Search results for: data databases
24923 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things
Authors: Benny Sand, Yotam Lurie, Shlomo Mark
Abstract:
Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI
Procedia PDF Downloads 10224922 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations
Authors: Deepak Singh, Rail Kuliev
Abstract:
The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization
Procedia PDF Downloads 7024921 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 50224920 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 12724919 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.Keywords: big data, next generation networks, network transformation, strategy
Procedia PDF Downloads 36024918 REDUCER: An Architectural Design Pattern for Reducing Large and Noisy Data Sets
Authors: Apkar Salatian
Abstract:
To relieve the burden of reasoning on a point to point basis, in many domains there is a need to reduce large and noisy data sets into trends for qualitative reasoning. In this paper we propose and describe a new architectural design pattern called REDUCER for reducing large and noisy data sets that can be tailored for particular situations. REDUCER consists of 2 consecutive processes: Filter which takes the original data and removes outliers, inconsistencies or noise; and Compression which takes the filtered data and derives trends in the data. In this seminal article, we also show how REDUCER has successfully been applied to 3 different case studies.Keywords: design pattern, filtering, compression, architectural design
Procedia PDF Downloads 21224917 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers
Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes
Abstract:
This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.Keywords: telecommunications, data center, fuzzy logic, expert systems
Procedia PDF Downloads 34524916 Genetic Testing and Research in South Africa: The Sharing of Data Across Borders
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 16124915 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems
Authors: Baris Can Yalcin
Abstract:
Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.Keywords: design, mechatronics, motion sensor, data acquisition
Procedia PDF Downloads 58824914 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 12624913 Deep Brain Stimulation and Motor Cortex Stimulation for Post-Stroke Pain: A Systematic Review and Meta-Analysis
Authors: Siddarth Kannan
Abstract:
Objectives: Deep Brain Stimulation (DBS) and Motor Cortex stimulation (MCS) are innovative interventions in order to treat various neuropathic pain disorders such as post-stroke pain. While each treatment has a varying degree of success in managing pain, comparative analysis has not yet been performed, and the success rates of these techniques using validated, objective pain scores have not been synthesised. The aim of this study was to compare the effect of pain relief offered by MCS and DBS on patients with post-stroke pain and to assess if either of these procedures offered better results. Methods: A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines (PROSPEROID CRD42021277542). Three databases were searched, and articles published from 2000 to June 2023 were included (last search date 25 June 2023). Meta-analysis was performed using random effects models. We evaluated the performance of DBS or MCS by assessing studies that reported pain relief using the Visual Analogue Scale (VAS). Data analysis of descriptive statistics was performed using SPSS (Version 27; IBM; Armonk; NY; USA). R statistics (Rstudio Version 4.0.1) was used to perform meta-analysis. Results: Of the 478 articles identified, 27 were included in the analysis (232 patients- 117 DBS & 115 MCS). The pooled number of patients who improved after DBS was 0.68 (95% CI, 0.57-0.77, I2=36%). The pooled number of patients who improved after MCS was 0.72 (95% CI, 0.62-0.80, I2=59%). Further sensitivity analysis was done to include only studies with a minimum of 5 patients in order to assess if there was any impact on the overall results. Nine studies each for DBS and MCS met these criteria. There seemed to be no significant difference in results. Conclusions: The use of surgical interventions such as DBS and MCS is an upcoming field for the treatment of post-stroke pain, with limited studies exploring and comparing these two techniques. While our study shows that MCS might be a slightly better treatment option, further research would need to be done in order to determine the appropriate surgical intervention for post-stroke pain.Keywords: post-stroke pain, deep brain stimulation, motor cortex stimulation, pain relief
Procedia PDF Downloads 13924912 Speed Characteristics of Mixed Traffic Flow on Urban Arterials
Authors: Ashish Dhamaniya, Satish Chandra
Abstract:
Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.Keywords: normal distribution, percentile speed, speed spread ratio, traffic volume
Procedia PDF Downloads 42224911 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data
Authors: Ming Wei
Abstract:
Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.Keywords: big data, smart card data, travel pattern, land use
Procedia PDF Downloads 28524910 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process
Procedia PDF Downloads 40224909 Spatial Integrity of Seismic Data for Oil and Gas Exploration
Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof
Abstract:
Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow
Procedia PDF Downloads 22224908 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)
Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair
Abstract:
This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity
Procedia PDF Downloads 1424907 Single-Cell Visualization with Minimum Volume Embedding
Authors: Zhenqiu Liu
Abstract:
Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method
Procedia PDF Downloads 22824906 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes
Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi
Abstract:
Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing
Procedia PDF Downloads 30624905 The Publication Impact of London’s Air Ambulance on the Field of Pre-Hospital Medicine and Its Application to Air Ambulances Internationally: A Bibliometric Analysis
Authors: Maria Ahmad, Alexandra Valetopoulou, Michael D. Christian
Abstract:
Background: London’s Air Ambulance (LAA) provides advanced pre-hospital trauma care across London, bringing specialist resources and expert trauma teams to patients. Since its inception 32 years ago, LAA has treated over 40,000 pre-hospital patients and significantly contributed to pre-hospital patient care in London. To the authors’ best knowledge, this is the first analysis to quantify the magnitude of the publication impact of LAA on the international field of pre-hospital medicine. Method: We searched the Scopus, Web of Science, Google Scholar and PubMed databases to identify LAA focused articles. These were defined as articles on the topic of pre-hospital medicine which either utilised data from LAA, or focused on LAA patients, or were authored by LAA clinicians. A bibliometric analysis was conducted and the impact of each eligible article was classified as either: high (article directly influenced the change or creation of clinical guidelines); medium (the article was referenced in clinical guidelines or had >20 Google Scholar citations or >10 PubMed citations); or low impact (article had <20 Google Scholar citations or <10 PubMed citations). Results: The literature search yielded 1,120 articles in total. 198 articles met our inclusion criteria, and their full text was analysed to determine the level of impact. 19 articles were classified as high-impact, 76 as medium-impact, and 103 as low-impact. 20 of the 76 medium-impact articles were referenced in clinical guidelines but had not prompted changes to the guidelines. Conclusion: To our knowledge, this review is the first to quantify the significant publication impact of LAA within the field of pre-hospital medicine over the last 32 years. LAA publications have focused on and driven clinical innovations in trauma care, particularly in pre-hospital anaesthesia, haemorrhage control, and major incidents, with many impacting national and international guidelines. We recommend a greater emphasis on multidisciplinary pre-hospital collaboration in publications in future research and quality improvement projects across all pre-hospital services.Keywords: air ambulance, pre-hospital medicine, London’s Air Ambulance, London HEMS
Procedia PDF Downloads 7624904 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 32624903 Biofilm Formation Due to the Proteome Changes Of Enterococcus Faecium in Response to Sub-Mic of Gentamicin
Authors: Amin Abbasi, Mahdi Asghari Ozma
Abstract:
Background and Objective:Enterococcus faecium is a normal flora of the human gastrointestinal tract that causes infection in the host body under conditions such as biofilm formation, in which the use of antibiotics causes changes in these pathogenic mechanisms. In this study, we aimed to evaluate comprehensively the changes in E.faecium when exposed to sub-MIC of the gentamicin,especiallythe biofilm formation rate. Materials and Methods: For this study, the keywords "Enterococcus faecium ", "Biofilm", and "Gentamicin" in the databases PubMed, Google Scholar, Sid, and MagIran between 2015 and 2021 were searched, and 14 articles were chosen, studied, and analyzed. Results: Gentamicin significantly had increased biofilm formation in most of the isolates in the studies. Increased expression of the genes (efaA and esp) and proteins involved in biofilm formation and decreased expression of the genes (gelE and cylA) involved in spreading and proteins involved in metabolism and cell division in E.faecium were the most significant cause of the biofilm formation, which were increased in sub-MIC gentamicin-treated situation. Conclusion: Inadequate use of gentamicin intensify biofilm formation of E.faecium, which can make the treatment of infections caused by this bacterium difficult.Keywords: biofilm, enterococcus faecium, gentamicin, proteome
Procedia PDF Downloads 11024902 The Impacts of Export in Stimulating Economic Growth in Ethiopia: ARDL Model Analysis
Authors: Natnael Debalklie Teshome
Abstract:
The purpose of the study was to empirically investigate the impacts of export performance and its volatility on economic growth in the Ethiopian economy. To do so, time-series data of the sample period from 1974/75 – 2017/18 were collected from databases and annual reports of IMF, WB, NBE, MoFED, UNCTD, and EEA. The extended Cobb-Douglas production function of the neoclassical growth model framed under the endogenous growth theory was used to consider both the performance and instability aspects of export. First, the unit root test was conducted using ADF and PP tests, and data were found in stationery with a mix of I(0) and I(1). Then, the bound test and Wald test were employed, and results showed that there exists long-run co-integration among study variables. All the diagnostic test results also reveal that the model fulfills the criteria of the best-fitted model. Therefore, the ARDL model and VECM were applied to estimate the long-run and short-run parameters, while the Granger causality test was used to test the causality between study variables. The empirical findings of the study reveal that only export and coefficient of variation had significant positive and negative impacts on RGDP in the long run, respectively, while other variables were found to have an insignificant impact on the economic growth of Ethiopia. In the short run, except for gross capital formation and coefficients of variation, which have a highly significant positive impact, all other variables have a strongly significant negative impact on RGDP. This shows exports had a strong, significant impact in both the short-run and long-run periods. However, its positive and statistically significant impact is observed only in the long run. Similarly, there was a highly significant export fluctuation in both periods, while significant commodity concentration (CCI) was observed only in the short run. Moreover, the Granger causality test reveals that unidirectional causality running from export performance to RGDP exists in the long run and from both export and RGDP to CCI in the short run. Therefore, the export-led growth strategy should be sustained and strengthened. In addition, boosting the industrial sector is vital to bring structural transformation. Hence, the government has to give different incentive schemes and supportive measures to exporters to extract the spillover effects of exports. Greater emphasis on price-oriented diversification and specialization on major primary products that the country has a comparative advantage should also be given to reduce value-based instability in the export earnings of the country. The government should also strive to increase capital formation and human capital development via enhancing investments in technology and quality of education to accelerate the economic growth of the country.Keywords: export, economic growth, export diversification, instability, co-integration, granger causality, Ethiopian economy
Procedia PDF Downloads 7724901 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines
Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci
Abstract:
Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.Keywords: breast cancer, epigenetic, microRNAs, RNF2
Procedia PDF Downloads 18024900 Trade in Value Added: The Case of the Central and Eastern European Countries
Authors: Łukasz Ambroziak
Abstract:
Although the impact of the production fragmentation on trade flows has been examined many times since the 1990s, the research was not comprehensive because of the limitations in traditional trade statistics. Early 2010s the complex databases containing world input-output tables (or indicators calculated on their basis) has made available. It increased the possibilities of examining the production sharing in the world. The trade statistic in value-added terms enables us better to estimate trade changes resulted from the internationalisation and globalisation as well as benefits of the countries from international trade. In the literature, there are many research studies on this topic. Unfortunately, trade in value added of the Central and Eastern European Countries (CEECs) has been so far insufficiently studied. Thus, the aim of the paper is to present changes in value added trade of the CEECs (Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia) in the period of 1995-2011. The concept 'trade in value added' or 'value added trade' is defined as the value added of a country which is directly and indirectly embodied in final consumption of another country. The typical question would be: 'How much value added is created in a country due to final consumption in the other countries?' The data will be downloaded from the World Input-Output Database (WIOD). The structure of this paper is as follows. First, theoretical and methodological aspects related to the application of the input-output tables in the trade analysis will be studied. Second, a brief survey of the empirical literature on this topic will be presented. Third, changes in exports and imports in value added of the CEECs will be analysed. A special attention will be paid to the differences in bilateral trade balances using traditional trade statistics (in gross terms) on one side, and value added statistics on the other. Next, in order to identify factors influencing value added exports and value added imports of the CEECs the generalised gravity model, based on panel data, will be used. The dependent variables will be value added exports and imports. The independent variables will be, among others, the level of GDP of trading partners, the level of GDP per capita of trading partners, the differences in GDP per capita, the level of the FDI inward stock, the geographical distance, the existence (or non-existence) of common border, the membership (or not) in preferential trade agreements or in the EU. For comparison, an estimation will also be made based on exports and imports in gross terms. The initial research results show that the gravity model better explained determinants of trade in value added than gross trade (R2 in the former is higher). The independent variables had the same direction of impact both on value added exports/imports and gross exports/imports. Only value of coefficients differs. The most difference concerned geographical distance. It had smaller impact on trade in value added than gross trade.Keywords: central and eastern European countries, gravity model, input-output tables, trade in value added
Procedia PDF Downloads 23924899 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction
Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto
Abstract:
Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data
Procedia PDF Downloads 10524898 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models
Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling
Abstract:
Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.Keywords: supplier selection, automotive supply chains, ANN, GEP
Procedia PDF Downloads 63124897 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.Keywords: feature fusion, image retrieval, membership function, normalization
Procedia PDF Downloads 34524896 Effective Service Provision and Multi-Agency Working in Service Providers for Children and Young People with Special Educational Needs and Disabilities: A Mixed Methods Systematic Review
Authors: Natalie Tyldesley-Marshall, Janette Parr, Anna Brown, Yen-Fu Chen, Amy Grove
Abstract:
It is widely recognised in policy and research that the provision of services for children and young people (CYP) with Special Educational Needs and Disabilities (SEND) is enhanced when health and social care, and education services collaborate and interact effectively. In the UK, there have been significant changes to policy and provisions which support and improve collaboration. However, professionals responsible for implementing these changes face multiple challenges, including a lack of specific implementation guidance or framework to illustrate how effective multi-agency working could or should work. This systematic review will identify the key components of effective multi-agency working in services for CYP with SEND; and the most effective forms of partnership working in this setting. The review highlights interventions that lead to service improvements; and the conditions in the local area that support and encourage success. A protocol was written and registered with PROSPERO registration: CRD42022352194. Searches were conducted on several health, care, education, and applied social science databases from the year 2012 onwards. Citation chaining has been undertaken, as well as broader grey literature searching to enrich the findings. Qualitative, quantitative, mixed methods studies and systematic reviews were included, assessed independently, and critically appraised or assessed for risk of bias using appropriate tools based on study design. Data were extracted in NVivo software and checked by a more experienced researcher. A convergent segregated approach to synthesis and integration was used in which the quantitative and qualitative data were synthesised independently and then integrated using a joint display integration matrix. Findings demonstrate the key ingredients for effective partnership working for services delivering SEND. Interventions deemed effective are described, and lessons learned across interventions are summarised. Results will be of interest to educators and health and social care professionals that provide services to those with SEND. These will also be used to develop policy recommendations for how UK healthcare, social care, and education services for CYP with SEND aged 0-25 can most effectively collaborate and achieve service improvement. The review will also identify any gaps in the literature to recommend areas for future research. Funding for this review was provided by the Department for Education.Keywords: collaboration, joint commissioning, service delivery, service improvement
Procedia PDF Downloads 10724895 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method
Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito
Abstract:
In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.
Procedia PDF Downloads 49324894 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.
Authors: Sulemana Saibu, Moses Ikpeme
Abstract:
Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases
Procedia PDF Downloads 84