Search results for: distributed acoustic sensing
3053 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants
Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade
Abstract:
In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling
Procedia PDF Downloads 1723052 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure
Authors: Anika Zafiah M. Rus, S. Shafizah
Abstract:
This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood
Procedia PDF Downloads 4653051 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3413050 Assessment of Environmental Quality of an Urban Setting
Authors: Namrata Khatri
Abstract:
The rapid growth of cities is transforming the urban environment and posing significant challenges for environmental quality. This study examines the urban environment of Belagavi in Karnataka, India, using geostatistical methods to assess the spatial pattern and land use distribution of the city and to evaluate the quality of the urban environment. The study is driven by the necessity to assess the environmental impact of urbanisation. Satellite data was utilised to derive information on land use and land cover. The investigation revealed that land use had changed significantly over time, with a drop in plant cover and an increase in built-up areas. High-resolution satellite data was also utilised to map the city's open areas and gardens. GIS-based research was used to assess public green space accessibility and to identify regions with inadequate waste management practises. The findings revealed that garbage collection and disposal techniques in specific areas of the city needed to be improved. Moreover, the study evaluated the city's thermal environment using Landsat 8 land surface temperature (LST) data. The investigation found that built-up regions had higher LST values than green areas, pointing to the city's urban heat island (UHI) impact. The study's conclusions have far-reaching ramifications for urban planners and politicians in Belgaum and other similar cities. The findings may be utilised to create sustainable urban planning strategies that address the environmental effect of urbanisation while also improving the quality of life for city dwellers. Satellite data and high-resolution satellite pictures were gathered for the study, and remote sensing and GIS tools were utilised to process and analyse the data. Ground truthing surveys were also carried out to confirm the accuracy of the remote sensing and GIS-based data. Overall, this study provides a complete assessment of Belgaum's environmental quality and emphasizes the potential of remote sensing and geographic information systems (GIS) approaches in environmental assessment and management.Keywords: environmental quality, UEQ, remote sensing, GIS
Procedia PDF Downloads 813049 An Agile, Intelligent and Scalable Framework for Global Software Development
Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima
Abstract:
Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.Keywords: agile project management, agile tools/techniques, distributed teams, global software development
Procedia PDF Downloads 3183048 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises
Procedia PDF Downloads 623047 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas
Authors: Sharmin Sultana, Reinhard Schlickeiser
Abstract:
A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves
Procedia PDF Downloads 2033046 Using Non-Negative Matrix Factorization Based on Satellite Imagery for the Collection of Agricultural Statistics
Authors: Benyelles Zakaria, Yousfi Djaafar, Karoui Moussa Sofiane
Abstract:
Agriculture is fundamental and remains an important objective in the Algerian economy, based on traditional techniques and structures, it generally has a purpose of consumption. Collection of agricultural statistics in Algeria is done using traditional methods, which consists of investigating the use of land through survey and field survey. These statistics suffer from problems such as poor data quality, the long delay between collection of their last final availability and high cost compared to their limited use. The objective of this work is to develop a processing chain for a reliable inventory of agricultural land by trying to develop and implement a new method of extracting information. Indeed, this methodology allowed us to combine data from remote sensing and field data to collect statistics on areas of different land. The contribution of remote sensing in the improvement of agricultural statistics, in terms of area, has been studied in the wilaya of Sidi Bel Abbes. It is in this context that we applied a method for extracting information from satellite images. This method is called the non-negative matrix factorization, which does not consider the pixel as a single entity, but will look for components the pixel itself. The results obtained by the application of the MNF were compared with field data and the results obtained by the method of maximum likelihood. We have seen a rapprochement between the most important results of the FMN and those of field data. We believe that this method of extracting information from satellite data leads to interesting results of different types of land uses.Keywords: blind source separation, hyper-spectral image, non-negative matrix factorization, remote sensing
Procedia PDF Downloads 4233045 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology
Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar
Abstract:
Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.Keywords: data privacy, distributed system, federated learning, machine learning
Procedia PDF Downloads 1353044 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion
Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen
Abstract:
Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion
Procedia PDF Downloads 913043 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser
Authors: Ishraq M. Anjum
Abstract:
Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser
Procedia PDF Downloads 1833042 The Challenges of Scaling Agile to Large-Scale Distributed Development: An Overview of the Agile Factory Model
Authors: Bernard Doherty, Andrew Jelfs, Aveek Dasgupta, Patrick Holden
Abstract:
Many companies have moved to agile and hybrid agile methodologies where portions of the Software Design Life-cycle (SDLC) and Software Test Life-cycle (STLC) can be time boxed in order to enhance delivery speed, quality and to increase flexibility to changes in software requirements. Despite widespread proliferation of agile practices, implementation often fails due to lack of adequate project management support, decreased motivation or fear of increased interaction. Consequently, few organizations effectively adopt agile processes with tailoring often required to integrate agile methodology in large scale environments. This paper provides an overview of the challenges in implementing an innovative large-scale tailored realization of the agile methodology termed the Agile Factory Model (AFM), with the aim of comparing and contrasting issues of specific importance to organizations undertaking large scale agile development. The conclusions demonstrate that agile practices can be effectively translated to a globally distributed development environment.Keywords: agile, agile factory model, globally distributed development, large-scale agile
Procedia PDF Downloads 2943041 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach
Authors: Mustapha Sadouk
Abstract:
This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material
Procedia PDF Downloads 873040 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images
Authors: Meenal Surawar, Rajashree Kotharkar
Abstract:
Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island
Procedia PDF Downloads 2823039 Fabrication of Tin Oxide and Metal Doped Tin Oxide for Gas Sensor Application
Authors: Goban Kumar Panneer Selvam
Abstract:
In past years, there is lots of death caused due to harmful gases. So its very important to monitor harmful gases for human safety, and semiconductor material play important role in producing effective gas sensors.A novel solvothermal synthesis method based on sol-gel processing was prepared to deposit tin oxide thin films on glass substrate at high temperature for gas sensing application. The structure and morphology of tin oxide were analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM analysis of how spheres shape in tin oxide nanoparticles. The structure characterization of tin oxide studied by X-ray diffraction shows 8.95 nm (calculated by sheers equation). The UV visible spectroscopy indicated a maximum absorption band shown at 390 nm. Further dope tin oxide with selected metals to attain maximum sensitivity using dip coating technique with different immersion and sensing characterization are measured.Keywords: tin oxide, gas sensor, chlorine free, sensitivity, crystalline size
Procedia PDF Downloads 1493038 Memory and Narratives Rereading before and after One Week
Authors: Abigail M. Csik, Gabriel A. Radvansky
Abstract:
As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.Keywords: memory, event cognition, distributed practice, consolidation
Procedia PDF Downloads 2263037 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops
Authors: Catalina Albornoz, Giacomo Barbieri
Abstract:
Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature
Procedia PDF Downloads 3893036 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 803035 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing
Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed
Abstract:
Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.Keywords: cognitive radio, energy detector, periodogram, spectrum sensing
Procedia PDF Downloads 3793034 Analysis of the Elastic Energy Released and Characterization of the Eruptive Episodes Intensity’s during 2014-2015 at El Reventador Volcano, Ecuador
Authors: Paúl I. Cornejo
Abstract:
The elastic energy released through Strombolian explosions has been quite studied, detailing various processes, sources, and precursory events at several volcanoes. We realized an analysis based on the relative partitioning of the elastic energy radiated into the atmosphere and ground by Strombolian-type explosions recorded at El Reventador volcano, using infrasound and seismic signals at high and moderate seismicity episodes during intense eruptive stages of explosive and effusive activity. Our results show that considerable values of Volcano Acoustic-Seismic Ratio (VASR or η) are obtained at high seismicity stages. VASR is a physical diagnostic of explosive degassing that we used to compare eruption mechanisms at El Reventador volcano for two datasets of explosions recorded at a Broad-Band BB seismic and infrasonic station located at ~5 kilometers from the vent. We conclude that the acoustic energy EA released during explosive activity (VASR η = 0.47, standard deviation σ = 0.8) is higher than the EA released during effusive activity; therefore, producing the highest values of η. Furthermore, we realized the analysis and characterization of the eruptive intensity for two episodes at high seismicity, calculating a η three-time higher for an episode of effusive activity with an occasional explosive component (η = 0.32, and σ = 0.42), than a η for an episode of only effusive activity (η = 0.11, and σ = 0.18), but more energetic.Keywords: effusive, explosion quakes, explosive, Strombolian, VASR
Procedia PDF Downloads 1843033 A Comparative Study on Vowel Articulation in Malayalam Speaking Children Using Cochlear Implant
Authors: Deepthy Ann Joy, N. Sreedevi
Abstract:
Hearing impairment (HI) at an early age, identified before the onset of language development can reduce the negative effect on speech and language development of children. Early rehabilitation is very important in the improvement of speech production in children with HI. Other than conventional hearing aids, Cochlear Implants are being used in the rehabilitation of children with HI. However, delay in acquisition of speech and language milestones persist in children with Cochlear Implant (CI). Delay in speech milestones are reflected through speech sound errors. These errors reflect the temporal and spectral characteristics of speech. Hence, acoustical analysis of the speech sounds will provide a better representation of speech production skills in children with CI. The present study aimed at investigating the acoustic characteristics of vowels in Malayalam speaking children with a cochlear implant. The participants of the study consisted of 20 Malayalam speaking children in the age range of four and seven years. The experimental group consisted of 10 children with CI, and the control group consisted of 10 typically developing children. Acoustic analysis was carried out for 5 short (/a/, /i/, /u/, /e/, /o/) and 5 long vowels (/a:/, /i:/, /u:/, /e:/, /o:/) in word-initial position. The responses were recorded and analyzed for acoustic parameters such as Vowel duration, Ratio of the duration of a short and long vowel, Formant frequencies (F₁ and F₂) and Formant Centralization Ratio (FCR) computed using the formula (F₂u+F₂a+F₁i+F₁u)/(F₂i+F₁a). Findings of the present study indicated that the values for vowel duration were higher in experimental group compared to the control group for all the vowels except for /u/. Ratio of duration of short and long vowel was also found to be higher in experimental group compared to control group except for /i/. Further F₁ for all vowels was found to be higher in experimental group with variability noticed in F₂ values. FCR was found be higher in experimental group, indicating vowel centralization. Further, the results of independent t-test revealed no significant difference across the parameters in both the groups. It was found that the spectral and temporal measures in children with CI moved towards normal range. The result emphasizes the significance of early rehabilitation in children with hearing impairment. The role of rehabilitation related aspects are also discussed in detail which can be clinically incorporated for the betterment of speech therapeutic services in children with CI.Keywords: acoustics, cochlear implant, Malayalam, vowels
Procedia PDF Downloads 1443032 Bimetallic Cu/Au Nanostructures and Bio-Application
Authors: Si Yin Tee
Abstract:
Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures
Procedia PDF Downloads 5213031 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 1043030 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia
Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta
Abstract:
Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia
Procedia PDF Downloads 573029 From Sound to Music: The Trajectory of Musical Semiotics in a Selected Soundscape Environment in South-Western Nigeria
Authors: Olatunbosun Samuel Adekogbe
Abstract:
This paper addresses the question of musical signification, revolving around nature and its natural divides; the paper tends to examine the roles of the dispositional apparatus of listeners to react to sounding environments through music as coordinated sound that focuses on the powerful strain between vibrational occurrences of sound and potentials of being structured. This paper sets out to examine music as a simple conventional design that does not allude to something beyond music and sound as a vehicle to communicate through production, perception, translation, and reaction with regard to melodic and semiotic functions of sounds. This paper adopts the application of questionnaire and evolutionary approach methods to probe musical adaptation, reproduction, and natural selection as the basis for explaining specific human behavioural responses to musical sense-making beyond the above-sketched dichotomies, with a major focus on the transition from acoustic-emotional sensibilities to musical meaning in the selected soundscapes. It was observed that music has emancipated itself from the level of mere acoustic processing of sounds to a functional description in terms of allowing music users to share experiences and interact with the soundscaping environment. The paper, therefore, concludes that the audience as music participants and listeners in the selected soundscapes have been conceived as adaptive devices in the paradigm shift, which can build up new semiotic linkages with the sounding environments in southwestern Nigeria.Keywords: semiotics, sound, music, soundscape, environment
Procedia PDF Downloads 663028 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing
Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv
Abstract:
We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction
Procedia PDF Downloads 2983027 Multilayer Ceramic Capacitors: Based Force Sensor Array for Occlusal Force Measurement
Authors: Sheng-Che Chen, Keng-Ren Lin, Che-Hsin Lin, Hao-Yuan Tseng, Chih-Han Chang
Abstract:
Teeth play an important role in providing the essential nutrients. The force loading of chewing on the crow is important condition to evaluate long-term success of many dental treatments. However, the quantification of the force regarding forces are distributed over the dental crow is still not well recognized. This study presents an industrial-grade piezoelectric-based multilayer ceramic capacitors (MLCCs) force sensor for measuring the distribution of the force distribute over the first molar. The developed sensor array is based on a flexible polyimide electrode and barium titanate-based MLCCs. MLCCs are commonly used in the electronic industry and it is a typical electric component composed of BaTiO₃, which is used as a capacitive material. The most important is that it also can be used as a force-sensing component by its piezoelectric property. In this study, to increase the sensitivity as well as to reduce the variation of different MLCCs, a treatment process is utilized. The MLCC force sensors are able to measure large forces (above 500 N), making them suitable for measuring the bite forces on the tooth crown. Moreover, the sensors also show good force response and good repeatability.Keywords: force sensor array, multilayer ceramic capacitors, occlusal force, piezoelectric
Procedia PDF Downloads 4123026 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 1513025 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1043024 Modeling of Virtual Power Plant
Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.
Abstract:
Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling
Procedia PDF Downloads 65