Search results for: computational brain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3171

Search results for: computational brain

2601 Dementia, Its Associated Struggles, and the Supportive Technologies Classified

Authors: Eashwari Dahoe, Jody Scheuer, Harm-Jan Vink

Abstract:

Alzheimer's disease is a progressive brain condition and is the most common form of dementia. Dementia is a global concern. It is an increasing crisis due to the worldwide aging population. The disease alters the body in different stages leading to several issues. The most common issues result in memory loss, responsive decline, and social decline. During the various stages, the dementia patient must be supported more in performing daily tasks. Eventually, the patient will have to be cared for entirely. There are many efforts in various domains to support this brain condition. This study focuses on the connection between three generations of solutions in the domain of technology and the struggles they tackle. To gather information regarding the struggles seniors with dementia face data has been acknowledged through reading scientific articles. The struggles are extracted from these articles and classified into various category struggles. To gather information regarding the three generations of technology data has been acknowledged through reading scientific articles regarding the generations. After understanding the difference between the three generations, international technological solutions from the past 20 years are connected to the generation they fit. This info is mainly collected through research on companies that aim to improve the lives of senior citizens with early stages of dementia. Eventually, the technological solutions (divided by generations) are linked to the struggles they tackle. By connecting the struggles and the solutions , it is hoped that this paper contributes to an informative overview of the currently available technological solutions and the struggles they tackle.

Keywords: Alzheimer’s disease, technological solutions to support dementia, struggles of seniors with dementia, struggles of dementia

Procedia PDF Downloads 109
2600 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 86
2599 CFD Simulation and Investigation of Critical Two-Phase Flow Rate in Wellhead Choke

Authors: Alireza Rafie Boldaji, Ahmad Saboonchi

Abstract:

Chokes are commonly used in oil and gas production systems. A choke is a restriction basically designed to control flow rates of oil and gas wells, to prevent the downstream disturbances from propagating upstream (critical flow), and to protect the surface equipment facilities against slugging at high flowing pressures. There are different methods to calculate the multiphase flow rate, one of the multiphase flow measurement methods is the separation and measurement by on¬e-phaseFlow meter, another common method is the use of movable separator, their operations are very labor-intensive and costly. The current method used is based on the flow differential pressure on both sides of choke. Three groups of correlations describing two-phase flow through wellhead chokes were examined. The first group involved simple empirical equations similar to those of Gilbert, the second group comprised derived equations of two-phase flow incorporating PVT properties, and third group is computational method. In the article we calculate the flow of oil and gas through choke with simulation of this two phase flow bye computational fluid dynamic method, we use Ansys- fluent for this simulation and finally compared results of computational simulation whit empirical equations, the results show good agreement between experimental and numerical results.

Keywords: CFD, two-phase, choke, critical

Procedia PDF Downloads 278
2598 Tip60 Histone Acetyltransferase Activators as Neuroepigenetic Therapeutic Modulators for Alzheimer’s Disease

Authors: Akanksha Bhatnagar, Sandhya Kortegare, Felice Elefant

Abstract:

Context: Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive cognitive decline and memory loss. The cause of AD is not fully understood, but it is thought to be caused by a combination of genetic, environmental, and lifestyle factors. One of the hallmarks of AD is the loss of neurons in the hippocampus, a brain region that is important for memory and learning. This loss of neurons is thought to be caused by a decrease in histone acetylation, which is a process that regulates gene expression. Research Aim: The research aim of the study was to develop mall molecule compounds that can enhance the activity of Tip60, a histone acetyltransferase that is important for memory and learning. Methodology/Analysis: The researchers used in silico structural modeling and a pharmacophore-based virtual screening approach to design and synthesize small molecule compounds strongly predicted to target and enhance Tip60’s HAT activity. The compounds were then tested in vitro and in vivo to assess their ability to enhance Tip60 activity and rescue cognitive deficits in AD models. Findings: The researchers found that several of the compounds were able to enhance Tip60 activity and rescue cognitive deficits in AD models. The compounds were also developed to cross the blood-brain barrier, which is an important factor for the development of potential AD therapeutics. Theoretical Importance: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Data Collection: The study collected data from a variety of sources, including in vitro assays and animal models. The in vitro assays assessed the ability of compounds to enhance Tip60 activity using histone acetyltransferase (HAT) enzyme assays and chromatin immunoprecipitation assays. Animal models were used to assess the ability of the compounds to rescue cognitive deficits in AD models using a variety of behavioral tests, including locomotor ability, sensory learning, and recognition tasks. The human clinical trials will be used to assess the safety and efficacy of the compounds in humans. Questions: The question addressed by this study was whether Tip60 HAT activators could be developed as therapeutic agents for AD. Conclusions: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Further research is needed to confirm the safety and efficacy of these compounds in humans.

Keywords: Alzheimer's disease, cognition, neuroepigenetics, drug discovery

Procedia PDF Downloads 75
2597 Short Association Bundle Atlas for Lateralization Studies from dMRI Data

Authors: C. Román, M. Guevara, P. Salas, D. Duclap, J. Houenou, C. Poupon, J. F. Mangin, P. Guevara

Abstract:

Diffusion Magnetic Resonance Imaging (dMRI) allows the non-invasive study of human brain white matter. From diffusion data, it is possible to reconstruct fiber trajectories using tractography algorithms. Our previous work consists in an automatic method for the identification of short association bundles of the superficial white matter (SWM), based on a whole brain inter-subject hierarchical clustering applied to a HARDI database. The method finds representative clusters of similar fibers, belonging to a group of subjects, according to a distance measure between fibers, using a non-linear registration (DTI-TK). The algorithm performs an automatic labeling based on the anatomy, defined by a cortex mesh parcelated with FreeSurfer software. The clustering was applied to two independent groups of 37 subjects. The clusters resulting from both groups were compared using a restrictive threshold of mean distance between each pair of bundles from different groups, in order to keep reproducible connections. In the left hemisphere, 48 reproducible bundles were found, while 43 bundles where found in the right hemisphere. An inter-hemispheric bundle correspondence was then applied. The symmetric horizontal reflection of the right bundles was calculated, in order to obtain the position of them in the left hemisphere. Next, the intersection between similar bundles was calculated. The pairs of bundles with a fiber intersection percentage higher than 50% were considered similar. The similar bundles between both hemispheres were fused and symmetrized. We obtained 30 common bundles between hemispheres. An atlas was created with the resulting bundles and used to segment 78 new subjects from another HARDI database, using a distance threshold between 6-8 mm according to the bundle length. Finally, a laterality index was calculated based on the bundle volume. Seven bundles of the atlas presented right laterality (IP_SP_1i, LO_LO_1i, Op_Tr_0i, PoC_PoC_0i, PoC_PreC_2i, PreC_SM_0i, y RoMF_RoMF_0i) and one presented left laterality (IP_SP_2i), there is no tendency of lateralization according to the brain region. Many factors can affect the results, like tractography artifacts, subject registration, and bundle segmentation. Further studies are necessary in order to establish the influence of these factors and evaluate SWM laterality.

Keywords: dMRI, hierarchical clustering, lateralization index, tractography

Procedia PDF Downloads 331
2596 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 25
2595 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 95
2594 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 92
2593 Relationship between Right Brain and Left Brain Dominance and Intonation Learning

Authors: Mohammad Hadi Mahmoodi, Soroor Zekrati

Abstract:

The aim of this study was to investigate the relationship between hemispheric dominance and intonation learning of Iranian EFL students. In order to gain this goal, 52 female students from three levels of beginner, elementary and intermediate in Paradise Institute, and 18 male university students at Bu-Ali Sina University constituted the sample. In order to assist students learn the correct way of applying intonation to their everyday speech, the study proposed an interactive approach and provided students with visual aid through which they were able to see the intonation pattern on computer screen using 'Speech Analyzer' software. This software was also used to record subjects’ voice and compare them with the original intonation pattern. Edinburg Handedness Questionnaire (EHD), which ranges from –100 for strong left-handedness to +100 for strong right-handedness was used to indicate the hemispheric dominance of each student. The result of an independent sample t-test indicated that girls learned intonation pattern better than boys, and that right brained students significantly outperformed the left brained ones. Using one-way ANOVA, a significant difference between three proficiency levels was also found. The posthoc Scheffer test showed that the exact difference was between intermediate and elementary, and intermediate and beginner levels, but no significant difference was observed between elementary and beginner levels. The findings of the study might provide researchers with some helpful implications and useful directions for future investigation into the domain of the relationship between mind and second language learning.

Keywords: intonation, hemispheric dominance, visual aid, language learning, second language learning

Procedia PDF Downloads 519
2592 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
2591 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy

Authors: Mathula Thangarajh

Abstract:

Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.

Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene

Procedia PDF Downloads 99
2590 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter

Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh

Abstract:

Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.

Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential

Procedia PDF Downloads 830
2589 Physical Activity Based on Daily Step-Count in Inpatient Setting in Stroke and Traumatic Brain Injury Patients in Subacute Stage Follow Up: A Cross-Sectional Observational Study

Authors: Brigitte Mischler, Marget Hund, Hilfiker Roger, Clare Maguire

Abstract:

Background: Brain injury is one of the main causes of permanent physical disability, and improving walking ability is one of the most important goals for patients. After inpatient rehabilitation, most do not receive long-term rehabilitation services. Physical activity is important for the health prevention of the musculoskeletal system, circulatory system and the psyche. Objective: This follow-up study measured physical activity in subacute patients after traumatic brain injury and stroke. The difference in the number of steps in the inpatient setting was compared to the number of steps 1 year after the event in the outpatient setting. Methods: This follow-up study is a cross-sectional observational study with 29 participants. The measurement of daily step count over a seven-day period one year after the event was evaluated with the StepWatch™ ankle sensor. The number of steps taken one year after the event in the outpatient setting was compared with the number of steps taken during the inpatient stay and evaluated if they reached the recommended target value. Correlations between steps-count and exit domain, FAC level, walking speed, light touch, joint position sense, cognition, and fear of falling were calculated. Results: The median (IQR) daily step count of all patients was 2512 (568.5, 4070.5). During follow-up, the number of steps improved to 3656(1710,5900). The average difference was 1159(-2825, 6840) steps per day. Participants who were unable to walk independently (FAC 1) improved from 336(5-705) to 1808(92, 5354) steps per day. Participants able to walk with assistance (FAC 2-3) walked 700(31-3080) and at follow-up 3528(243,6871). Independent walkers (FAC 4-5) walked 4093(2327-5868) and achieved 3878(777,7418) daily steps at follow-up. This value is significantly below the recommended guideline. Step-count at follow-up showed moderate to high and statistically significant correlations: positive for FAC score, positive for FIM total score, positive for walking speed, and negative for fear of falling. Conclusions: Only 17% of all participants achieved the recommended daily step count one year after the event. We need better inpatient and outpatient strategies to improve physical activity. In everyday clinical practice, pedometers and diaries with objectives should be used. A concrete weekly schedule should be drawn up together with the patient, relatives, or nursing staff after discharge. This should include daily self-training, which was instructed during the inpatient stay. A good connection to social life (professional connection or a daily task/activity) can be an important part of improving daily activity. Further research should evaluate strategies to increase daily step counts in inpatient settings as well as in outpatient settings.

Keywords: neurorehabilitation, stroke, traumatic brain injury, steps, stepcount

Procedia PDF Downloads 16
2588 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities

Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede

Abstract:

This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.

Keywords: computer science, learning experiences, self-efficacy, students

Procedia PDF Downloads 144
2587 A Comparison of Generation Dependent Brain Targeting Potential of(Poly Propylene Mine) Dendrimers

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Aim and objective of study: This article indicates a comparison among various generations of dendrimers, a dendrimer is a bioactive material has repetitively branched molecule and used for delivery of various therapeutic active agents. This debut report compares the effect various generations of PPI dendrimers for brain targeting and management of neurodegenerative disorders potential on single platform. This report involves the study of the various mechanism of synthesis ligand anchored various generations PPI dendrimers deliver the drug directly to the CNS, prove their effectiveness in the management of the various neurodegenerative disease. Material and Methods: The Memantine an anti-Alzheimer drug loaded in different generations (3.0G, 4.0G, and 5.0G) of PPI dendrimers which were synthesized were synthesized. The various studies investigate the effect of PPI dendrimers generation on different characteristic parameters i.e. synthesis procedure, drug loading, release behavior, hemolysis profile at different concentration, MRI study for determine the route drug from olfactory transfer, animal model study in vitro, as well as in vivo performance. The outcomes of the investigation indicate drug delivery benefit as well as superior biocompatibility of 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer, respectively. Results and Conclusion: The above study indicate the superiority of in drug delivery system with maximum drug utilization and minimize the drug dose for neurodegenerative disorder over 5.0G PPI dendrimers. So, 4.0G PPI dendrimers are the safe formulations for the symptomatic treatment of the neurodegenerative disorder. The fifth-generation poly(propyleneimine) (PPI) dendrimers, inherent toxicity due to the presence of many peripheral cationic groups is the major issue that limits their applicability.

Keywords: Alzheimer disease, generation, memantine, PPI

Procedia PDF Downloads 668
2586 Smartphone Addiction and Reaction Time in Geriatric Population

Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi

Abstract:

Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.

Keywords: smartphones, MPAS, reaction time, elderly population

Procedia PDF Downloads 178
2585 Traumatic Brain Injury in Cameroon: A Prospective Observational Study in a Level 1 Trauma Centre

Authors: Franklin Chu Buh, Irene Ule Ngole Sumbele, Andrew I. R. Maas, Mathieu Motah, Jogi V. Pattisapu, Eric Youm, Basil Kum Meh, Firas H. Kobeissy, Kevin W. Wang, Peter J. A. Hutchinson, Germain Sotoing Taiwe

Abstract:

Introduction: Studying TBI characteristics and their relation to outcomes can identify initiatives to improve TBI prevention and care. The objective of this study was to define the features and outcomes of TBI patients seen over a 1-year period in a level-I trauma center in Cameroon. Methods: Data on demographics, causes, injury mechanisms, clinical aspects, and discharge status were prospectively collected over a period of 12 months. The Glasgow Outcome Scale-Extended (GOSE) and the Quality of Life Questionnaire after Brain Injury (QoLIBRI) were used to evaluate outcomes 6-months after TBI. Categorical variables were described as frequencies and percentages. Comparisons between 2 categorical variables were done using Pearson's Chi-square test or Fisher's exact test. Results: A total of 160 TBI patients participated in the study. The age group 15-45 years (78%; 125) was most represented. Males were more affected (90%; 144). Low educational level was recorded in 122 (76%) cases. Road traffic incidents (RTI) were the main cause of TBI (85%), with professional bike riders being frequently involved (27%, 43/160). Assaults (7.5%) and falls (2.5%) represent the second and third most common causes of TBI in Cameroon, respectively. Only 15 patients were transported to the hospital by ambulance, and 14 of these were from a referring hospital. CT-imaging was performed in 78% (125/160) of cases intracranial traumatic abnormality was identified in 77/125 (64%) cases. Financial constraints were the main reason for not performing a CT scan on 35 patients. A total of 46 (33%) patients were discharged against medical advice (DAMA) due to financial constraints. Mortality was 14% (22/160) but disproportionately high in patients with severe TBI (46%). DAMA had poor outcomes with QoLIBRI. Only 4 patients received post-injury physiotherapy services. Conclusion: TBI in Cameroon mainly results from RTIs and commonly affects young adult males, and low educational or socioeconomic status and commercial bike riding appear to be predisposing factors. Lack of pre-hospital care, financial constraints limiting both CT-scanning and medical care, and lack of acute physiotherapy services likely influenced care and outcomes adversely.

Keywords: characteristics, traumatic brain injury, outcome, disparities in care, prospective study

Procedia PDF Downloads 124
2584 A Computational Model of the Thermal Grill Illusion: Simulating the Perceived Pain Using Neuronal Activity in Pain-Sensitive Nerve Fibers

Authors: Subhankar Karmakar, Madhan Kumar Vasudevan, Manivannan Muniyandi

Abstract:

Thermal Grill Illusion (TGI) elicits a strong and often painful sensation of burn when interlacing warm and cold stimuli that are individually non-painful, excites thermoreceptors beneath the skin. Among several theories of TGI, the “disinhibition” theory is the most widely accepted in the literature. According to this theory, TGI is the result of the disinhibition or unmasking of the pain-sensitive HPC (Heat-Pinch-Cold) nerve fibers due to the inhibition of cold-sensitive nerve fibers that are responsible for masking HPC nerve fibers. Although researchers focused on understanding TGI throughexperiments and models, none of them investigated the prediction of TGI pain intensity through a computational model. Furthermore, the comparison of psychophysically perceived TGI intensity with neurophysiological models has not yet been studied. The prediction of pain intensity through a computational model of TGI can help inoptimizing thermal displays and understanding pathological conditions related to temperature perception. The current studyfocuses on developing a computational model to predict the intensity of TGI pain and experimentally observe the perceived TGI pain. The computational model is developed based on the disinhibition theory and by utilizing the existing popular models of warm and cold receptors in the skin. The model aims to predict the neuronal activity of the HPC nerve fibers. With a temperature-controlled thermal grill setup, fifteen participants (ten males and five females) were presented with five temperature differences between warm and cold grills (each repeated three times). All the participants rated the perceived TGI pain sensation on a scale of one to ten. For the range of temperature differences, the experimentally observed perceived intensity of TGI is compared with the neuronal activity of pain-sensitive HPC nerve fibers. The simulation results show a monotonically increasing relationship between the temperature differences and the neuronal activity of the HPC nerve fibers. Moreover, a similar monotonically increasing relationship is experimentally observed between temperature differences and the perceived TGI intensity. This shows the potential comparison of TGI pain intensity observed through the experimental study with the neuronal activity predicted through the model. The proposed model intends to bridge the theoretical understanding of the TGI and the experimental results obtained through psychophysics. Further studies in pain perception are needed to develop a more accurate version of the current model.

Keywords: thermal grill Illusion, computational modelling, simulation, psychophysics, haptics

Procedia PDF Downloads 173
2583 Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice

Authors: Jaspreet Kaur, Parminder Nain, Vipin Saini, Sumitra Dahiya

Abstract:

Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation.

Keywords: anxiolytic, behavior experiments, brain neurotransmitters, elaeocarpus sphaericus

Procedia PDF Downloads 177
2582 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 25
2581 An Inspection of Two Layer Model of Agency: An fMRI Study

Authors: Keyvan Kashkouli Nejad, Motoaki Sugiura, Atsushi Sato, Takayuki Nozawa, Hyeonjeong Jeong, Sugiko Hanawa , Yuka Kotozaki, Ryuta Kawashima

Abstract:

The perception of agency/control is altered with presence of discrepancies in the environment or mismatch of predictions (of possible results) and actual results the sense of agency might become altered. Synofzik et al. proposed a two layer model of agency: In the first layer, the Feeling of Agency (FoA) is not directly available to awareness; a slight mismatch in the environment/outcome might cause alterations in FoA, while the agent still feels in control. If the discrepancy passes a threshold, it becomes available to consciousness and alters Judgment of Agency (JoA), which is directly available in the person’s awareness. Most experiments so far only investigate subjects rather conscious JoA, while FoA has been neglected. In this experiment we target FoA by using subliminal discrepancies that can not be consciously detectable by the subjects. Here, we explore whether we can detect this two level model in the subjects behavior and then try to map this in their brain activity. To do this, in a fMRI study, we incorporated both consciously detectable mismatching between action and result and also subliminal discrepancies in the environment. Also, unlike previous experiments where subjective questions from the participants mainly trigger the rather conscious JoA, we also tried to measure the rather implicit FoA by asking participants to rate their performance. We compared behavioral results and also brain activation when there were conscious discrepancies and when there were subliminal discrepancies against trials with no discrepancies and against each other. In line with our expectations, conditions with consciously detectable incongruencies triggered lower JoA ratings than conditions without. Also, conditions with any type of discrepancies had lower FoA ratings compared to conditions without. Additionally, we found out that TPJ and angular gyrus in particular to have a role in coding of JoA and also FoA.

Keywords: agency, fMRI, TPJ, two layer model

Procedia PDF Downloads 470
2580 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 360
2579 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.

Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater

Procedia PDF Downloads 635
2578 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury

Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp

Abstract:

Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.

Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation

Procedia PDF Downloads 121
2577 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies

Authors: Salina Budin, Shaira Ismail

Abstract:

Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.

Keywords: learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science

Procedia PDF Downloads 245
2576 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model

Procedia PDF Downloads 468
2575 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 80
2574 CFD Modeling of Insect Flight at Low Reynolds Numbers

Authors: Wu Di, Yeo Khoon Seng, Lim Tee Tai

Abstract:

The typical insects employ a flapping-wing mode of flight. The numerical simulations on free flight of a model fruit fly (Re=143) including hovering and are presented in this paper. Unsteady aerodynamics around a flapping insect is studied by solving the three-dimensional Newtonian dynamics of the flyer coupled with Navier-Stokes equations. A hybrid-grid scheme (Generalized Finite Difference Method) that combines great geometry flexibility and accuracy of moving boundary definition is employed for obtaining flow dynamics. The results show good points of agreement and consistency with the outcomes and analyses of other researchers, which validate the computational model and demonstrate the feasibility of this computational approach on analyzing fluid phenomena in insect flight. The present modeling approach also offers a promising route of investigation that could complement as well as overcome some of the limitations of physical experiments in the study of free flight aerodynamics of insects. The results are potentially useful for the design of biomimetic flapping-wing flyers.

Keywords: free hovering flight, flapping wings, fruit fly, insect aerodynamics, leading edge vortex (LEV), computational fluid dynamics (CFD), Navier-Stokes equations (N-S), fluid structure interaction (FSI), generalized finite-difference method (GFD)

Procedia PDF Downloads 410
2573 Flow Characteristic Analysis for Hatch Type Air Vent Head of Bulk Cargo Ship by Computational Fluid Dynamics

Authors: Hanik Park, Kyungsook Jeon, Suchul Shin, Youngchul Park

Abstract:

The air vent head prevents the inflow of seawater into the cargo holds when it is used for the ballast tank on heavy weather. In this study, the flow characteristics and the grid size were created by the application of Computational Fluid Dynamics by taking into the consideration of comparison of test results. Then, the accuracy of the analysis was verified by comparing with experimental results. Based on this analysis, accurate turbulence model and grid size can be selected. Thus, the design characteristic of air vent head for bulk carrier contributes the reliability based on the research results.

Keywords: bulk carrier, FEM, SST, vent

Procedia PDF Downloads 520
2572 Analysis of the Treatment Hemorrhagic Stroke in Multidisciplinary City Hospital №1 Nur-Sultan

Authors: M. G. Talasbayen, N. N. Dyussenbayev, Y. D. Kali, R. A. Zholbarysov, Y. N. Duissenbayev, I. Z. Mammadinova, S. M. Nuradilov

Abstract:

Background. Hemorrhagic stroke is an acute cerebrovascular accident resulting from rupture of a cerebral vessel or increased permeability of the wall and imbibition of blood into the brain parenchyma. Arterial hypertension is a common cause of hemorrhagic stroke. Male gender and age over 55 years is a risk factor for intracerebral hemorrhage. Treatment of intracerebral hemorrhage is aimed at the primary pathophysiological link: the relief of coagulopathy and the control of arterial hypertension. Early surgical treatment can limit cerebral compression; prevent toxic effects of blood to the brain parenchyma. Despite progress in the development of neuroimaging data, the use of minimally invasive techniques, and navigation system, mortality from intracerebral hemorrhage remains high. Materials and methods. The study included 78 patients (62.82% male and 37.18% female) with a verified diagnosis of hemorrhagic stroke in the period from 2019 to 2021. The age of patients ranged from 25 to 80 years, the average age was 54.66±11.9 years. Demographic, brain CT data (localization, volume of hematomas), methods of treatment, and disease outcome were analyzed. Results. The retrospective analyze demonstrate that 78.2% of all patients underwent surgical treatment: decompressive craniectomy in 37.7%, craniotomy with hematoma evacuation in 29.5%, and hematoma draining in 24.59% cases. The study of the proportion of deaths, depending on the volume of intracerebral hemorrhage, shows that the number of deaths was higher in the group with a hematoma volume of more than 60 ml. Evaluation of the relationship between the time before surgery and mortality demonstrates that the most favorable outcome is observed during surgical treatment in the interval from 3 to 24 hours. Mortality depending on age did not reveal a significant difference between age groups. An analysis of the impact of the surgery type on mortality reveals that decompressive craniectomy with or without hematoma evacuation led to an unfavorable outcome in 73.9% of cases, while craniotomy with hematoma evacuation and drainage led to mortality only in 28.82% cases. Conclusion. Even though the multimodal approaches, the development of surgical techniques and equipment, and the selection of optimal conservative therapy, the question of determining the tactics of managing and treating hemorrhagic strokes is still controversial. Nevertheless, our experience shows that surgical intervention within 24 hours from the moment of admission and craniotomy with hematoma evacuation improves the prognosis of treatment outcomes.

Keywords: hemorragic stroke, Intracerebral hemorrhage, surgical treatment, stroke mortality

Procedia PDF Downloads 107