ketamine, (‒)-enantiomeric > (+)-enantiomeric menthol, R(‒)-enantiomeric > racemic > S(+)-enantiomeric ibuprofen, and (‒)-enantiomeric > (+)-enantiomeric epicatechin. The opposite configuration allows drug molecules to interact with chiral sterol membranes enantiomer-selectively. From the comparative results, it is speculated that a 3β-hydroxyl group in cholesterol is responsible for the enantioselective interactions of drugs. In conclusion, the differentiation of drug stereoisomers by their stereostructure-selective membrane interactions would be useful for designing and predicting drugs with higher activity and/or lower toxicity.Keywords: chiral membrane, differentiation, drug stereoisomer, enantioselective membrane interaction
Procedia PDF Downloads 2233620 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes
Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma
Abstract:
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry
Procedia PDF Downloads 703619 Changing Pattern of Drug Abuse: An Outpatient Department Based Study from India
Authors: Anshu Gupta, Charu Gupta
Abstract:
Background: Punjab, a border state in India has achieved notoriety world over for its drug abuse problem. People right from school kids to elderly are hooked to drugs. This pattern of substance abuse is prevalent in both cities and villages alike. Excess of younger population in India has further aggravated the situation. It is feared that the benefits of India’s economic growth may well be negated by the rising substance abuse especially in this part of the country. It is quite evident that the pattern of substance abuse tends to change over time which is an impediment in the formulation of effective strategies to tackle this issue. Aim: Purpose of the study was to ascertain the change in the pattern of drug abuse for two consecutive years in the out patient department (OPD) population. Method: The study population comprised of all the patients reporting for deaddiction to the psychiatry outpatient department over a period of twelve months for two consecutive years. All the patients were evaluated by the International Classification of Diseases; 10 criteria for substance abuse/dependence. Results: A considerably high prevalence of substance abuse was present in the Indian population. In general, there was an increase in prevalence from first to the second year, especially among the female population. Increase in prevalence of substance abuse appeared to be more prominent among the younger age group of both the sexes. A significant increase in intravenous drug abuse was observed. Peer pressure and parental imitation were the major factors fueling substance abuse. Precipitation or fear of withdrawal symptoms was the major factor preventing abstinence. Substance abuse had a significant effect on the health and interpersonal relations of these patients. Summary/Conclusion: Drug abuse and addiction are on the rise throughout India. Changing cultural values, increasing economic stress and dwindling supportive bonds appear to be leading to initiation of substance abuse. Need of the hour is to formulate a comprehensive strategy to bring about an overall reduction in the use of drugs.Keywords: deaddiction, peer pressure, parental imitation, substance abuse/dependance
Procedia PDF Downloads 2043618 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1553617 Phage Capsid for Efficient Delivery of Cytotoxic Drugs
Authors: Simona Dostalova, Dita Munzova, Ana Maria Jimenez Jimenez, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
The boom of nanomedicine in recent years has led to the development of numerous new nanomaterials that can be used as nanocarriers in the drug delivery. These nanocarriers can either be synthetic or natural-based. The disadvantage of many synthetic nanocarriers is their toxicity in patient’s body. Protein cages that can naturally be found in human body do not exhibit such disadvantage. However, the release of cargo from some protein cages in target cells can be problematic. As a special type of protein cages can serve the capsid of many viruses, including phage. Phages infect bacterial cells; therefore they are not harmful to human cells. The targeting of phage particles to cancer cells can be solved by producing of empty phage capsids during which the targeting moieties (e.g. peptides) can be cloned into genes of phage capsid to decorate its surface. Moreover, the produced capsids do not contain viral nucleic acid and are therefore not infectious to beneficial bacteria in the patient’s body. The protein cage composed of viral capsid is larger than other frequently used apoferritin cage but its size is still small enough to benefit from passive targeting by Enhanced Permeability and Retention effect. In this work, bacteriophage λ was used, both whole and its empty capsid for delivery of different cytotoxic drugs (cisplatin, carboplatin, oxaliplatin, etoposide and doxorubicin). Large quantities of phage λ were obtained from phage λ-producing strain of E. coli cultivated in medium with 0.2 % maltose. After killing of E. coli with chloroform and its removal by centrifugation, the phage was concentrated by ultracentrifugation at 130 000 g and 4 °C for 3 h. The encapsulation of the drugs was performed by infusion method and four different concentrations of the drugs were encapsulated (200; 100; 50; 25 µg/ml). Free molecules of drugs were removed by dialysis. The encapsulation was verified using spectrophotometric and electrochemical methods. The amount of encapsulated drug linearly increased with the amount of applied drug (determination coefficient R2=0.8013). 76% of applied drug was encapsulated in phage λ particles (concentration of 10 µg/ml), even with the highest applied concentration of drugs, 200 µg/ml. Only 1% of encapsulated drug was detected in phage DNA. Similar results were obtained with encapsulation in phage empty capsid. Therefore, it can be concluded that the encapsulation of drugs into phage particles is efficient and mostly occurs by interaction of drugs with protein capsid.Keywords: cytostatics, drug delivery, nanocarriers, phage capsid
Procedia PDF Downloads 4943616 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 2713615 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3693614 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 973613 Awareness of Drug Interactions among Physicians at Governmental Health Centers in Bahrain
Authors: Yasin I. Tayem, Jamil Ahmed, Mahmood Bahzad, Abdullah Alnama, Fahad Al Asfoor, Mahmood A. Jalil, Mohammed Radhi, Ahmed Alenezi, Khalid A. J. Al-Khaja
Abstract:
Drug-drug interactions (DDIs) represent a significant cause of patient’s morbidity and mortality. The rate of DDIs is rapidly increasing worldwide with the increasing proportion of ageing population and frequent requirement of polypharmacy-prescription of multiple drugs to treat comorbidities. Prescribing physicians are responsible for checking their prescriptions for the presence and severity of DDIs. However, since a large number of new drugs are approved and marketed every year, new interactions between medications are increasingly reported. Consequently, it is no longer practical for physicians to rely only upon their previous knowledge of medicine to avoid potential DDIs. The aim of this study was to explore the perceptions of physicians working at primary healthcare centers in Bahrain towards DDIs and how they manage them during their practice. Methodology: In this cross-sectional study, physicians working at all governmental primary healthcare centers in Bahrain were invited to voluntarily, privately and anonymously respond to a self-administered questionnaire. The questionnaire aims to assess their self-reported knowledge of DDIs and how they check for them in their practice. The participants were requested to provide socio demographic data and information related to their attitudes towards DDIs including strategies they employ for detecting and managing them, and their awareness of drugs which commonly cause DDIs. At the end of the questionnaire, an open-ended item was added to allow participants to further add any comment. Findings and Conclusions: The study is going on currently, and the results and conclusions will be presented at the conference.Keywords: awareness, drug interactions, health centres, physicians
Procedia PDF Downloads 2443612 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications
Authors: M. Helen
Abstract:
Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices
Procedia PDF Downloads 1383611 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 1843610 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1693609 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing
Authors: Rajni Kant Panik
Abstract:
The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.Keywords: hydrogel, nanoparticle, PLGA, wound healing
Procedia PDF Downloads 3113608 In-silico Analysis of Plumbagin against Cancer Receptors
Authors: Arpita Roy, Navneeta Bharadvaja
Abstract:
Cancer is an uncontrolled growth of abnormal cells in the body. It is one of the most serious diseases on which extensive research work has been going on all over the world. Structure-based drug designing is a computational approach which helps in the identification of potential leads that can be used for the development of a drug. Plumbagin is a naphthoquinone derivative from Plumbago zeylanica roots and belongs to one of the largest and diverse groups of plant metabolites. Anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin shows inhibitory effects on multiple cancer-signaling proteins; however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. In this investigation, an attempt to provide structural insights into the binding mode of plumbagin against four cancer receptors using molecular docking was performed. Plumbagin showed minimal energy against targeted cancer receptors, therefore suggested its stability and potential towards different cancers. The least binding energies of plumbagin with COX-2, TACE, and CDK6 are -5.39, -4.93, -and 4.81 kcal/mol, respectively. Comparison studies of plumbagin with different receptors showed that it is a promising compound for cancer treatment. It was also found that plumbagin obeys the Lipinski’s Rule of 5 and computed ADMET properties which showed drug likeliness and improved bioavailability. Since plumbagin is from a natural source, it has reduced side effects, and these results would be useful for cancer treatment.Keywords: cancer, receptor, plumbagin, docking
Procedia PDF Downloads 1433607 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms
Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin
Abstract:
This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.Keywords: machine learning, business models, convex analysis, online learning
Procedia PDF Downloads 1413606 Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices
Authors: Imad Eddine Charif, Wafaa Benchouk, Sidi Mohamed Mekelleche
Abstract:
The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind.Keywords: 1, 3-dipolar cycloaddition, density functional theory, nitrile oxides, regioselectivity, reactivity indices
Procedia PDF Downloads 1663605 Development, Optimization and Characterization of Gastroretentive Multiparticulate Drug Delivery System
Authors: Swapnila V. Vanshiv, Hemant P. Joshi, Atul B. Aware
Abstract:
Current study illustrates the formulation of floating microspheres for purpose of gastroretention of Dipyridamole which shows pH dependent solubility, with the highest solubility in acidic pH. The formulation involved hollow microsphere preparation by using solvent evaporation technique. Concentrations of rate controlling polymer, hydrophilic polymer, internal phase ratio, stirring speed were optimized to get desired responses, namely release of Dipyridamole, buoyancy of microspheres, entrapment efficiency of microspheres. In the formulation, the floating microspheres were prepared by using ethyl cellulose as release retardant and HPMC as a low density hydrophilic swellable polymer. Formulated microspheres were evaluated for their physical properties such as particle size and surface morphology by optical microscopy and SEM. Entrapment efficiency, floating behavior and drug release study as well the formulation was evaluated for in vivo gastroretention in rabbits using gamma scintigraphy. Formulation showed 75% drug release up to 10 hr with entrapment efficiency of 91% and 88% buoyancy till 10 hr. Gamma scintigraphic studies revealed that the optimized system was retained in the gastric region (stomach) for a prolonged period i.e. more than 5 hr.Keywords: Dipyridamole microspheres, gastroretention, HPMC, optimization method
Procedia PDF Downloads 3853604 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole
Authors: Hasan Keshavarzian, Tayebeh Nesari
Abstract:
Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis
Procedia PDF Downloads 3813603 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 4283602 Pharmacokinetics of First-Line Tuberculosis Drugs in South African Patients from Kwazulu-Natal: Effects of Pharmacogenetic Variation on Rifampicin and Isoniazid Concentrations
Authors: Anushka Naidoo, Veron Ramsuran, Maxwell Chirehwa, Paolo Denti, Kogieleum Naidoo, Helen McIlleron, Nonhlanhla Yende-Zuma, Ravesh Singh, Sinaye Ngcapu, Nesri Padayatachi
Abstract:
Background: Despite efforts to introduce new drugs and shorter drug regimens for drug-susceptible tuberculosis (TB), the standard first-line treatment has not changed in over 50 years. Rifampicin, isoniazid, and pyrazinamide are critical components of the current standard treatment regimens. Some studies suggest that microbiologic failure and acquired drug resistance are primarily driven by low drug concentrations that result from pharmacokinetic (PK) variability independent of adherence to treatment. Wide between-patient pharmacokinetic variability for rifampin, isoniazid, and pyrazinamide has been reported in prior studies. There may be several reasons for this variability. However, genetic variability in genes coding for drug metabolizing and transporter enzymes have been shown to be a contributing factor for variable tuberculosis drug exposures. Objective: We describe the pharmacokinetics of first-line TB drugs rifampicin, isoniazid, and pyrazinamide and assess the effect of genetic variability in relevant selected drug metabolizing and transporter enzymes on pharmacokinetic parameters of isoniazid and rifampicin. Methods: We conducted the randomized-controlled Improving retreatment success TB trial in Durban, South Africa. The drug regimen included rifampicin, isoniazid, and pyrazinamide. Drug concentrations were measured in plasma, and concentration-time data were analysed using nonlinear-mixed-effects models to quantify the effects of relevant covariates and single nucleotide polymorphisms (SNP’s) of drug metabolizing and transporter genes on rifampicin, isoniazid and pyrazinamide exposure. A total of 25 SNP’s: four NAT2 (used to determine acetylator status), four SLCO1B1, three Pregnane X receptor (NR1), six ABCB1 and eight UGT1A, were selected for analysis in this study. Genotypes were determined for each of the SNP’s using a TaqMan® Genotyping OpenArray™. Results: Among fifty-eight patients studied; 41 (70.7%) were male, 97% black African, 42 (72.4%) HIV co-infected and 40 (95%) on efavirenz-based ART. Median weight, fat-free mass (FFM), and age at baseline were 56.9 kg (interquartile range, IQR: 51.1-65.2), 46.8 kg (IQR: 42.5-50.3) and 37 years (IQR: 31-42), respectively. The pharmacokinetics of rifampicin and pyrazinamide was best described using one-compartment models with first-order absorption and elimination, while for isoniazid two-compartment disposition was used. The median (interquartile range: IQR) AUC (h·mg/L) and Cmax (mg/L) for rifampicin, isoniazid, and pyrazinamide were; 25.62 (23.01-28.53) and 4.85 (4.36-5.40), 10.62 (9.20-12.25) and 2.79 (2.61-2.97), 345.74 (312.03-383.10) and 28.06 (25.01-31.52), respectively. Eighteen percent of patients were classified as rapid acetylators, and 34% and 43% as slow and intermediate acetylators, respectively. Rapid and intermediate acetylator status based on NAT 2 genotype resulted in 2.3 and 1.6 times higher isoniazid clearance than slow acetylators. We found no effects of the SLCO1B1 genotypes on rifampicin pharmacokinetics. Conclusion: Plasma concentrations of rifampicin, isoniazid, and pyrazinamide were low overall in our patients. Isoniazid clearance was high overall and as expected higher in rapid and intermediate acetylators resulting in lower drug exposures. In contrast to reports from previous South African or Ugandan studies, we did not find any effects of the SLCO1B1 or other genotypes tested on rifampicin PK. However, our findings are in keeping with more recent studies from Malawi and India emphasizing the need for geographically diverse and adequately powered studies. The clinical relevance of the low tuberculosis drug concentrations warrants further investigation.Keywords: rifampicin, isoniazid pharmacokinetics, genetics, NAT2, SLCO1B1, tuberculosis
Procedia PDF Downloads 1873601 A Model of Foam Density Prediction for Expanded Perlite Composites
Authors: M. Arifuzzaman, H. S. Kim
Abstract:
Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate
Procedia PDF Downloads 4083600 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea
Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama
Abstract:
Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.Keywords: satellite, sea surface temperature, upwelling, wind stress
Procedia PDF Downloads 1583599 Development of Methotrexate Nanostructured Lipid Carriers for Topical Treatment of Psoriasis: Optimization, Evaluation, and in vitro Studies
Authors: Yogeeta O. Agrawal, Hitendra S. Mahajan, Sanjay J. Surana
Abstract:
Methotrexate is effective in controlling recalcitrant psoriasis when administered by the oral or parenteral route long-term. However, the systematic use of this drug may provoke any of a number of side effects, notably hepatotoxic effects. To reduce these effects, clinical studies have been done with topical MTx. It is useful in treating a number of cutaneous conditions, including psoriasis. A major problem in topical administration of MTx currently available in market is that the drug is hydrosoluble and is mostly in the dissociated form at physiological pH. Its capacity for passive diffusion is thus limited. Localization of MTx in effected layers of skin is likely to improve the role of topical dosage form of the drug as a supplementary to oral therapy for treatment of psoriasis. One of the possibilities for increasing the penetration of drugs through the skin is the use of Nanostructured lipid Carriers. The objective of the present study was to formulate and characterize Methotrexate loaded Nanostructured Lipid Carriers (MtxNLCs), to understand in vitro drug release and evaluate the role of the developed gel in the topical treatment of psoriasis. MtxNLCs were prepared by solvent diffusion technique using 3(2) full factorial design.The mean diameter and surface morphology of MtxNLC was evaluated. MtxNLCs were lyophilized and crystallinity of NLC was characterized by Differential Scanning Calorimtery (DSC) and powder X-Ray Diffraction (XRD). The NLCs were incorporated in 1% w/w Carbopol 934 P gel base and in vitro skin deposition studies in Human Cadaver Skin were conducted. The optimized MtxNLCs were spherical in shape, with average particle size of 253(±9.92)nm, zeta potential of -30.4 (±0.86) mV and EE of 53.12(±1.54)%. DSC and XRD data confirmed the formation of NLCs. Significantly higher deposition of Methotrexate was found in human cadaver skin from MtxNLC gel (71.52 ±1.23%) as compared to Mtx plain gel (54.28±1.02%). Findings of the studies suggest that there is significant improvement in therapeutic index in treatment of psoriasis by MTx-NLCs incorporated gel base developed in this investigation over plain drug gel currently available in the market.Keywords: methotrexate, psoriasis, NLCs, hepatotoxic effects
Procedia PDF Downloads 4303598 Reasons and Complexities around Using Alcohol and Other Drugs among Aboriginal People Experiencing Homelessness
Authors: Mandy Wilson, Emma Vieira, Jocelyn Jones, Alice V. Brown, Lindey Andrews, Louise Southalan, Jackie Oakley, Dorothy Bagshaw, Patrick Egan, Laura Dent, Duc Dau, Lucy Spanswick
Abstract:
Alcohol and drug dependency are pertinent issues for those experiencing homelessness. This includes Aboriginal and Torres Strait Islander people, Australia’s traditional owners, living in Perth, Western Australia (WA). Societal narratives around the drivers behind drug and alcohol dependency in Aboriginal communities, particularly those experiencing homelessness, have been biased and unchanging, with little regard for complexity. This can include the idea that Aboriginal people have ‘chosen’ to use alcohol or other drugs without consideration for intergenerational trauma and the trauma of homelessness that may influence their choices. These narratives have flow-on impacts on policies and services that directly impact Aboriginal people experiencing homelessness. In 2021, we commenced a project which aimed to listen to and elevate the voices of 70-90 Aboriginal people experiencing homelessness in Perth. The project is community-driven, led by an Aboriginal Community Controlled Organisation in partnership with a university research institute. A community-ownership group of Aboriginal Elders endorsed the project’s methods, chosen to ensure their suitability for the Aboriginal community. In this paper, we detail these methods, including semi-structured interviews influenced by an Aboriginal yarning approach – an important style of conversation for Aboriginal people which follows cultural protocols; and photovoice – supporting people to share their stories through photography. Through these engagements, we detail the reasons Aboriginal people in Perth shared for using alcohol or other drugs while experiencing homelessness. These included supporting their survival on the streets, managing their mental health, and coping while on the journey to finding support. We also detail why they sought to discontinue alcohol and other drug use, including wanting to reconnect with family and changing priorities. Finally, we share how Aboriginal people experiencing homelessness have said they are impacted by their family’s alcohol and other drug use, including feeling uncomfortable living with a family who is drug and alcohol-dependent and having to care for grandchildren despite their own homelessness. These findings provide a richer understanding of alcohol and drug use for Aboriginal people experiencing homelessness in Perth, shedding light on potential changes to targeted policy and service approaches.Keywords: Aboriginal and Torres Strait Islander peoples, alcohol and other drugs, homelessness, community-led research
Procedia PDF Downloads 1313597 Early Design Prediction of Submersible Maneuvers
Authors: Hernani Brinati, Mardel de Conti, Moyses Szajnbok, Valentina Domiciano
Abstract:
This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data.Keywords: submarine maneuvers, submarine, maneuvering, dynamics
Procedia PDF Downloads 6363596 Blood Glucose Measurement and Analysis: Methodology
Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali
Abstract:
There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system
Procedia PDF Downloads 4603595 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: artificial neural networks, biodiesel, iodine value, prediction
Procedia PDF Downloads 606